Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:44:37.837Z Has data issue: false hasContentIssue false

Flows of Energy

Published online by Cambridge University Press:  25 February 2022

Kevin E. Trenberth
Affiliation:
National Center for Atmospheric Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Further Reading

Covey, C., Gleckler, P. J., Doutriaux, C., et al., 2016: Metrics for the diurnal cycle of precipitation: toward routine benchmarks for climate models, Journal of Climate, 29, 44614471. doi: 10.1175/JCLI-D-15-0664.1.CrossRefGoogle Scholar
Trenberth, K. E., 2007: Warmer oceans, stronger hurricanes. Scientific American, July, 45−51.CrossRefGoogle Scholar
Trenberth, K. E., and Stepaniak, D. P., 2003a: Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. Journal of Climate, 16, 36913705. doi: 10.1175/1520-0442(2003)016,3691:COCOPA.2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., and Stepaniak, D. P., 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. Journal of Climate, 16, 37063722. doi: 10.1175/1520-0442(2003)016,3706: SPAETA.2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E. and Zhang, Y., 2018: Near global covariability of hourly precipitation in space and time. Journal of Hydrometeorology, 19, 695713. doi: 10.1175/JHM-D-17-0238.1.Google Scholar
Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., and Fasullo, J., 2018: Hurricane Harvey links to ocean heat content. Earth’s Future, 6, 730744, doi: 10.1029/2018EF000825.CrossRefGoogle Scholar

References and Further Reading

Bronseleiaer, B., and Zanna, L., 2020: Heat and carbon coupling reveals ocean warming due to circulation changes. Nature, 584, 227233. doi: 10.1038/s41586-020-2573-5.CrossRefGoogle Scholar
Cheng, L., Trenberth, K., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J., 2017: Improved estimates of ocean heat content from 1960–2015. Science Advances, 3(3), e1601545. doi: 10.1126/sciadv.1601545. http://advances.sciencemag.org/content/3/3/e1601545.CrossRefGoogle Scholar
Cheng, L., Trenberth, K. E., Gruber, N., et al., 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate, 33. https://doi.org/10.1175/JCLI-D-20-0366.1.CrossRefGoogle Scholar
Cornwall, W., 2019: In hot water. Science, 363, 442445. doi: 10.1126/science.363.6426.442.CrossRefGoogle Scholar
Ezer, T., Atkinson, L. P., Corlett, W. B., and Blanco, J. L., 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. Journal of Geophysical Research: Oceans, 118, 685697. doi: 10.1002/jgrc.20091.CrossRefGoogle Scholar
Lumpkin, R., and Johnson, G. C., 2013: Global ocean surface velocities from drifters: mean, variance, El Nino–Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans, 118, 29923006, doi: 10.1002/jgrc.20210.CrossRefGoogle Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L., 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. Journal of Climate, 32, 45674583. doi: 10.1175/JCLI-D-18-0872.1.Google Scholar

References and Further Reading

Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. Journal of the Atmospheric Sciences, 28, 325339,2.0.CO;2>CrossRefGoogle Scholar
Oort, A. H., and Vonder Haar, T., 1976: On the observed annual cycle in the ocean–atmosphere heat balance over the Northern Hemisphere. Journal of Physical Oceanography, 6, 781800.2.0.CO;2>CrossRefGoogle Scholar
Peixoto, J. P., and Oort, A. H., 1992: Physics of Climate. New York: American Institute of Physics, 520pp.Google Scholar
Trenberth, K. E., and Caron, J. M., 2001: Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 34333443.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., and Zhang, Y., 2019: Observed inter-hemispheric meridional heat transports and the role of the Indonesian Throughflow in the Pacific Ocean. Journal of Climate, 32, 85238536, https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-19-0465.1.CrossRefGoogle Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L., 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. Journal of Climate, 32, 45674583. doi: 10.1175/JCLI-D-18-0872.1.Google Scholar

