Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T09:12:22.669Z Has data issue: false hasContentIssue false

11 - Heritable predisposition to childhood hematologic malignancies

from Section 2 - Cell biology and pathobiology

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

Familial cancer syndromes, including those associated with an increased risk of developing leukemia, have been extraordinarily informative for defining the general mechanisms of tumor formation and discovering genes that serve as the initiating event(s) in oncogenesis. The cloning of genes mutated in familial cancer-predisposing conditions commonly identifies proteins and cellular pathways that play a central role in normal cellular growth control. Although these genes may be mutated in the germline only in rare individuals, these same genes are frequently targeted in a somatic fashion in sporadic, non-familial cancers. Consequently, understanding the genetic basis of inherited cancers provides a critical starting point for probing the biochemical pathways perturbed in cancer cells and can identify potential targets for therapeutic intervention. This chapter reviews the basic principles of cancer predisposition, describes the clinical and molecular features associated with specific leukemia-predisposing conditions, and describes how elucidation of the genetic basis of these conditions has increased our knowledge of common molecular pathways involved in the pathogenesis of hematologic malignancies.

The principles of cancer predisposition

Most cancers are not thought to result from an underlying genetic predisposition. Rather, malignant transformation is believed to develop through the accumulation of cooperating somatic mutations in a postzygotic cell. Currently, it is estimated that 1–10% of children with cancer develop their disease as the result of an underlying genetic predisposition. In some patients, mutations are inherited from a similarly affected parent, while in others, the risk results from a de novo germline mutation. In the latter scenario, the affected child will be the first individual in the family to carry the predisposing mutation. Regardless of the origin of the mutation, affected children are at risk to develop cancers and to transmit the mutation to future offspring.

Type
Chapter
Information
Childhood Leukemias , pp. 276 - 308
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strahm, B, Malkin, D. Hereditary cancer predisposition in children: genetic basis and clinical implications. Int J Cancer 2006;119:2001–2006.CrossRefGoogle ScholarPubMed
Knudson, AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820–823.CrossRefGoogle ScholarPubMed
Friend, SH, Bernards, R, Rogelj, S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986;323:643–646.CrossRefGoogle ScholarPubMed
Sherr, CJ. Principles of tumor suppression. Cell 2004;116:235–246.CrossRefGoogle ScholarPubMed
Baer, CF, Miyamoto, MM, Denver, DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007;8:619–631.CrossRefGoogle ScholarPubMed
Camenisch, U, Naegeli, H. Role of DNA repair in the protection against genotoxic stress. EXS 2009;99:111–150.Google ScholarPubMed
Lopez-Camarillo, C, Lopez-Casamichana, M, Weber, C, et al. DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites. Infect Genet Evol 2009;9:1051–1056.CrossRefGoogle ScholarPubMed
Moldovan, GL, D'Andrea, AD. How the Fanconi anemia pathway guards the genome. Annu Rev Genet 2009;43:223–249.CrossRefGoogle ScholarPubMed
Darzynkiewicz, Z, Traganos, F, Wlodkowic, D. Impaired DNA damage response: an Achilles' heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 2009;625:143–150.CrossRefGoogle ScholarPubMed
Rubin, P, Williams, JP, Devesa, SS, Travis, LB, Constine, LS. Cancer genesis across the age spectrum: associations with tissue development, maintenance, and senescence. Semin Radiat Oncol 2010;20:3–11.CrossRefGoogle ScholarPubMed
Alter, BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematol Am Soc Hematol Educ Program 2007: 29–39.
D'Andrea, AD. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med 2010;362:1909–1919.CrossRefGoogle ScholarPubMed
Nagy, R, Sweet, K, Eng, C. Highly penetrant hereditary cancer syndromes. Oncogene 2004;23:6445–6470.CrossRefGoogle ScholarPubMed
Shimamura, A, Alter, BP. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev 2010;24:101–122.CrossRefGoogle ScholarPubMed
Kutler, DI, Auerbach, AD. Fanconi anemia in Ashkenazi Jews. Famil Cancer 2004;3:241–248.CrossRefGoogle ScholarPubMed
Auerbach, AD. Fanconi anemia and its diagnosis. Mutat Res 2009;668: 4–10.CrossRefGoogle ScholarPubMed
Lindor, NM, Greene, MH. The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J Natl Cancer Inst 1998;90:1039–1071.CrossRefGoogle ScholarPubMed
Kutler, DI, Singh, B, Satagopan, J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003;101:1249–1256.CrossRef
Rosenberg, PS, Alter, BP, Ebell, W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica 2008;93:511–517.CrossRefGoogle ScholarPubMed
Alter, BP. Fanconi's anemia and malignancies. Am J Hematol 1996;53:99–110.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Alter, BP, Greene, MH, Velazquez, I, Rosenberg, PS. Cancer in Fanconi anemia. Blood 2003;101:2072.CrossRefGoogle ScholarPubMed
Gyger, M, Perreault, C, Belanger, R, et al. Unsuspected Fanconi's anemia and bone marrow transplantation in cases of acute myelomonocytic leukemia. N Engl J Med 1989;321:120–121.Google ScholarPubMed
Vaz, F, Hanenberg, H, Schuster, B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010;42:406–409.CrossRefGoogle Scholar
Stewart, G, Elledge, SJ. The two faces of BRCA2, a FANCtastic discovery. Mol Cell 2002;10:2–4.CrossRefGoogle ScholarPubMed
Taniguchi, T, D'Andrea, AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood 2006;107: 4223–4233.CrossRefGoogle ScholarPubMed
Garcia-Higuera, I, Taniguchi, T, Ganesan, S, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001;7:249–262.CrossRefGoogle Scholar
Alter, BP, Rosenberg, PS, Brody, LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 2007;44:1–9.CrossRefGoogle ScholarPubMed
Hirsch, B, Shimamura, A, Moreau, L, et al. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 2004;103:2554–2559.CrossRefGoogle ScholarPubMed
Neveling, K, Endt, D, Hoehn, H, Schindler, D. Genotype–phenotype correlations in Fanconi anemia. Mutat Res 2009;668:73–91.CrossRefGoogle ScholarPubMed
Alter, BP, Joenje, H, Oostra, AB, Pals, G. Fanconi anemia: adult head and neck cancer and hematopoietic mosaicism. Arch Otolaryngol Head Neck Surg 2005;131:635–639.CrossRefGoogle ScholarPubMed
Gross, M, Hanenberg, H, Lobitz, S, et al. Reverse mosaicism in Fanconi anemia: natural gene therapy via molecular self-correction. Cytogenet Genome Res 2002;98:126–135.CrossRefGoogle ScholarPubMed
Lo Ten Foe, JR, Kwee, ML, Rooimans, MA, et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur J Hum Genet 1997;5:137–148.Google ScholarPubMed
Waisfisz, Q, Morgan, NV, Savino, M, et al. Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nat Genet 1999;22:379–383.CrossRefGoogle ScholarPubMed
Taniguchi, T. Fanconi anemia. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (, accessed January 2012).
D'Andrea, AD, Dahl, N, Guinan, EC, Shimamura, A. Marrow failure. Hematol Am Soc Hematol Educ Program 2002: 58–72.
