Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T09:44:59.162Z Has data issue: false hasContentIssue false

8 - Renormalization-group approaches

Published online by Cambridge University Press:  19 October 2009

Patrizia Castiglione
Affiliation:
Editions Belin, Paris
Massimo Falcioni
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Annick Lesne
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Angelo Vulpiani
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

If we study the history of science we see produced two phenomena which are, so to speak, each the inverse of the other. Sometimes it is simplicity which is hidden under what is apparently complex; sometimes, on the contrary, it is simplicity which is apparent, and which conceals extremely complex realities.

Henri Poincaré

Devoting only a short chapter to the renormalization group (RG) is a challenge owing to the wealth of both fundamental concepts and computational tools associated with this term. The RG is indeed encountered in many different domains of theoretical physics, ranging from quantum electrodynamics to second-order phase transitions to fractal growth and diffusion processes – one should rather speak of renormalization groupS! We refer to Brown (1993) and Fisher (1998) for an historical account, to Goldenfeld (1992) and Lesne (1998) and references therein for an overview of the domains of application and variants of RGs.

We here emphasize that the RG is a way, maybe the most successful and with no doubt the most systematic and constructive, to derive effective low-dimensional descriptions that capture large-scale and/or long-time behavior. The RG can be extended far beyond the specific scope of critical phenomena, to an iterated multiscale approach allowing the construction of robust and minimal macroscopic models describing the universal large-scale features and asymptotics of a complex system. This generalized viewpoint brings out the close logical and even technical connections that bridge, within a unified framework, perturbative RG for singular series expansions, spin-block RG and momentum-shell RG for critical phenomena, RG for the asymptotic analysis of differential and partial differential equations, and probabilistic RG for the derivation of statistical laws and limit theorems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×