References and Further Reading

Cheng, L., Trenberth, K. E., Gruber, N., et al., 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate, 33, doi: 10.1175/JCLI-D-20-0366.1.CrossRefGoogle Scholar
Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008, Journal of Geophysical. Research, 116, D12115, doi: 10.1029/2010JD015541.CrossRefGoogle Scholar
Schlosser, C. A., Strzepek, K., Gao, X., et al., 2014: The future of global water stress: an integrated assessment, Earth’s Future, 2, 341361, doi: 10.1002/2014EF000238.CrossRefGoogle Scholar
Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: implications for rainfall rates with climate change. Climatic Change, 39, 667694.CrossRefGoogle Scholar
Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Research, 47, 123138. doi: 10.3354/cr00953.CrossRefGoogle Scholar
Trenberth, K. E., and Dai, A., 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters. 34, L15702, doi: 10.1029/2007GL030524.Google Scholar
Trenberth, K. E., and Fasullo, J., 2007: Water and energy budgets of hurricanes and implications for climate change. Journal of Geophysical Research, 112, D23107, doi: 10.1029/2006JD008304.Google Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B., 2003: The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 12051217. doi: 10.1175/bams-84-9-1205.CrossRefGoogle Scholar
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J., 2007: Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8, 758769. doi: 10.1175/JHM600.1.Google Scholar
Trenberth, K. E., Dai, A., van der Schrier, G., et al., 2014: Global warming and changes in drought. Nature Climate Change, 4, 1722, doi: 10.1038/NCLIMATE2067.CrossRefGoogle Scholar
Trenberth, K. E., Cheng, L., Jacobs, P., Zhang, Y., and Fasullo, J., 2018: Hurricane Harvey links to ocean heat content. Earth’s Future, 6, 730744, doi: 10.1029/2018EF000825.CrossRefGoogle Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Cheng, L., 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. Journal of Climate, 32, 45674583. doi:10.1175/JCLI-D-18-0872.1.CrossRefGoogle Scholar

References and Further Reading

Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., 2003: An overview of the North Atlantic Oscillation. In: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M., eds. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophysical Monograph 134, 135. Washington, DC: American Geophysical Union.Google Scholar
Kwok, R., and Comiso, J. C., 2002: Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophysical Research Letters, 29, 1705, doi: 10.1029/2002GL015415.Google Scholar
Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16, 41344143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.Google Scholar
Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bulletin of the American Meteorological Society, 71, 988993.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., 2015: Has there been a hiatus? Science, 349(2649), 691692. doi: 10.1126/science.aac9225.CrossRefGoogle ScholarPubMed
Trenberth, K. E., and Hurrell, J. W., 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dynamics, 9, 303319.Google Scholar
Trenberth, K. E., and Hurrell, J. W., 2019: Climate change. In: Dunn, P. O., and Møller, A. P., eds., The Effects of Climate Change on Birds, 2nd ed. Oxford: Oxford University Press, 5–25.Google Scholar
Trenberth, K. E., and Shea, D. J., 2006: Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33, L12704. doi: 10.1029/2006GL026894.Google Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N-C., and Ropelewski, C., 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research, 103 , 1429114324.Google Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al., 2007: Observations: surface and atmospheric climate change. In: Solomon, S., Qin, D., Manning, M., et al., eds., Climate Change 2007. The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 235336.Google Scholar

References and Further Reading

Cheng, L., Trenberth, K. E., Fasullo, J., Mayer, M., Balmaseda, M., and Zhu, J., 2019: Evolution of ocean heat content related to ENSO. Journal of Climate, 32 , 35293556, doi: 10.1175/JCLI-D-18-0607.1.Google Scholar
Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Monthly Weather Review, 112, 326332Google Scholar
Trenberth, K. E., 1994: The different flavors of El Niño. 18th Annual Climate Diagnostics Workshop, November 1–5, 1993, Boulder, CO, 50–53.Google Scholar
Trenberth, K. E., 1997: The definition of El Niño. Bulletin of the American Meteorological Society, 78, 27712777.2.0.CO;2>CrossRefGoogle Scholar
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., N-Lau, C., and C. Ropelewski, , 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research, 103 , 1429114324.CrossRefGoogle Scholar
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S., 2002: Evolution of El Niño Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research, 107(D8), 4065. doi: 10.1029/2000JD000298.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., et al., 2007: Observations: Surface and Atmospheric Climate Change. In: Solomon, S., Qin, D., Manning, M., et al., eds., Climate Change 2007. The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 235336.Google Scholar
Wolter, K., and Timlin, M. S., 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31, 10741087. doi: 10.1002/joc.2336.CrossRefGoogle Scholar

References and Further Reading

Charney, J. G., Stevens, B., Held, I. H., et al., 1979: Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: US National Academy of Sciences.Google Scholar
Dessler, A. E., 2020: Potential problems measuring climate sensitivity from the historical record. Journal of Climate, 33, 22372248.CrossRefGoogle Scholar
Dessler, A. E., and Forster, P. M., 2018: An estimate of equilibrium climate sensitivity from interannual variability. Journal of Geophysical Research, 123, 86348645. doi: 10.1029/2018JD028481.CrossRefGoogle Scholar
Dessler, A. E., Mauritsen, T., and Stevens, B., 2018: The influence of internal variability on Earth’s energy balance framework and implications for estimating climate sensitivity. Atmospheric Chemistry and Physics, 18, 51475155. doi: 10.5194/acp-18-5147-2018.CrossRefGoogle Scholar
Trenberth, K. E., Zhang, Y., Fasullo, J. T., and Taguchi, S., 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. Journal of Geophysical Research, 120, 36423659. doi: 10.1002/2014JD022887.CrossRefGoogle Scholar
Trenberth, K. E., Zhang, Y., and Fasullo, J. T., 2015: Relationships among top-of-atmosphere radiation and atmospheric state variables in observations and CESM. Journal of Geophysical Research, 120, 10,074–10,090. doi: 10.1002/2015JD023381.Google Scholar
Zhu, J., Poulsen, C. J., and Otto-Bliesner, B. L., 2020: High climate sensitivity in CMIP6 model not supported by paleoclimate. Geophysical Research Letters, 47. doi: 10.1038/s41558–020-0764-6.Google Scholar