Mehta, PA, Ileri, T, Harris, RE, et al. Chemotherapy for myeloid malignancy in children with Fanconi anemia. Pediatr Blood Cancer 2007;48:668–672.CrossRefGoogle ScholarPubMed
Wagner, JE, Eapen, M, MacMillan, ML, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood 2007;109:2256–2262.CrossRefGoogle ScholarPubMed
Gluckman, E, Rocha, V, Ionescu, I, et al. Results of unrelated cord blood transplant in Fanconi anemia patients: risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant 2007;13:1073–1082.CrossRefGoogle Scholar
Myers, KC, Davies, SM. Hematopoietic stem cell transplantation for bone marrow failure syndromes in children. Biol Blood Marrow Transplant 2009;15:279–292.CrossRefGoogle ScholarPubMed
Smith, AR, Wagner, JE. Alternative haematopoietic stem cell sources for transplantation: place of umbilical cord blood. Br J Haematol 2009;147:246–261.CrossRefGoogle ScholarPubMed
Gluckman, E, Auerbach, AD, Horowitz, MM, et al. Bone marrow transplantation for Fanconi anemia. Blood 1995;86:2856–2862.Google ScholarPubMed
Socie, G, Devergie, A, Girinski, T, et al. Transplantation for Fanconi's anaemia: long-term follow-up of fifty patients transplanted from a sibling donor after low-dose cyclophosphamide and thoraco-abdominal irradiation for conditioning. Br J Haematol 1998;103:249–255.CrossRefGoogle ScholarPubMed
Tan, PL, Wagner, JE, Auerbach, AD, et al. Successful engraftment without radiation after fludarabine-based regimen in Fanconi anemia patients undergoing genotypically identical donor hematopoietic cell transplantation. Pediatr Blood Cancer 2006;46:630–636.CrossRefGoogle ScholarPubMed
Ayas, M, Al-Jefri, A, Al-Mahr, M, et al. Allogeneic stem cell transplantation in patients with Fanconi's anemia and myelodysplasia or leukemia utilizing low-dose cyclophosphamide and total body irradiation. Bone Marrow Transplant 2004;33:15–17.CrossRefGoogle ScholarPubMed
Chaudhury, S, Auerbach, AD, Kernan, NA, et al. Fludarabine-based cytoreductive regimen and T-cell-depleted grafts from alternative donors for the treatment of high-risk patients with Fanconi anaemia. Br J Haematol 2008;140:644–655.CrossRefGoogle ScholarPubMed
Kelly, PF, Radtke, S, von Kalle, C, et al. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther 2007;15:211–219.CrossRefGoogle ScholarPubMed
Muller, LU, Williams, DA. Finding the needle in the hay stack: hematopoietic stem cells in Fanconi anemia. Mutat Res 2009;668:141–149.CrossRefGoogle ScholarPubMed
Gatti, R. Ataxia-telangiectasia. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (, accessed January 2012).
Swift, M, Morrell, D, Cromartie, E, et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 1986;39:573–583.Google ScholarPubMed
Telatar, M, Teraoka, S, Wang, Z, et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet 1998;62:86–97.CrossRefGoogle ScholarPubMed
Chun, HH, Gatti, RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair 2004;3:1187–1196.CrossRefGoogle ScholarPubMed
Moin, M, Aghamohammadi, A, Kouhi, A, et al. Ataxia-telangiectasia in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol 2007;37:21–28.CrossRefGoogle ScholarPubMed
Matei, IR, Guidos, CJ, Danska, JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006;209:142–158.CrossRefGoogle ScholarPubMed
Crawford, TO, Skolasky, RL, Fernandez, R, Rosquist, KJ, Lederman, HM. Survival probability in ataxia telangiectasia. Arch Dis Child 2006;91:610–611.CrossRefGoogle ScholarPubMed
Nowak-Wegrzyn, A, Crawford, TO, Winkelstein, JA, Carson, KA, Lederman, HM. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr 2004;144:505–511.CrossRefGoogle ScholarPubMed
Schubert, R, Reichenbach, J, Zielen, S. Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clin Exp Immunol 2002;129:125–132.CrossRefGoogle ScholarPubMed
Waldmann, TA, Misiti, J, Nelson, DL, Kraemer, KH. Ataxia-telangiectasis: a multisystem hereditary disease with immunodeficiency, impaired organ maturation, X-ray hypersensitivity, and a high incidence of neoplasia. Ann Intern Med 1983;99:367–379.CrossRefGoogle Scholar
Morrell, D, Cromartie, E, Swift, M. Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J Natl Cancer Inst 1986;77:89–92.Google ScholarPubMed
Olsen, JH, Hahnemann, JM, Borresen-Dale, AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst 2001;93:121–127.CrossRefGoogle ScholarPubMed
Murphy, RC, Berdon, WE, Ruzal-Shapiro, C, et al. Malignancies in pediatric patients with ataxia telangiectasia. Pediatr Radiol 1999;29:225–230.CrossRefGoogle ScholarPubMed
Sandoval, C, Schantz, S, Posey, D, Swift, M. Parotid and thyroid gland cancers in patients with ataxia-telangiectasia. Pediatr Hematol Oncol 2001;18:485–490.CrossRefGoogle ScholarPubMed
Swift, M, Morrell, D, Massey, RB, Chase, CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991;325:1831–1836.CrossRefGoogle ScholarPubMed
Taylor, AM, Metcalfe, JA, Thick, J, Mak, YF. Leukemia and lymphoma in ataxia telangiectasia. Blood 1996;87:423–438.Google ScholarPubMed
Lin, CH, Lin, WC, Wang, CH, et al. Child with ataxia telangiectasia developing acute myeloid leukemia. J Clin Oncol 2010;28:e213–e214.CrossRefGoogle ScholarPubMed
Viniou, N, Terpos, E, Rombos, J, et al. Acute myeloid leukemia in a patient with ataxia-telangiectasia: a case report and review of the literature. Leukemia 2001;15:1668–1670.CrossRefGoogle Scholar
Renwick, A, Thompson, D, Seal, S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006;38:873–875.CrossRefGoogle ScholarPubMed
Ziino, O, Rondelli, R, Micalizzi, C, et al. Acute lymphoblastic leukemia in children with associated genetic conditions other than Down's syndrome. The AIEOP experience. Haematologica 2006;91:139–140.Google ScholarPubMed
Gumy-Pause, F, Wacker, P, Maillet, P, Betts, DR, Sappino, AP. ATM promoter analysis in childhood lymphoid malignancies: a brief communication. Leuk Res 2006;30:335–337.CrossRefGoogle ScholarPubMed
Gatti, RA, Berkel, I, Boder, E, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 1988;336:577–580.CrossRefGoogle ScholarPubMed
Savitsky, K, Bar-Shira, A, Gilad, S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268:1749–1753.CrossRefGoogle ScholarPubMed
Lavin, MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008;9:759–769.CrossRefGoogle ScholarPubMed
Stagni, V, di Bari, MG, Cursi, S, et al. ATM kinase activity modulates Fas sensitivity through the regulation of FLIP in lymphoid cells. Blood 2008;111:829–837.CrossRefGoogle ScholarPubMed
Roos, J, Hennig, I, Schwaller, J, et al. Expression of TCL1 in hematologic disorders. Pathobiology 2001;69:59–66.CrossRefGoogle ScholarPubMed
Hoyer, KK, French, SW, Turner, DE, et al. Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc Natl Acad Sci USA 2002;99:14392–14397.CrossRefGoogle ScholarPubMed
Stray-Pedersen, A, Borresen-Dale, AL, Paus, E, et al. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur J Paediatr Neurol 2007;11:375–380.CrossRefGoogle ScholarPubMed
