Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T04:04:29.913Z Has data issue: false hasContentIssue false

4 - Composition of Chondrules and Matrix and Their Complementary Relationship in Chondrites

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Complementary chemical and isotopic relationships between chondrules and matrix have the potential to distinguish between categories of chondrule forming mechanisms, e.g., exclude all mechanisms that require different reservoirs for chondrules and matrix. The complementarity argument is, however, often misunderstood. Complementarity requires different average compositions of an element or isotope ratio in each of the two major chondrite components chondrules and matrix, and a solar or CI chondritic bulk chondrite ratio of the considered elements or isotopes. For example, chondrules in carbonaceous chondrites typically have superchondritic Mg/Si ratios, while the matrix is subchondritic. Another example would be the Hf/W ratio, which is superchondritic in chondrules and subchondritic in matrix. We regard these ratios to be complementary in chondrules and matrix, because the bulk chondrite has solar Mg/Si and Hf/W ratios. In contrast, Al/Na ratios are also different in chondrules and matrix, but the bulk is not solar; therefore, Al/Na does not have a complementary relationship. A number of publications over the past decade have reported complementary relationships for many element pairs in different types of chondrites. Recently, isotopic complementarities have also been reported. A related, though different, argument can be made for volatile depletion patterns in chondrules and matrix, which can then also be considered as being complementary. The various models for chondrule formation require either that chondrules and matrix formed from a single (i.e., common) parental reservoir, or that chondrules and matrix formed in separate regions of the protoplanetary disk and were later mixed together. As chondrules and matrix have different compositions, mixing of these two components would result in a random bulk chondrite composition. The observation of complementary chondrule–matrix relationships together with a CI chondritic, element or isotope ratio is unlikely to be the result of a random mix of chondrules and matrix. It seems much more likely that chondrules and matrix formed in a single reservoir with initially CI chondritic element or isotope ratios. Incorporation of different minerals in chondrules and matrix together with volatile element depletion of the entire reservoir then resulted in chondrule-matrix complementarities and bulk chondrite volatile depletion. This excludes any chondrule formation mechanism that requires separate parental reservoirs for these components. Any chondrule forming mechanism must explain complementarity. Chondrules and matrix must have formed from a common reservoir.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 91 - 121
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, N. M., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta, 74, 11461171.CrossRefGoogle Scholar
Abreu, N. M., and Brearley, A. J. (2011). Deciphering the nebular and asteroidal record of silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 252274.CrossRefGoogle Scholar
Ahrens, L. H. (1965). Observations on the Fe-Si-Mg relationship in chondrites. Geochimica et Cosmochimica Acta, 29, 801806.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Grossman, J. N. (2005). Alkali elemental and potassium isotopic compositions of Semarkona chondrules. Meteoritics & Planetary Science, 40, 541556.Google Scholar
Alexander, C. M. O’D., Hutchison, R., and Barber, D. J. (1989b). Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth and Planetary Science Letters, 95, 187207.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Wang, J., et al. (2000). The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteoritics & Planetary Science, 35, 859868.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amsellem, E., Moynier, F., Pringle, E. A., et al. (2017). Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters, 469, 7583.CrossRefGoogle Scholar
Anders, E. (1964). Origin, age and composition of meteorites. Space Science Reviews, 3, 583714.CrossRefGoogle Scholar
Asphaug, E., and Jutzi, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017). Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta, 211, 256279CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). The age of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Berg, T., Maul, J., Schönhense, G., et al. (2009). Direct evidence for condensation in the early solar system and implications for nebular cooling rates. The Astrophysical Journal, 702, L172–176.CrossRefGoogle Scholar
Bigolski, J. N., Weisberg, M. K., Connolly, H. C., and Ebel, D. S. (2016). Microchondrules in three unequilibrated ordinary chondrites. Meteoritics & Planetary Science, 51, 235260.CrossRefGoogle Scholar