References and Further Reading

Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264. doi: 10.1038/s41467-018-08240-4.Google Scholar
Cheng, L., Trenberth, K., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J., 2017: Improved estimates of ocean heat content from 1960–2015. Science Advances, 3(3), e1601545. doi:10.1126/sciadv.1601545. http://advances.sciencemag.org/content/3/3/e1601545.Google Scholar
Cheng, L., Abraham, J., Hausfather, Z., and Trenberth, K. E., 2019: How fast are the oceans warming? Observational records of ocean heat content show that ocean warming is accelerating. Science, 363, 128129. doi:10.1126/science.aav7619.CrossRefGoogle Scholar
Cheng, L., Abraham, J. P., Zhu, J., et al., 2020: Record-setting ocean warmth continued in 2019. Advances in Atmospheric Sciences, 37, 137142. doi: 10.1007/s00376-020-9283-7.Google Scholar
Church, J. A., and White, N. J., 2011: Sea-level rise from the late 19th to the early 21st Century. Surveys in Geophysics, 32(4–5), 585602. doi: 10.1007/s10712–011-9119-1.CrossRefGoogle Scholar
IPCC: Intergovernmental Panel on Climate Change, 2013: Climate Change 2013. The Physical Science Basis, ed. Stocker, T. F., et al. Cambridge: Cambridge University Press.Google Scholar
Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environmental Research Letters, 13, 105005. doi: 10.1088/1748-9326/aae3ec.CrossRefGoogle Scholar
Nerem, R. S., Beckley, B. D., Fasullo, J. T., et al., 2018: Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences USA, 115, 20222025.CrossRefGoogle ScholarPubMed
NSIDC: National Snow and Ice Data Center, 2019: http://nsidc.org/greenland-today/.Google Scholar
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R., 2011: Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research, 116, C00D06. doi: 10.1029/2011JC007084.CrossRefGoogle Scholar
Smith, B., Fricker, H. A., Gardner, A. S., et al., 2020: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 12391242. doi: 10.1126/science.aaz5845.CrossRefGoogle ScholarPubMed
Song, X.-P., Hansen, M. C., Stehman, S. V., et al., 2018: Global land change from 1982 to 2016. Nature, 560, 639643. doi: 10.1038/s41586-018-0411-9.CrossRefGoogle ScholarPubMed
Trenberth, K. E., Fasullo, J. T., and Balmaseda, M. A., 2014: Earth’s energy imbalance. Journal of Climate, 27, 31293144. doi: 10.1175/JCLI-D-13-00294.CrossRefGoogle Scholar
Trenberth, K. E., Fasullo, J. T., von Schuckmann, K., and Cheng, L., 2016: Insights into Earth’s energy imbalance from multiple sources. Journal of Climate, 29, 74957505. doi: 10.1175/JCLI-D-16-0339.Google Scholar

References and Further Reading

National Research Council, 2016: Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press, 165pp. doi: 10.17226/21852.Google Scholar
Pall, P., Patricola, C. M., Wehner, M., et al., 2017: Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Weather Climate Extremes, 17, 16. doi: 10.1016/j.wace.2017.03.004.CrossRefGoogle Scholar
Shepherd, T. G., Boyd, E., Calel, R. A., et al., 2018: Storylines: An alternative approach to representing uncertainty in climate change. Climatic Change, 151, 555571. doi: 10.1007/s10584-018-2317-9Google Scholar
Trenberth, K. E., 2011: Attribution of climate variations and trends to human influences and natural variability. WIREs Climate Change, 2, 925930. doi: 10.1002/wcc.142.CrossRefGoogle Scholar
Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283290. doi: 10.1007/s10584-012-0441-5.Google Scholar
Trenberth, K. E., 2015: Has there been a hiatus? Science, 349, 691692. doi: 10.1126/science.aac9225.Google Scholar
Trenberth, K. E., and Fasullo, J. T., 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932. doi: 10.002/2013EF000165.CrossRefGoogle Scholar
Trenberth, K. E., Fasullo, J. T., Branstator, G., and Phillips, A. S., 2014: Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4. doi: 10.1038/NCLIMATE2341.Google Scholar
Trenberth, K. E., Fasullo, J. T., and Shepherd, T. G., 2015: Attribution of climate extreme events. Nature Climate Change, 5, 725730. doi: 10.1038/NCLIMATE2657.CrossRefGoogle Scholar