Lavin, MF, Gueven, N, Bottle, S, Gatti, RA. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull 2007;81–82:129–147.CrossRef
Sun, X, Becker-Catania, SG, Chun, HH, et al. Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J Pediatr 2002;140:724–731.CrossRefGoogle ScholarPubMed
Honda, M, Takagi, M, Chessa, L, Morio, T, Mizuatni, S. Rapid diagnosis of ataxia-telangiectasia by flow cytometric monitoring of DNA damage-dependent ATM phosphorylation. Leukemia 2009;23:409–414.CrossRefGoogle ScholarPubMed
Nahas, SA, Butch, AW, Du, L, Gatti, RA. Rapid flow cytometry-based structural maintenance of chromosomes 1 (SMC1) phosphorylation assay for identification of ataxia-telangiectasia homozygotes and heterozygotes. Clin Chem 2009;55:463–472.CrossRefGoogle ScholarPubMed
Porcedda, P, Turinetto, V, Brusco, A, et al. A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia. Cytometry A. 2008;73:508–516.CrossRefGoogle ScholarPubMed
Toledano, SR, Lange, BJ. Ataxia-telangiectasia and acute lymphoblastic leukemia. Cancer 1980;45:1675–1678.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Sandoval, C, Swift, M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol 1998;31:491–497.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Chen, RL, Wang, PJ, Hsu, YH, Chang, PY, Fang, JS. Severe lung fibrosis after chemotherapy in a child with ataxia-telangiectasia. J Pediatr Hematol Oncol 2002;24:77–79.CrossRefGoogle Scholar
Eyre, JA, Gardner-Medwin, D, Summerfield, GP. Leukoencephalopathy after prophylactic radiation for leukaemia in ataxia telangiectasia. Arch Dis Child 1988;63:1079–1080.CrossRefGoogle ScholarPubMed
Yanofsky, RA, Seshia, SS, Dawson, AJ, et al. Ataxia-telangiectasia: atypical presentation and toxicity of cancer treatment. Can J Neurol Sci 2009;36:462–467.CrossRefGoogle ScholarPubMed
Seidemann, K, Henze, G, Beck, JD, et al. Non-Hodgkin's lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol 2000;11(Suppl 1):141–145.CrossRefGoogle ScholarPubMed
Overberg-Schmidt, U, Wegner, RD, Baumgarten, E, et al. Low-grade non-Hodgkin's lymphoma after high-grade non-Hodgkin's lymphoma in a child with ataxia telangiectasia. Cancer 1994;73:1522–1525.3.0.CO;2-T>CrossRefGoogle Scholar
Weyl Ben Arush, M, Rosenthal, J, Dale, J, et al. Ataxia telangiectasia and lymphoma: an indication for individualized chemotherapy dosing – report of treatment in a highly inbred Arab family. Pediatr Hematol Oncol 1995;12:163–169.CrossRefGoogle Scholar
Chrzanowska, KH, Piekutowska-Abramczuk, D, Popowska, E, et al. Carrier frequency of mutation 657del5 in the NBS1 gene in a population of Polish pediatric patients with sporadic lymphoid malignancies. Int J Cancer 2006;118:1269–1274.CrossRefGoogle Scholar
Drabek, J, Hajduch, M, Gojova, L, Weigl, E, Mihal, V. Frequency of 657del(5) mutation of the NBS1 gene in the Czech population by polymerase chain reaction with sequence specific primers. Cancer Genet Cytogenet 2002;138:157–159.CrossRefGoogle ScholarPubMed
International Nijmegen Breakage Syndrome Study Group. Nijmegen breakage syndrome. Arch Dis Child 2000;82:400–406.CrossRefGoogle Scholar
Varon, R, Vissinga, C, Platzer, M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93:467–476.CrossRefGoogle ScholarPubMed
Resnick, IB, Kondratenko, I, Togoev, O, et al. Nijmegen breakage syndrome: clinical characteristics and mutation analysis in eight unrelated Russian families. J Pediatr 2002;140:355–361.CrossRefGoogle ScholarPubMed
van de Kaa, CA, Weemaes, CM, Wesseling, P, et al. Postmortem findings in the Nijmegen breakage syndrome. Pediatr Pathol 1994;14:787–796.Google ScholarPubMed
Digweed, M, Sperling, K. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair 2004;3:1207–1217.CrossRefGoogle ScholarPubMed
Gladkowska-Dura, M, Dzierzanowska-Fangrat, K, Dura, WT, et al. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol 2008;216:337–344.CrossRefGoogle ScholarPubMed
Michallet, AS, Lesca, G, Radford- Weiss, I, et al. T-cell prolymphocytic leukemia with autoimmune manifestations in Nijmegen breakage syndrome. Ann Hematol 2003;82:515–517.CrossRefGoogle ScholarPubMed
Demuth, I, Digweed, M. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene 2007;26:7792–7798.CrossRefGoogle ScholarPubMed
Varon, R, Reis, A, Henze, G, et al. Mutations in the Nijmegen breakage syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res 2001;61:3570–3572.
di Masi, A, Antoccia, A. NBS1 heterozygosity and cancer risk. Curr Genomics 2008;9:275–281.CrossRefGoogle ScholarPubMed
Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 1997;31:635–662.CrossRefGoogle ScholarPubMed
Helmink, BA, Bredemeyer, AL, Lee, BS, et al. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J Exp Med 2009;206:669–679.CrossRefGoogle ScholarPubMed
van der Burg, M, Pac, M, Berkowska, MA, et al. Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell differentiation defect in NBS patients. Blood 2010;115:4770–4777.CrossRefGoogle ScholarPubMed
Zhang, Y, Zhou, J, Lim, CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 2006;16:45–54.CrossRefGoogle ScholarPubMed
Concannon, PJ, Gatti, RA. Nijmegen breakage syndrome. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (, accessed January 2012).
Dembowska-Baginska, B, Perek, D, Brozyna, A, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr Blood Cancer 2009;52:186–190.CrossRef
Albert, MH, Gennery, AR, Greil, J, et al. Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplant 2010;45:622–626.CrossRefGoogle ScholarPubMed
Li, L, Eng, C, Desnick, RJ, German, J, Ellis, NA. Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. Mol Genet Metab 1998;64:286–290.CrossRefGoogle ScholarPubMed
German, J, Sanz, MM, Ciocci, S, Ye, TZ, Ellis, NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom's syndrome Registry. Hum Mutat 2007;28:743–753.CrossRefGoogle ScholarPubMed
German, J, Bloom, D, Passarge, E, et al. Bloom's syndrome. VI. The disorder in Israel and an estimation of the gene frequency in the Ashkenazim. Am J Hum Genet 1977;29:553–562.Google ScholarPubMed
German, J. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine (Baltimore) 1993;72:393–406.CrossRefGoogle ScholarPubMed
German, J. Bloom's syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet 1997;93:100–106.CrossRefGoogle ScholarPubMed
Hutteroth, TH, Litwin, SD, German, J. Abnormal immune responses of Bloom's syndrome lymphocytes in vitro. J Clin Invest 1975;56:1–7.CrossRefGoogle ScholarPubMed
Jain, D, Hui, P, McNamara, J, et al. Bloom syndrome in sibs: first reports of hepatocellular carcinoma and Wilms tumor with documented anaplasia and nephrogenic rests. Pediatr Dev Pathol 2001;4:585–589.CrossRefGoogle ScholarPubMed
Sanz, MM, German, J. Bloom's syndrome. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2010 (, accessed January 2012).