Bischoff, A., Geiger, T., Palme, H., et al. (1993). Mineralogy, chemistry, and noble gas contents of Adzhi-Bogdo—an LL3–6 chondritic breccia with L- chondritic and granitoidal clasts. Meteoritics, 28, 570578.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences, 102, 1375513760.CrossRefGoogle ScholarPubMed
Bland, P. A., Stadermann, F. J., Floss, C., et al. (2007). A cornucopia of presolar and early solar system materials at the micrometer size range in primitive chondrite matrix. Meteoritics & Planetary Science, 42, 14171427.CrossRefGoogle Scholar
Bland, P. A., Jackson, M. D, Coker, R. F., et al. (2009). Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559–68.CrossRefGoogle Scholar
Bouvier, A., and Wadhwa, M. (2010). The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.CrossRefGoogle Scholar
Bouvier, A., Wadhwa, M., Simon, S. B., and Grossman, L. (2013). Magnesium isotopic fractionation in chondrules from the Murchison and Murray CM2 carbonaceous chondrites. Meteoritics & Planetary Science, 48, 339–53.CrossRefGoogle Scholar
Brearley, A. J. (2014). Nebular Versus Parent Body Processing. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 309334. Oxford, UK: Elsevier.Google Scholar
Brearley, A. J. (1993). Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA 77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta, 57, 15211550.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2013). Metasomatism in the early solar system: The record from chondritic meteorites. In Harlov, D. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock, 659789. Lecture Notes in Earth System Sciences. Berlin and Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteoritics & Planetary Science, 50, 19952002.CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Hutchinson, R., et al. (1995). Cristobalite-and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5). Meteoritics, 30, 715727.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Science, 113, 28862891.CrossRefGoogle ScholarPubMed
Chaussidon, M., and Robert, F. (1998). 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite. Earth and Planetary Science Letters, 164, 577589.CrossRefGoogle Scholar
Clarke, R. S., Jarosewich, E., Mason, B., et al. (1971). The Allende, Mexico, meteorite shower. Smithsonian Contributions to the Earth Sciences, 5, 153.Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 23172337.CrossRefGoogle Scholar
Connelly, J., Bizzarro, M., Krot, A., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Ciesla, F. J. (2005). Nebula evolution of thermally processed solids: Reconciling models and meteorites. In Krot, A. N., Scott, E. R. D., & Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk., 732773. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Cuzzi, J. N., and Alexander, C. M. O’.D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical Journal, 546, 496508.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Daly, L., Bland, P. A., Dyl, K. A., et al. (2017a). In situ analysis of refractory metal nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta (in press)CrossRefGoogle Scholar
Daly, L., Bland, P. A., Dyl, K. A., et al. (2017b). Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach. Geochimica et Cosmochimica Acta (in press)CrossRefGoogle Scholar
Das, J. P., and Murty, S. V. S. (2008). Nitrogen isotopes in chondrules: Signatures of precursors and formation processes. Current Science, 94, 485489.Google Scholar
Desch, S. J., and Connolly, H. C. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183207.CrossRefGoogle Scholar
Dobrică, E., and Brearley, A. J. (2016). Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula. Meteoritics & Planetary Science, 51, 884905.CrossRefGoogle Scholar
Ebel, D. S., Weisberg, M. K., Hertz, J., and Campbell, A. J. (2008). Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) Chondrite. Meteoritics & Planetary Science, 43, 1725–40.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochimica et Cosmochimica Acta, 172, 322–56.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226–50.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., et al. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie Der Erde – Geochemistry, 75, 419–43.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochimica et Cosmochimica Acta, 173, 198209.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., Barrat, J.-A., et al. (2017). Composition, petrology and chondrule-matrix complementarity of the recently discovered Jbilet Winselwan CM2 chondrite. Meteoritics & Planetary Science (in revisions).Google Scholar
Friend, P., Hezel, D. C., Palme, H., Bischoff, A., and Gelissen, M. (2018). Complementary element relationships between chondrules and matrix in Rumuruti chondrites. Earth and Planetary Science Letters, 480, 8796.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’Nions, R. K. (2000). The Formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511753.CrossRefGoogle ScholarPubMed
