Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:31:33.425Z Has data issue: false hasContentIssue false

9 - Symbols in positive characteristic

Published online by Cambridge University Press:  07 August 2017

Philippe Gille
Affiliation:
Institut Camille Jordan, Lyon
Tamás Szamuely
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
Get access

Summary

In the preceding chapters, when working with Galois cohomology groups or K-groups modulo some prime, a standing assumption was that the groups under study were torsion groups prime to the characteristic of the base field. We now remove this restriction. In the first part of the chapter the central result is Teichmüller's theorem, according to which the p-primary torsion subgroup in the Brauer group of a field of characteristic p > 0 is generated by classes of cyclic algebras – a characteristic p ancestor of the Merkurjev–Suslin theorem. We shall give two proofs of this statement: a more classical one due to Hochschild which uses central simple algebras, and a totally different one based on a presentation of the p-torsion in Br (k) via logarithmic differential forms. The key tool here is a famous theorem of Jacobson–Cartier characterizing logarithmic forms. The latter approach leads us to the second main topic of the chapter, namely the study of the differential symbol. This is a p-analogue of the Galois symbol which relates the Milnor K-groups modulo p to a certain group defined using differential forms. We shall prove the Bloch–Gabber–Kato theorem establishing its bijectivity, and obtain as an application the absence of p-torsion in Milnor K-groups of fields of characteristic p, a statement due to Izhboldin.

Teichmüller's result first appeared in the ill-famed journal Deutsche Mathematik (Teichmüller [1]); see also Jacobson [3] for an account of the original proof. The role of derivations and differentials in the theory of central simple algebras was noticed well before the Second World War; today the most important work seems to be that of Jacobson [1]. This line of thought was further pursued in papers by Hochschild [1], [2], and, above all, in the thesis of Cartier [1], which opened the way to a wide range of geometric developments. The original references for the differential symbol are the papers of Kato [2] and Bloch–Kato [1]; they have applied the theory to questions concerning higher-dimensional local fields and p-adic Hodge theory.

The theorems of Teichmüller and Albert

In what follows k will denote a field of characteristic p > 0, and ks will be a fixed separable closure of k.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×