Barakat, A, Ababou, M, Onclercq, R, et al. Identification of a novel BLM missense mutation (2706T>C) in a Moroccan patient with Bloom's syndrome. Hum Mutat 2000;15:584–585.3.0.CO;2-I>CrossRefGoogle Scholar
Dutertre, S, Ababou, M, Onclercq, R, et al. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene 2000;19:2731–2738.CrossRefGoogle ScholarPubMed
Poppe, B, van Limbergen, H, van Roy, N, et al. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet 2001;128:39–42.CrossRefGoogle ScholarPubMed
Cleary, SP, Zhang, W, Di Nicola, N, et al. Heterozygosity for the BLM(Ash) mutation and cancer risk. Cancer Res 2003;63:1769–1771.Google ScholarPubMed
Broberg, K, Huynh, E, Schlawicke Engstrom, K, et al. Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case–control study. BMC Cancer 2009; 9:140.CrossRefGoogle Scholar
Ellis, NA, Ciocci, S, Proytcheva, M, et al. The Ashkenazic Jewish Bloom syndrome mutation blmAsh is present in non-Jewish Americans of Spanish ancestry. Am J Hum Genet 1998;63:1685–1693.CrossRefGoogle ScholarPubMed
Gruber, SB, Ellis, NA, Scott, KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science 2002;297:2013.CrossRefGoogle ScholarPubMed
Straughen, J, Ciocci, S, Ye, TZ, et al. Physical mapping of the bloom syndrome region by the identification of YAC and P1 clones from human chromosome 15 band q26.1. Genomics 1996;35:118–128.CrossRefGoogle ScholarPubMed
Bohr, VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci 2008;33:609–620.CrossRefGoogle ScholarPubMed
Wu, L. Role of the BLM helicase in replication fork management. DNA Repair 2007;6:936–944.CrossRefGoogle ScholarPubMed
German, J, Schonberg, S, Louie, E, Chaganti, RS. Bloom's syndrome. IV. Sister-chromatid exchanges in lymphocytes. Am J Hum Genet 1977;29:248–255.Google ScholarPubMed
German, J. Bloom's syndrome: incidence, age of onset, and types of leukemia in the Bloom's syndrome registry. In Bartsocas CS, Loukopoulos D (eds.) Genetics of Hematological Disorders. Washington, DC: Hemisphere; 1992:241–258.Google Scholar
Whittingham, S, Pitt, DB, Sharma, DL, Mackay, IR. Stress deficiency of the T-lymphocyte system exemplified by Down syndrome. Lancet 1977;i:163–166.CrossRefGoogle Scholar
Tidyman, WE, Rauen, KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 2009;19:230–236.CrossRefGoogle ScholarPubMed
Pasmant, E, Ballerini, P, Lapillonne, H, et al. SPRED1 disorder and predisposition to leukemia in children. Blood 2009;114:1131.CrossRefGoogle ScholarPubMed
Laux, D, Kratz, C, Sauerbrey, A. Common acute lymphoblastic leukemia in a girl with genetically confirmed LEOPARD syndrome. J Pediatr Hematol Oncol 2008;30:602–604.CrossRefGoogle Scholar
Batz, C, Hasle, H, Bergstrasser, E, et al. Does SPRED1 contribute to leukemogenesis in juvenile myelomonocytic leukemia (JMML)?Blood 2010;115:2557–2558.CrossRefGoogle ScholarPubMed
Williams, VC, Lucas, J, Babcock, MA, et al. Neurofibromatosis type 1 revisited. Pediatrics 2009;123:124–133.CrossRefGoogle ScholarPubMed
Bader, JL, Miller, RW. Neurofibromatosis and childhood leukemia. J Pediatr 1978;92:925–929.CrossRefGoogle ScholarPubMed
Brems, H, Beert, E, de Ravel, T, Legius, E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009;10:508–515.CrossRefGoogle ScholarPubMed
Gutmann, DH, Aylsworth, A, Carey, JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 1997;278:51–57.CrossRefGoogle ScholarPubMed
Ferner, RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 2007;6:340–351.CrossRefGoogle ScholarPubMed
Langlois, RG, Bigbee, WL, Jensen, RH, German, J. Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome. Proc Natl Acad Sci USA 1989;86:670–674.CrossRefGoogle ScholarPubMed
Luna-Fineman, S, Shannon, KM, Lange, BJ. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood 1995;85:1985–1999.Google ScholarPubMed
Maris, JM, Wiersma, SR, Mahgoub, N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 1997;79:1438–1446.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Cawthon, RM, Weiss, R, Xu, GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990;62:193–201.CrossRefGoogle Scholar
Viskochil, D, Buchberg, AM, Xu, G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990;62:187–192.CrossRefGoogle Scholar
Wallace, MR, Marchuk, DA, Andersen, LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990;249:181–186.CrossRefGoogle ScholarPubMed
Thomson, SA, Fishbein, L, Wallace, MR. NF1 mutations and molecular testing. J Child Neurol 2002;17:555–561; discussion 571–552, 646–551.CrossRefGoogle ScholarPubMed
Schubbert, S, Shannon, K, Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007;7:295–308.CrossRefGoogle ScholarPubMed
Bollag, G, Clapp, DW, Shih, S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 1996;12:144–148.CrossRefGoogle ScholarPubMed
Shannon, KM, O'Connell, P, Martin, GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 1994;330:597–601.CrossRefGoogle ScholarPubMed
Side, LE, Shannon, KM. The NF1 gene as a tumor suppressor. In Upashyaya M, Cooper DN (eds.) Neurofibromatosis Type 1. Oxford:Bios Scientific, 1998: 133–152.Google ScholarPubMed
Stephens, K, Weaver, M, Leppig, KA, et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood 2006;108:1684–1689.CrossRefGoogle ScholarPubMed
Le, DT, Shannon, KM. Ras processing as a therapeutic target in hematologic malignancies. Curr Opin Hematol 2002;9:308–315.CrossRefGoogle ScholarPubMed
Kratz, CP, Schubbert, S, Bollag, G, et al. Germline mutations in components of the Ras signaling pathway in Noonan syndrome and related disorders. Cell Cycle 2006;5:1607–1611.CrossRefGoogle ScholarPubMed
Loh, ML, Vattikuti, S, Schubbert, S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004;103:2325–2331.CrossRefGoogle ScholarPubMed
Messiaen, LM, Callens, T, Mortier, G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 2000;15:541–555.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Wimmer, K, Yao, S, Claes, K, et al. Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1100 unselected NF1 patients. Genes Chromosomes Cancer 2006;45:265–276.CrossRefGoogle Scholar
Kayes, LM, Burke, W, Riccardi, VM, et al. Deletions spanning the neurofibromatosis 1 gene: identification and phenotype of five patients. Am J Hum Genet 1994;54:424–436.Google ScholarPubMed
Kluwe, L, Siebert, R, Gesk, S, et al. Screening 500 unselected neurofibromatosis 1 patients for deletions of the NF1 gene. Hum Mutat 2004;23:111–116.CrossRefGoogle ScholarPubMed
Upadhyaya, M, Huson, SM, Davies, M, et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970–2972 delAAT): evidence of a clinically significant NF1 genotype–phenotype correlation. Am J Hum Genet 2007;80:140–151.CrossRefGoogle ScholarPubMed
Cambiaghi, S, Restano, L, Caputo, R. Juvenile xanthogranuloma associated with neurofibromatosis 1:14 patients without evidence of hematologic malignancies. Pediatr Dermatol 2004;21:97–101.CrossRefGoogle ScholarPubMed
Yoshimi, A, Kojima, S, Hirano, N. Juvenile myelomonocytic leukemia: epidemiology, etiopathogenesis, diagnosis, and management considerations. Paediatr Drugs 2010;12:11–21.CrossRefGoogle ScholarPubMed
Allanson, JE. Noonan syndrome. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (, accessed January 2012).