Gammie, C. F. (1996). Layered accretion in T Tauri disks. The Astrophysical Journal, 457, 355362.CrossRefGoogle Scholar
Gerber, M. (2012). Chondrule formation in the early Solar System: A combined ICP-MS, ICP-OES and petrological study. PhD thesis, University of Münster.Google Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015). Chondrule transport in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 452, 40544069.CrossRefGoogle Scholar
Gordon, S. G. (2009). The composition of components in primitive meteorites. PhD thesis, Imperial College, London.Google Scholar
Greshake, A. (1997). The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta, 61, 437452CrossRefGoogle ScholarPubMed
Grossman, J. N., and Wasson, J. T. (1984). The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta, 49, 925939.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122.CrossRefGoogle Scholar
Harju, E. R., Rubin, A. E., Ahn, I., et al. (2014). Progressive aqueous alteration of CR carbonaceous chondrites. Geochimica et Cosmochimica Acta, 139, 267292.CrossRefGoogle Scholar
Hewins, R. (1997). Chondrules. Annual Review of Earth and Planetary Science, 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., Bourot-Denise, M., Zanda, B., et al. (2014). The Paris meteorite, the least altered CM chondrite so far. Geochimica et Cosmochimica Acta, 124, 190222.CrossRefGoogle Scholar
Hezel, D. C., Harak, M., and Libourel, G. (2018a). What we know about elemental bulk chondrule and matrix compositions: Presenting the ChondriteDB database. Chemie der Erde – Geochemistry. doi:10.1016/j.chemer.2017.05.003CrossRefGoogle Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. (2010). A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 296, 423433.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2007). The conditions of chondrule formation, Part I: Closed system. Geochimica et Cosmochimica Acta, 71, 40924107.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth and Planetary Science Letters, 294, 8593.CrossRefGoogle Scholar
Hezel, D.C., Palme, H., Brenker, F.E., and Nasdala, L. (2003). Evidence for fractional condensation and reprocessing at high temperatures in CH-chondrites. Meteoritics & Planetary Science, 38, 11991216.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Nasdala, L., and Brenker, F. E. (2006). Origin of SiO2-rich components in ordinary chondrites. Geochimica et Cosmochimica Acta, 70, 15481564.CrossRefGoogle Scholar
Hezel, D. C., Poole, G., Hoyes, J., et al. (2015). Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation? Meteoritics & Planetary Science, 50, 229242.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteoritics & Planetary Science, 43, 18791894.CrossRefGoogle Scholar
Hezel, D. C., Wilden, J. S., Becker, D., et al. (2018b). Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity. Earth & Planetary Science Letters, 490, 31–39.CrossRefGoogle Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015). Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochimica et Cosmochimica Acta, 149, 206222.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2009). Modal mineralogy of CM2 chondrites by PSD-XRD, Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta, 73, 45794589.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2010). Modal mineralogy of CV3 chondrites by PSD-XRD. Geochimica et Cosmochimica Acta, 74, 50845097.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2011). Modal mineralogy of CM chondrites by PSD-XRD, Part 2: Degree, nature and settings of aqueous alteration. Geochimica et Cosmochimica Acta, 75, 27352751.CrossRefGoogle Scholar
Hubbard, A. (2016a). Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. The Astrophysical Journal, 826, 152.CrossRefGoogle Scholar
Hubbard, A. (2016b). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. The Astrophysical Journal, 826, 151.CrossRefGoogle Scholar
Huss, G. R., Alexander, C. M. O’D., Palme, H., Bland, P. A., and Wasson, J. T. (2005). Genetic relationships between chondrules, fine-grained rims, and interchondrule matrix. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 701731. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hutchison, R., Williams, C. T., Din, V. K., and Clayton, R. N. (1988). A planetary, H-group pebble in the Barwell, L6, unshocked chondritic meteorite. Earth and Planetary Science Letters, 90, 105–18.CrossRefGoogle Scholar
Jacquet, E. (2014). The quasi-universality of chondrule size as a constraint for chondrule formation models. Icarus, 223, 176186.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., Kearsley, A. T., and Gounelle, M. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., Barrat, J. -A., Beck, P., et al. (2016). Northwest Africa 5958: A weakly altered CM-related ungrouped chondrite, not a CI3. Meteoritics & Planetary Science, 51, 851869.CrossRefGoogle Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorites. Meteoritics, 25, 323337.CrossRefGoogle Scholar
