Book contents
- Chondrules
- Cambridge Planetary Science
- Chondrules
- Copyright page
- Contents
- Contributors
- 1 Introduction
- Part I Observations of Chondrules
- 2 Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk
- 3 Thermal Histories of Chondrules
- 4 Composition of Chondrules and Matrix and Their Complementary Relationship in Chondrites
- 5 The Chondritic Assemblage
- 6 Vapor–Melt Exchange
- 7 Chondrules in Enstatite Chondrites
- 8 Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry
- 9 26Al–26Mg Systematics of Chondrules
- 10 Tungsten Isotopes and the Origin of Chondrules and Chondrites
- 11 The Absolute Pb–Pb Isotope Ages of Chondrules
- 12 Records of Magnetic Fields in the Chondrule Formation Environment
- Part II Possible Chondrule-Forming Mechanisms
- Index
- Plate Section (PDF Only)
- References
9 - 26Al–26Mg Systematics of Chondrules
from Part I - Observations of Chondrules
Published online by Cambridge University Press: 30 June 2018
- Chondrules
- Cambridge Planetary Science
- Chondrules
- Copyright page
- Contents
- Contributors
- 1 Introduction
- Part I Observations of Chondrules
- 2 Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk
- 3 Thermal Histories of Chondrules
- 4 Composition of Chondrules and Matrix and Their Complementary Relationship in Chondrites
- 5 The Chondritic Assemblage
- 6 Vapor–Melt Exchange
- 7 Chondrules in Enstatite Chondrites
- 8 Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry
- 9 26Al–26Mg Systematics of Chondrules
- 10 Tungsten Isotopes and the Origin of Chondrules and Chondrites
- 11 The Absolute Pb–Pb Isotope Ages of Chondrules
- 12 Records of Magnetic Fields in the Chondrule Formation Environment
- Part II Possible Chondrule-Forming Mechanisms
- Index
- Plate Section (PDF Only)
- References
Summary
The 26Al–26Mg systematics of chondrules from ordinary and carbonaceous chondrites and their implications are reviewed. The initial 26Al/27Al ratios [(26Al/27Al)0] based on in situ analyses of chondrules from the least metamorphosed chondrites range from unresolved from zero to ~1.2 × 10‒5 and thus no chondrules have A26l/A27l0Internal ratios corresponding to the canonical level (~5.2 × 10‒5) recorded by CAIs. Assuming homogeneous distribution of 26Al in the protoplanetary disk at the canonical level, these observations suggest chondrule formation started ~1.5 million years after CAIs and lasted over a few million years. The 26Al–26Mg systematics of bulk chondrules could have recorded A26l/A27l0Bulk ratios of chondrule precursors and may suggest that Al–Mg fractionation recorded by chondrule precursors started contemporaneously with CAIs and lasted over ~1.5 million years. The comparisons of formation ages of different meteorites and their components have been made with 26Al–26Mg, 182Hf–182W, and 206Pb–207Pb systematics. While the ages determined by 26Al–26Mg and 182Hf–182W systematics are generally consistent, those determined by 26Al–26Mg and 206Pb–207Pb systematics are largely inconsistent. The homogeneous versus heterogeneous distribution of 26Al in the protoplanetary disk remains controversial.
- Type
- Chapter
- Information
- ChondrulesRecords of Protoplanetary Disk Processes, pp. 247 - 275Publisher: Cambridge University PressPrint publication year: 2018
References
- 15
- Cited by