Denayer, E, Devriendt, K, de Ravel, T, et al. Tumor spectrum in children with Noonan syndrome and SOS1 or RAF1 mutations. Genes Chromosomes Cancer 2010;49:242–252.Google ScholarPubMed
Mendez, HM, Opitz, JM. Noonan syndrome: a review. Am J Med Genet 1985;21:493–506.CrossRefGoogle ScholarPubMed
Nora, JJ, Nora, AH, Sinha, AK, Spangler, RD, Lubs, HA. The Ullrich–Noonan syndrome (Turner phenotype). Am J Dis Child 1974;127:48–55.
Jongmans, M, Sistermans, EA, Rikken, A, et al. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Am J Med Genet A 2005;134A:165–170.CrossRefGoogle ScholarPubMed
Tartaglia, M, Gelb, BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genom Hum Genet 2005;6:45–68.CrossRefGoogle ScholarPubMed
Jorge, AA, Malaquias, AC, Arnhold, IJ, Mendonca, BB. Noonan syndrome and related disorders: a review of clinical features and mutations in genes of the RAS/MAPK pathway. Horm Res 2009;71:185–193.Google ScholarPubMed
Marino, B, Digilio, MC, Toscano, A, Giannotti, A, Dallapiccola, B. Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 1999;135:703–706.CrossRefGoogle ScholarPubMed
Bertola, DR, Carneiro, JD, D'Amico, EA, et al. Hematological findings in Noonan syndrome. Rev Hosp Clin Fac Med Sao Paulo 2003;58:5–8.CrossRefGoogle ScholarPubMed
Witt, DR, McGillivray, BC, Allanson, JE, et al. Bleeding diathesis in Noonan syndrome: a common association. Am J Med Genet 1988;31:305–317.CrossRefGoogle ScholarPubMed
Bader-Meunier, B, Tchernia, G, Mielot, F, et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr 1997;130:885–889.CrossRefGoogle ScholarPubMed
Choong, K, Freedman, MH, Chitayat, D, et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol 1999;21:523–527.CrossRefGoogle ScholarPubMed
Kratz, CP, Niemeyer, CM, Castleberry, RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 2005;106:2183–2185.CrossRefGoogle ScholarPubMed
Niihori, T, Aoki, Y, Ohashi, H, et al. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 2005;50:192–202.CrossRefGoogle ScholarPubMed
Neumann, TE, Allanson, J, Kavamura, I, et al. Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome. Eur J Hum Genet 2009;17:420–425.CrossRefGoogle ScholarPubMed
Brady, AF, Jamieson, CR, van der Burgt, I, et al. Further delineation of the critical region for noonan syndrome on the long arm of chromosome 12. Eur J Hum Genet 1997;5:336–337.Google Scholar
Jamieson, CR, van der Burgt, I, Brady, AF, et al. Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet 1994;8:357–360.CrossRefGoogle Scholar
Legius, E, Schollen, E, Matthijs, G, Fryns, JP. Fine mapping of Noonan/cardio-facio cutaneous syndrome in a large family. Eur J Hum Genet 1998;6:32–37.CrossRefGoogle Scholar
Tartaglia, M, Mehler, EL, Goldberg, R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001;29:465–468.CrossRefGoogle ScholarPubMed
Feng, GS. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 1999;253:47–54.CrossRefGoogle ScholarPubMed
Van Vactor, D, O'Reilly, AM, Neel, BG. Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev 1998;8:112–126.CrossRefGoogle ScholarPubMed
Tartaglia, M, Niemeyer, CM, Fragale, A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;34:148–150.CrossRefGoogle ScholarPubMed
Grossmann, KS, Rosario, M, Birchmeier, C, Birchmeier, W. The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 2010;106:53–89.CrossRefGoogle ScholarPubMed
Barford, D, Neel, BG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 1998;6:249–254.CrossRefGoogle ScholarPubMed
Neel, BG, Gu, H, Pao, L. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003;28:284–293.CrossRefGoogle ScholarPubMed
Chen, B, Bronson, RT, Klaman, LD, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet 2000;24:296–299.CrossRefGoogle ScholarPubMed
Carta, C, Pantaleoni, F, Bocchinfuso, G, et al. Germline missense mutations affecting KRAS Isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum Genet 2006;79:129–135.CrossRefGoogle ScholarPubMed
Martinelli, S, De Luca, A, Stellacci, E, et al. Heterozygous germline mutations in the CBL tumor-suppressor gene cause a Noonan syndrome-like phenotype. Am J Hum Genet 2010;87:250–257.CrossRefGoogle Scholar
Roberts, AE, Araki, T, Swanson, KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007;39:70–74.CrossRefGoogle ScholarPubMed
Schubbert, S, Zenker, M, Rowe, SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet 2006;38:331–336.CrossRefGoogle ScholarPubMed
Tartaglia, M, Pennacchio, LA, Zhao, C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007;39:75–79.CrossRefGoogle Scholar
Niemeyer, CM, Kang, MW, Shin, DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010;42:794–800.CrossRef
Perez, B, Mechinaud, F, Galambrun, C, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010;47:686–691.CrossRef
Tartaglia, M, Martinelli, S, Stella, L, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 2006;78:279–290.CrossRefGoogle ScholarPubMed
Loh, ML, Sakai, DS, Flotho, C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 2009;114:1859–1863.CrossRefGoogle ScholarPubMed
Loh, ML, Reynolds, MG, Vattikuti, S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia 2004;18:1831–1834.CrossRefGoogle ScholarPubMed
Tartaglia, M, Martinelli, S, Cazzaniga, G, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004;104:307–313.CrossRefGoogle ScholarPubMed
Yamamoto, T, Isomura, M, Xu, Y, et al. PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leuk Res 2006;30:1085–1089.CrossRefGoogle ScholarPubMed
Zenker, M. Genetic and pathogenetic aspects of Noonan syndrome and related disorders. Horm Res 2009;72(Suppl 2):57–63.CrossRefGoogle ScholarPubMed
Ganapathi, KA, Shimamura, A. Ribosomal dysfunction and inherited marrow failure. Br J Haematol 2008;141:376–387.CrossRefGoogle ScholarPubMed
Ball, SE, McGuckin, CP, Jenkins, G, Gordon-Smith, EC. Diamond–Blackfan anaemia in the UK: analysis of 80 cases from a 20-year birth cohort. Br J Haematol 1996;94:645–653.CrossRefGoogle Scholar
Glader, BE, Backer, K. Elevated red cell adenosine deaminase activity: a marker of disordered erythropoiesis in Diamond–Blackfan anaemia and other haematologic diseases. Br J Haematol 1988;68:165–168.CrossRefGoogle ScholarPubMed
Lipton, JM, Atsidaftos, E, Zyskind, I, Vlachos, A. Improving clinical care and elucidating the pathophysiology of Diamond–Blackfan anemia: an update from the Diamond–Blackfan Anemia Registry. Pediatr Blood Cancer 2006;46:558–564.CrossRefGoogle ScholarPubMed
Doherty, L, Sheen, MR, Vlachos, A, et al. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond–Blackfan anemia. Am J Hum Genet 2010;86:222–228.CrossRefGoogle ScholarPubMed
Lipton, JM, Ellis, SR. Diamond–Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am 2009;23:261–282.CrossRefGoogle ScholarPubMed
Vlachos, A, Ball, S, Dahl, N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008;142:859–876.CrossRefGoogle ScholarPubMed
Clinton, C, Gazda, HT. Diamond–Blackfan anemia. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (. accessed January 2012).