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochimica et Cosmochimica Acta, 56, 467482.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics & Planetary Science, 47, 1176–90.CrossRefGoogle Scholar
Jones, R. H., and Schilk, A. J. (2009). Chemistry, petrology and bulk oxygen isotope compositions of chondrules from the Mokoia CV3 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 73, 58545883.CrossRefGoogle Scholar
King, A. J., Schofield, P. F., Howard, K. T., and Russell, S. S. (2015). Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica et Cosmochimica Acta, 165, 148160.CrossRefGoogle Scholar
Klerner, S. (2001). Materie im frühen Sonnensystem: Die Entstehung von Chondren, Matrix und refraktären Forsteriten. PhD Thesis, Universität zu Köln.Google Scholar
Klerner, S., and Palme, H. (1999a). Origin of chondrules and matrix in carbonaceous chondrites. 30th Lunar and Planetary Science Conference, abstract 1272.Google Scholar
Klerner, S., and Palme, H. (1999b). Origin of chondrules and matrix in the Renazzo Meteorite (abstract). Meteoritics & Planetary Science, 34, (Supplement), A64.Google Scholar
Klerner, S., and Palme, H. (2000). Large titanium/aluminium fractionation between chondrules and matrix in Renazzo and other carbonaceous chondrites (abstract). Meteoritics & Planetary Science, 35, 89.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochimica et Cosmochimica Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., Scott, E. R. D., and Zolensky, M. E. (1997a). Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics, 32, 3149.CrossRefGoogle Scholar
Krot, A. N., Wasson, J. T., Rubin, A. E., Scott, E. R. D., and Keil, K. (1997b). Microchondrules in ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 61, 463475.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C., and Petaev, M. I. (2004). Silica-igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation during chondrule formation. Meteoritics & Planetary Science, 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., McKeegan, K. D., et al. (2006). Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie Der Erde – Geochemistry, 66, 249276.CrossRefGoogle Scholar
Leroux, H., Cuvillier, P., Zanda, B., and Hewins, R. H. (2015). GEMS-like material in the matrix of the Paris meteorite and the early stages of alteration of CM chondrites. Geochimica et Cosmochimica Acta, 170, 247265.CrossRefGoogle Scholar
Libourel, G., and Krot, A. N. (2007). Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters, 254, 18.CrossRefGoogle Scholar
Libourel, G., Krot, A., and Tissandier, L. (2006). Role of gas–melt interaction during chondrule formation. Earth and Planetary Science Letters, 251, 232240.CrossRefGoogle Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009). Abundances of the elements in the solar system. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, vol.VI/4B, 560598. Berlin, Germany: Springer.Google Scholar
Luck, J. -M., Othman, D. B., and Albarède, F. (2005). Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69, 53515363.CrossRefGoogle Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L., and Krot, A. N. (2005). Calcium-aluminum-rich inclusions: Major unanswered questions. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 225250. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Mason, B., and Wiik, H. B. (1962). The Renazzo meteorite. American Museum Novitates, 2106, 111.Google Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. The Astrophysical Journal, 767, L2L7.CrossRefGoogle Scholar
Molini-Velsko, C., Mayeda, T. K., and Clayton, R. N. (1986). Isotopic composition of silicon in meteorites. Geochimica et Cosmochimica Acta, 50, 27192726.CrossRefGoogle Scholar
Moynier, F., Agranier, A., Hezel, D. C., and Bouvier, A. (2010). Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth and Planetary Science Letters, 300, 359366.CrossRefGoogle Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Mullane, E., Russell, S. S., and Gounelle, M. (2005). Nebular and asteroidal modification of the iron isotope composition of chondritic components. Earth and Planetary Science Letters, 239, 203218.CrossRefGoogle Scholar
Murakami, T., and Ikeda, Y. (1994). Petrology and mineralogy of the Yamato-86751 CV3 chondrite. Meteoritics, 29, 397409.CrossRefGoogle Scholar
Nelson, V. E., and Rubin, A. E. (2002). Frequency distributions of chondrules and chondrule fragments in LL3 chondrites: Implications for parent-body fragmentation of chondrules. Meteoritics & Planetary Science, 37, 13611376.CrossRefGoogle Scholar
Nguyen, A., and Zinner, E. (2004). Discover of ancient silicate stardust in a meteorite. Science, 303, 14961499.CrossRefGoogle Scholar
Niemeyer, S. (1988). Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochimica et Cosmochimica Acta, 52, 309318.CrossRefGoogle Scholar
