Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T11:46:13.653Z Has data issue: false hasContentIssue false

10 - Combustion and Ionization in Spark Ignition Engines

from Part III - Simulation of Combustion and Nonequilibrium Flows in Propulsion and Power Generation Systems

Published online by Cambridge University Press:  16 August 2019

V. I. Naoumov
Affiliation:
Central Connecticut State University
V. G. Krioukov
Affiliation:
Kazan National Research Technical University, Russian Federation
A. L. Abdullin
Affiliation:
The Academy of Science of the Republic of Tatarstan, Russian Federation
A. V. Demin
Affiliation:
Kazan State Power Engineering University, Russian Federation
Get access

Summary

Modeling and numerical simulation of combustion in the cylinders of spark-ignition and compression-ignition internal combustion engines (ICEs) provide a considerable contribution in engines engineering and the optimization of engines performance, efficiency, and emissions. This chapter demonstrates the application of the reactor approach and the chemical nonequilibrium model (Chapters 1–3) to the simulation of combustion in the cylinder of the spark-ignition ICE aiming to predict the variation in ionized particle concentration as control variables. It is known that the combustion of hydrocarbon fuels with oxidizers at high pressures and temperatures is accompanied by the output of some ionized substances. Research on the ionization in flames was started in the mid-1950s for the purpose of optimization of magnetohydrodynamic generators as well as the study of ionized particle formation in combustion products of propulsion systems, particularly in the thrust chambers and exhaust plumes of rocket engines [1, 160, 215, 227, 228]. This study was later extended to the combustion in the ICE for the purpose of employing empirical and theoretical data on the ionization of combustion products for engine performance control intended for the optimization of the combustion process, the reduction of fuel consumption, the reduction of exhaust gas emission, the optimization of the exhaust gas recirculation (EGR) process, etc. [292–305].

Type
Chapter
Information
Chemical Kinetics in Combustion and Reactive Flows
Modeling Tools and Applications
, pp. 380 - 396
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×