Alter, BP, Young, NS. The bone marrow failure syndromes. In Nathan DG, Orkin SH (eds.) Nathan and Oski's Hematology of Infancy and Childhood. Philadelphia, PA: Saunders, 1998: 276–278.Google Scholar
Bodian, M, Sheldon, W, Lightwood, R. Congenital hypoplasia of the exocrine pancreas. Acta Paediatr 1964;53:282–293.CrossRefGoogle ScholarPubMed
Shwachman, H, Diamond, LK, Oski, FA, Khaw, KT. The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr 1964;65:645–663.CrossRefGoogle ScholarPubMed
Aggett, PJ, Cavanagh, NP, Matthew, DJ, et al. Shwachman's syndrome. A review of 21 cases. Arch Dis Child 1980;55:331–347.CrossRefGoogle ScholarPubMed
Rothbaum, R, Perrault, J, Vlachos, A, et al. Shwachman–Diamond syndrome: report from an international conference. J Pediatr 2002;141:266–270.CrossRefGoogle ScholarPubMed
Burroughs, L, Woolfrey, A, Shimamura, A. Shwachman–Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am 2009;23:233–248.CrossRefGoogle Scholar
Ip, WF, Dupuis, A, Ellis, L, et al. Serum pancreatic enzymes define the pancreatic phenotype in patients with Shwachman–Diamond syndrome. J Pediatr 2002;141:259–265.CrossRefGoogle ScholarPubMed
Mack, DR. Shwachman–Diamond syndrome. J Pediatr 2002;141: 164–165.CrossRefGoogle ScholarPubMed
Mack, DR, Forstner, GG, Wilschanski, M, Freedman, MH, Durie, PR. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology 1996;111:1593–1602.CrossRefGoogle ScholarPubMed
Ginzberg, H, Shin, J, Ellis, L, et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr 1999;135:81–88.CrossRefGoogle Scholar
Smith, OP, Hann, IM, Chessells, JM, Reeves, BR, Milla, P. Haematological abnormalities in Shwachman–Diamond syndrome. Br J Haematol 1996;94:279–284.CrossRefGoogle ScholarPubMed
Dror, Y, Ginzberg, H, Dalal, I, et al. Immune function in patients with Shwachman–Diamond syndrome. Br J Haematol 2001;114:712–717.CrossRefGoogle ScholarPubMed
Dror, Y. Shwachman–Diamond syndrome. Pediatr Blood Cancer 2005;45:892–901.CrossRefGoogle ScholarPubMed
Dokal, I, Rule, S, Chen, F, Potter, M, Goldman, J. Adult onset of acute myeloid leukaemia (M6) in patients with Shwachman–Diamond syndrome. Br J Haematol 1997;99:171–173.CrossRefGoogle ScholarPubMed
Dror, Y, Squire, J, Durie, P, Freedman, MH. Malignant myeloid transformation with isochromosome 7q in Shwachman–Diamond syndrome. Leukemia 1998;12:1591–1595.CrossRefGoogle ScholarPubMed
Freedman, MH, Alter, BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol 2002;39:128–133.CrossRefGoogle ScholarPubMed
Woods, WG, Krivit, W, Lubin, BH, Ramsay, NK. Aplastic anemia associated with the Shwachman syndrome. In vivo and in vitro observations. Am J Pediatr Hematol Oncol 1981;3:347–351.Google ScholarPubMed
Donadieu, J, Leblanc, T, Bader Meunier, B, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 2005;90:45–53.Google ScholarPubMed
Imashuku, S, Hibi, S, Nakajima, F, et al. A review of 125 cases to determine the risk of myelodysplasia and leukemia in pediatric neutropenic patients after treatment with recombinant human granulocyte colony-stimulating factor. Blood 1994;84:2380–2381.Google ScholarPubMed
Popovic, M, Goobie, S, Morrison, J, et al. Fine mapping of the locus for Shwachman–Diamond syndrome at 7q11, identification of shared disease haplotypes, and exclusion of TPST1 as a candidate gene. Eur J Hum Genet 2002;10:250–258.CrossRefGoogle ScholarPubMed
Boocock, GR, Morrison, JA, Popovic, M, et al. Mutations in SBDS are associated with Shwachman–Diamond syndrome. Nat Genet 2003;33:97–101.CrossRefGoogle ScholarPubMed
Austin, KM, Leary, RJ, Shimamura, A. The Shwachman–Diamond SBDS protein localizes to the nucleolus. Blood 2005;106:1253–1258.CrossRefGoogle ScholarPubMed
Ganapathi, KA, Austin, KM, Lee, CS, et al. The human Shwachman–Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood 2007;110:1458–1465.CrossRefGoogle ScholarPubMed
Orelio, C, Verkuijlen, P, Geissler, J, van den Berg, TK, Kuijpers, TW. SBDS expression and localization at the mitotic spindle in human myeloid progenitors. PLoS One 2009;4:e7084.