References and Further Reading

Hausfather, Z., 2018: Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change. www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change.Google Scholar
IPCC: Intergovernmental Panel on Climate Change, 2013: Climate Change 2013. The Physical Science Basis, ed. Stocker, T. F., et al. Cambridge: Cambridge University Press.Google Scholar
O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., et al., 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscience Model Development, 9, 34613482. doi: 10.5194/gmd-9-3461-2016.CrossRefGoogle Scholar
Trenberth, K. E., ed., 1992: Climate System Modeling. Cambridge University Press, Cambridge, 788pp.Google Scholar
Trenberth, K. E., 2015: Intergovernmental Panel on Climate Change. In: North, G. R. (ed.-in-chief), Pyle, J., and Zhang, F., eds., Encyclopedia of Atmospheric Sciences, 2nd ed., vol. 2. London: Academic Press, 90–94.Google Scholar
USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Vol. I, edited by Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., et al. Washington, DC: US Global Change Research Program, 470pp. https://science2017.globalchange.gov/.CrossRefGoogle Scholar
van Vuuren, D. P., Edmonds, J., Kainuma, M., et al., 2011: The representative concentration pathways: an overview. Climatic Change, 109,5 5–31. doi: 10.1007/s10584-011-0148-z.Google Scholar

References and Further Reading

Goddard, L., 2016: From science to service. Science, 353, 13661367. doi: 10.1126/science.aag3087.CrossRefGoogle ScholarPubMed
Ritchie, H., and Roser, M., 2017: CO₂ and Greenhouse Gas Emissions. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions.Google Scholar
Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P., 2009: Irreversible climate change due to carbon dioxide emissions Proceedings of the National Academy of Sciences USA, 106, 17041709. doi: 10.1073/pnas.0812721106.Google Scholar
Trenberth, K. E., 2008: Observational needs for climate prediction and adaptation. WMO Bulletin, 57(1), 1721.Google Scholar
Trenberth, K. E., Anthes, R. A., Belward, A., et al., 2013: Challenges of a sustained climate observing system. In: Asrar, G. R., and Hurrell, J. W., eds., Climate Science for Serving Society: Research, Modelling and Prediction Priorities. Dordrecht: Springer, 1350.CrossRefGoogle Scholar
Trenberth, K. E., Marquis, M., and Zebiak, S., 2016: The vital need for a climate information system. Nature Climate Change, 6, 10571059. doi: 10.1038/NCLIM-16101680.Google Scholar

References and Further Reading

Bast, E., 2015: Empty promises: G20 subsidies to oil, gas and coal production http://priceofoil.org/2015/11/11/empty-promises-g20-subsidies-to-oil-gas-and-coal-production/.Google Scholar
Blunden, J., and Arndt, D. S. (eds.), 2020: State of the climate in 2019. Bulletin of the American Meteorological Society, 101(8), SiS429. doi: 10.1175/2020BAMSStateoftheClimate.1.Google Scholar
IPCC, Fifth Assessment Reports (AR5): www.ipcc.ch/report/ar5/; and reports from Working Groups 1, 2 and 3: www.ipcc.ch/report/ar5/wg1/; www.ipcc.ch/report/ar5/wg2/; www.ipcc.ch/report/ar5/wg3/.Google Scholar
Keen, S., 2020: The appallingly bad neoclassical economics of climate change. Globalizations. doi: 10.1080/14747731.2020.1807856.Google Scholar
Mann, M. E., 2012: The Hockey Stick and the Climate Wars. Columbia University Press, New York. 448 pp.CrossRefGoogle Scholar
McKibben, W., 2018: How extreme weather is shrinking the planet. New Yorker, November 26, 2018. www.newyorker.com/magazine/2018/11/26/how-extreme-weather-is-shrinking-the-planet?utm_medium=email&utm_source=actionkit.Google Scholar
Paulsen, H., and Bloomberg, M., 2014: Risky Business: The Economic Risks of Climate Change in the United States. http://riskybusiness.org/report/national/.Google Scholar
Pope Francis, 2015: Laudato Si. https://laudatosi.com/watch.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Flows of Energy
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Flows of Energy
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Flows of Energy
  • Kevin E. Trenberth
  • Book: The Changing Flow of Energy Through the Climate System
  • Online publication: 25 February 2022
  • Chapter DOI: https://doi.org/10.1017/9781108979030.009
Available formats
×