Nuth, J. A. III, Brearley, A. J., and Scott, E. R. D. (2005). Microcrystals and amorphous material in comets and primitive meteorites: Keys to understanding processes in the early Solar System. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 675700. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – insights into early disk processes. Geochimica et Cosmochimica Acta, 191, 118–38.CrossRefGoogle ScholarPubMed
Pack, A., Shelley, M. G., and Palme, H. (2004). Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science, 303, 9971000.CrossRefGoogle ScholarPubMed
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Moderately volatile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., Spettel, B., Kurat, G., and Zinner, E. (1992). Origin of Allende chondrules. 23 rd Lunar and Planetary Science Conference, abstract 1021.Google Scholar
Palme, H., Lodders, K., and Jones, A. (2014a). Solar system abundances of the elements. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.Google Scholar
Palme, H., Spettel, B., and Hezel, D. C. (2014b). Siderophile elements in chondrules of CV-chondrites. Chemie der Erde, 74, 507516.CrossRefGoogle Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters, 411, 1119.CrossRefGoogle Scholar
Pringle, E. A., Moynier, F., Beck, P., Paniello, R., and Hezel, D. C. (2017). The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth and Planetary Science Letters, 468, 6271.CrossRefGoogle Scholar
Patchett, P. J. (1980). Sr isotopic fractionation in Allende chondrules: A reflection of solar nebular processes. Earth and Planetary Science Letters, 50, 181–88.CrossRefGoogle Scholar
Rai, V. K., and Thiemens, M. H. (2007). Mass independently fractionated sulfur components in chondrites. Geochimica et Cosmochimica Acta, 71, 1341–54.CrossRefGoogle Scholar
Rubin, A. E. (1984). Coarse-grained chondrule rims in type 3 chondrites. Geochimica et Cosmochimica Acta, 48, 17791789.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987). Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite: Origin, interrelationships and possible precursor components. Geochimica et Cosmochimica Acta, 51, 19231937.CrossRefGoogle Scholar
Ruzicka, A., and Boynton, W. V. (1992). A distinctive silica-rich, sodium-poor igneous clast in the Bovedy (L3) chondrite. Meteoritics, 27, 283.Google Scholar
Sanders, I. S, and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Seitz, H. -M., Zipfel, J., Brey, G. P., and Ott, U. (2012). Lithium isotope compositions of chondrules, CAI and a dark inclusion from Allende and ordinary chondrites. Earth and Planetary Science Letters, 329, 5159.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astronomy & Astrophysics, 24, 337355.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Stracke, A., Palme, H., Gellissen, M., et al. (2012) Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochimica et Cosmochimica Acta, 85, 114141.CrossRefGoogle Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas–melt interactions and their bearing on chondrule formation. Meteoritics & Planetary Science, 37, 13771389.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374–76.CrossRefGoogle ScholarPubMed
Trinquier, A., Birck, J. L., and Allègre, C. J. (2007). Widespread 54Cr heterogeneity in the inner solar system. The Astrophysical Journal, 655, 11791185.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-Rich carbonaceous chondrites. Proceedings of the National Academy of Sciences, 113, 2011–16.CrossRefGoogle ScholarPubMed
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of aluminum-26 in the solar system from the magnesium isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Philosopical Transactions of the Royal Society, London A, 325, 535544Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1993). The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta, 57, 15671586.CrossRefGoogle Scholar
Wiik, H. B. (1956). The chemical composition of some stony meteorites. Geochimica et Cosmochimica Acta, 9, 279289.CrossRefGoogle Scholar
Wolf, D., and Palme, H. (2001). The solar system abundances of P and Ti and the nebular volatility of P. Meteoritics & Planetary Science, 36, 559572.CrossRefGoogle Scholar
Wombacher, F., Rehkaemper, M., Mezger, K., Bischoff, A., and Muenker, C. (2008). Cadmium stable isotope cosmochemistry. Geochimica et Cosmochimica Acta, 72, 646667.CrossRefGoogle Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152180.CrossRefGoogle Scholar
Wood, J. A. (1967). Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochimica et Cosmochimica Acta, 31, 20952108.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Matthews, M. S. (Eds.), Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Zanda, B., Hewins, R. H., Bourot-Denise, M., Bland, P. A., and Albarède, F. (2006). Formation of solar nebula reservoirs by mixing chondritic components. Earth and Planetary Science Letters, 248, 650660.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×