Austin, KM, Gupta, ML, Coats, SA, et al. Mitotic spindle destabilization and genomic instability in Shwachman–Diamond syndrome. J Clin Invest 2008;118:1511–1518.CrossRefGoogle ScholarPubMed
Cesaro, S, Oneto, R, Messina, C, et al. Haematopoietic stem cell transplantation for Shwachman–Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol 2005;131:231–236.CrossRefGoogle ScholarPubMed
Donadieu, J, Michel, G, Merlin, E, et al. Hematopoietic stem cell transplantation for Shwachman–Diamond syndrome: experience of the French Neutropenia Registry. Bone Marrow Transplant 2005;36:787–792.CrossRefGoogle ScholarPubMed
Sauer, M, Zeidler, C, Meissner, B, et al. Substitution of cyclophosphamide and busulfan by fludarabine, treosulfan and melphalan in a preparative regimen for children and adolescents with Shwachman–Diamond syndrome. Bone Marrow Transplant 2007;39:143–147.CrossRefGoogle Scholar
Bhatla, D, Davies, SM, Shenoy, S, et al. Reduced-intensity conditioning is effective and safe for transplantation of patients with Shwachman–Diamond syndrome. Bone Marrow Transplant 2008;42:159–165.CrossRefGoogle ScholarPubMed
Bessler, M, Wilson, DB, Mason, PJ. Dyskeratosis congenita. FEBS Lett 2010;584:3831–3838.CrossRef
Savage, SA, Alter, BP. Dyskeratosis congenita. Hematol Oncol Clin North Am 2009;23:215–231.CrossRefGoogle ScholarPubMed
Luzzatto, L, Karadimitris, A. Dyskeratosis and ribosomal rebellion. Nat Genet 1998;19:6–7.CrossRefGoogle ScholarPubMed
Alter, BP, Giri, N, Savage, SA, Rosenberg, PS. Cancer in dyskeratosis congenita. Blood 2009;113:6549–6557.CrossRefGoogle ScholarPubMed
Nichols, KE, Malkin, D, Garber, JE, Fraumeni, JF, Jr., Li, FP. Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 2001;10:83–87.Google ScholarPubMed
Savage, SA, Dokal, I, Armanios, M, et al. Dyskeratosis congenita: the first NIH clinical research workshop. Pediatr Blood Cancer 2009;53:520–523.CrossRefGoogle ScholarPubMed
Alter, BP, Giri, N, Savage, SA, et al. Malignancies and survival patterns in the National Cancer Institute Inherited Bone Marrow Failure Syndromes Cohort study. Br J Haematol 2010;150:179–188.Google ScholarPubMed
de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–2110.CrossRefGoogle ScholarPubMed
Heiss, NS, Knight, SW, Vulliamy, TJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 1998;19:32–38.CrossRefGoogle Scholar
Yamaguchi, H, Calado, RT, Ly, H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005;352:1413–1424.CrossRefGoogle ScholarPubMed
Vulliamy, T, Marrone, A, Goldman, F, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001;413:432–435.CrossRefGoogle ScholarPubMed
Walne, AJ, Vulliamy, T, Marrone, A, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007;16:1619–1629.CrossRefGoogle ScholarPubMed
Vulliamy, T, Beswick, R, Kirwan, M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 2008;105:8073–8078.CrossRefGoogle ScholarPubMed
Savage, SA, Giri, N, Baerlocher, GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 2008;82:501–509.CrossRefGoogle ScholarPubMed
Vulliamy, T, Dokal, I. Dyskeratosis congenita. Semin Hematol 2006;43:157–166.CrossRefGoogle ScholarPubMed
Baird, DM. New developments in telomere length analysis. Exp Gerontol 2005;40:363–368.CrossRefGoogle ScholarPubMed
Lin, KW, Yan, J. The telomere length dynamic and methods of its assessment. J Cell Mol Med 2005;9:977–989.CrossRefGoogle ScholarPubMed
Alter, BP, Baerlocher, GM, Savage, SA, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007;110:1439–1447.CrossRefGoogle ScholarPubMed
Du, HY, Pumbo, E, Ivanovich, J, et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood 2009;113:309–316.CrossRefGoogle ScholarPubMed
Al-Rahawan, MM, Giri, N, Alter, BP. Intensive immunosuppression therapy for aplastic anemia associated with dyskeratosis congenita. Int J Hematol 2006;83:275–276.CrossRefGoogle ScholarPubMed
Giri, N, Pitel, PA, Green, D, Alter, BP. Splenic peliosis and rupture in patients with dyskeratosis congenita on androgens and granulocyte colony-stimulating factor. Br J Haematol 2007;138:815–817.CrossRefGoogle ScholarPubMed
Dietz, AC, Orchard, PJ, Baker, KS, et al. Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita. Bone Marrow Transplant 2011;46:98–104.CrossRef
Owen, C, Barnett, M, Fitzgibbon, J. Familial myelodysplasia and acute myeloid leukaemia: a review. Br J Haematol 2008;140:123–132.CrossRefGoogle ScholarPubMed
Owen, CJ, Toze, CL, Koochin, A, et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 2008;112:4639–4645.CrossRefGoogle ScholarPubMed
Preudhomme, C, Renneville, A, Bourdon, V, et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 2009;113:5583–5587.CrossRefGoogle ScholarPubMed
Jongmans, MC, Kuiper, RP, Carmichael, CL, et al. Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia 2010;24:242–246.CrossRefGoogle ScholarPubMed
Ganly, P, Walker, LC, Morris, CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leuk Lymphoma 2004;45:1–10.CrossRefGoogle ScholarPubMed
Walker, LC, Stevens, J, Campbell, H, et al. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol 2002;117:878–881.CrossRefGoogle ScholarPubMed
Nishimoto, N, Imai, Y, Ueda, K, et al. T cell acute lymphoblastic leukemia arising from familial platelet disorder. Int J Hematol 2010;92:194–197.CrossRefGoogle ScholarPubMed
Song, WJ, Sullivan, MG, Legare, RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999;23:166–175.CrossRefGoogle ScholarPubMed
Michaud, J, Simpson, KM, Escher, R, et al. Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics 2008;9:363.CrossRefGoogle ScholarPubMed
Cohen, MM, Jr. Perspectives on RUNX genes: an update. Am J Med Genet A 2009;149:2629–2646.CrossRefGoogle Scholar
Kumano, K, Kurokawa, M. The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells. J Cell Physiol 2010;222:282–285.CrossRefGoogle ScholarPubMed
Michaud, J, Wu, F, Osato, M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 2002;99:1364–1372.CrossRefGoogle ScholarPubMed
Heller, PG, Glembotsky, AC, Gandhi, MJ, et al. Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 2005;105:4664–4670.CrossRefGoogle Scholar
Osato, M, Ito, Y. Increased dosage of the RUNX1/AML1 gene: a third mode of RUNX leukemia?Crit Rev Eukaryot Gene Expr 2005;15:217–228.CrossRefGoogle ScholarPubMed
Dicker, F, Haferlach, C, Sundermann, J, et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 2010;24:1528–1532.CrossRefGoogle ScholarPubMed
Buijs, A, Poddighe, P, van Wijk, R, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood 2001;98:2856–2858.CrossRefGoogle ScholarPubMed
Nanri, T, Uike, N, Kawakita, T, et al. A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation. Genes Chromosomes Cancer 2010;49: 237–241.Google ScholarPubMed
Pabst, T, Eyholzer, M, Haefliger, S, Schardt, J, Mueller, BU. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol 2008;26:5088–5093.CrossRefGoogle ScholarPubMed
Renneville, A, Mialou, V, Philippe, N, et al. Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation. Leukemia 2009;23:804–806.CrossRefGoogle ScholarPubMed
Sellick, GS, Spendlove, HE, Catovsky, D, et al. Further evidence that germline CEBPA mutations cause dominant inheritance of acute myeloid leukaemia. Leukemia 2005;19:1276–1278.CrossRefGoogle ScholarPubMed
Smith, ML, Cavenagh, JD, Lister, TA, Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 2004;351:2403–2407.CrossRefGoogle ScholarPubMed
Fuchs, O, Provaznikova, D, Kocova, M, et al. CEBPA polymorphisms and mutations in patients with acute myeloid leukemia, myelodysplastic syndrome, multiple myeloma and non-Hodgkin's lymphoma. Blood Cells Mol Dis 2008;40: 401–405.CrossRefGoogle ScholarPubMed
Zeidler, C, Welte, K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol 2002;39:82–88.CrossRefGoogle ScholarPubMed
Welte, K, Zeidler, C. Severe congenital neutropenia. Hematol Oncol Clin North Am 2009;23:307–320.CrossRefGoogle ScholarPubMed
Dale, DC. ELANE-related neutropenia. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds.) GeneReviews. Seattle, WA: University of Washington, 2011 (, accessed January 2012).
Klein, C, Grudzien, M, Appaswamy, G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2007;39:86–92.CrossRef
Kostmann, R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 1956;45:1–78.CrossRefGoogle ScholarPubMed
Boxer, LA, Stein, S, Buckley, D, Bolyard, AA, Dale, DC. Strong evidence for autosomal dominant inheritance of severe congenital neutropenia associated with ELA2 mutations. J Pediatr 2006;148:633–636.CrossRefGoogle ScholarPubMed
Dale, DC, Person, RE, Bolyard, AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 2000;96:2317–2322.Google ScholarPubMed
Welte, K, Dale, D. Pathophysiology and treatment of severe chronic neutropenia. Ann Hematol 1996;72:158–165.CrossRefGoogle ScholarPubMed
Boztug, K, Appaswamy, G, Ashikov, A, et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 2009;360:32–43.CrossRefGoogle ScholarPubMed
Germeshausen, M, Grudzien, M, Zeidler, C, et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 2008;111:4954–4957.CrossRefGoogle ScholarPubMed
Freedman, MH, Bonilla, MA, Fier, C, et al. Myelodysplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 2000;96: 429–436.Google ScholarPubMed
Hunter, MG, Avalos, BR. Granulocyte colony-stimulating factor receptor mutations in severe congenital neutropenia transforming to acute myelogenous leukemia confer resistance to apoptosis and enhance cell survival. Blood 2000;95:2132–2137.Google ScholarPubMed
Rosenberg, PS, Zeidler, C, Bolyard, AA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol 2010;150:196–199.Google ScholarPubMed
Rosenberg, PS, Alter, BP, Bolyard, AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006;107:4628–4635.CrossRefGoogle ScholarPubMed
Bux, J, Behrens, G, Jaeger, G, Welte, K. Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis of 240 cases. Blood 1998;91:181–186.Google ScholarPubMed
Dale, DC, Liles, WC, Garwicz, D, Aprikyan, AG. Clinical implications of mutations of neutrophil elastase in congenital and cyclic neutropenia. J Pediatr Hematol Oncol 2001;23:208–210.CrossRefGoogle ScholarPubMed
Horwitz, MS, Duan, Z, Korkmaz, B, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2007;109:1817–1824.CrossRefGoogle ScholarPubMed
Aprikyan, AA, Liles, WC, Dale, DC. Emerging role of apoptosis in the pathogenesis of severe neutropenia. Curr Opin Hematol 2000;7:131–132.CrossRefGoogle ScholarPubMed
Hestdal, K, Welte, K, Lie, SO, et al. Severe congenital neutropenia: abnormal growth and differentiation of myeloid progenitors to granulocyte colony-stimulating factor (G-CSF) but normal response to G-CSF plus stem cell factor. Blood 1993;82:2991–2997.Google ScholarPubMed
Kobayashi, M, Yumiba, C, Kawaguchi, Y, et al. Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia. Blood 1990;75:2143–2149.Google ScholarPubMed
Bernhardt, TM, Burchardt, ER, Welte, K. Assessment of G-CSF and GM-CSF mRNA expression in peripheral blood mononuclear cells from patients with severe congenital neutropenia and in human myeloid leukemic cell lines. Exp Hematol 1993;21:163–168.Google ScholarPubMed
Guba, SC, Sartor, CA, Hutchinson, R, Boxer, LA, Emerson, SG. Granulocyte colony-stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood 1994;83:1486–1492.Google ScholarPubMed
Mempel, K, Pietsch, T, Menzel, T, Zeidler, C, Welte, K. Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood 1991;77:1919–1922.Google ScholarPubMed
Klein, C. Congenital neutropenia. Hematol Am Soc Hematol Educ Program 2009:344–350.Google ScholarPubMed
Grenda, DS, Murakami, M, Ghatak, J, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 2007;110:4179–4187.CrossRefGoogle ScholarPubMed
Kollner, I, Sodeik, B, Schreek, S, et al. Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 2006;108: 493–500.CrossRefGoogle ScholarPubMed
Germeshausen, M, Ballmaier, M, Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 2007;109:93–99.CrossRefGoogle ScholarPubMed
Beekman, R, Touw, IP. G-CSF and its receptor in myeloid malignancy. Blood 2010;115:5131–5136.CrossRefGoogle ScholarPubMed
Zeidler, C, Germeshausen, M, Klein, C, Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol 2009;144:459–467.CrossRefGoogle ScholarPubMed
Bonilla, MA, Gillio, AP, Ruggeiro, M, et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989;320:1574–1580.CrossRefGoogle ScholarPubMed
Dale, DC, Bonilla, MA, Davis, MW, et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 1993;81: 2496–2502.Google ScholarPubMed
Welte, K, Boxer, LA. Severe chronic neutropenia: pathophysiology and therapy. Semin Hematol 1997;34:267–278.Google ScholarPubMed
Elhasid, R, Rowe, JM. Hematopoetic stem cell transplantation in neutrophil disorders: severe congenital neutropenia, leukocyte adhesion deficiency and chronic granulomatous disease. Clin Rev Allergy Immunol 2010;38:61–67.CrossRefGoogle ScholarPubMed
Zeidler, C, Welte, K, Barak, Y, et al. Stem cell transplantation in patients with severe congenital neutropenia without evidence of leukemic transformation. Blood 2000;95:1195–1198.Google ScholarPubMed
Choi, SW, Boxer, LA, Pulsipher, MA, et al. Stem cell transplantation in patients with severe congenital neutropenia with evidence of leukemic transformation. Bone Marrow Transplant 2005;35:473–477.CrossRefGoogle ScholarPubMed
Chokkalingam, AP, Buffler, PA. Genetic susceptibility to childhood leukaemia. Radiat Prot Dosimetry 2008;132:119–129.CrossRefGoogle ScholarPubMed
Papaemmanuil, E, Hosking, FJ, Vijayakrishnan, J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1006–1010.CrossRefGoogle ScholarPubMed
Prasad, RB, Hosking, FJ, Vijayakrishnan, J, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 2010;115:1765–1767.CrossRefGoogle ScholarPubMed
Treviño, LR, Yang, W, French, D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009;41:1001–1005.CrossRefGoogle ScholarPubMed
Sherborne, AL, Hosking, FJ, Prasad, RB, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet 2010;42:492–494.CrossRefGoogle ScholarPubMed
Mullighan, CG, Miller, CB, Radtke, I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008;453:110–114.CrossRefGoogle ScholarPubMed
Mullighan, CG, Su, X, Zhang, J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009;360:470–480.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×