Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T09:49:20.652Z Has data issue: false hasContentIssue false

7 - Toward a Modular Analysis of Cell Mechanosensing and Mechanotransduction

A Manual for Cell Mechanics

Published online by Cambridge University Press:  05 July 2014

Benjamin J. Dubin-Thaler
Affiliation:
Cell Motion Laboratories, Inc.
Michael P. Sheetz
Affiliation:
Columbia University
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

Cellular mechanosensing and -transduction are critical functions in the shaping of cells and tissues. Although an increasing literature details the proteins and complexes involved in mechanotransduction, how these mechanisms generate the mechanochemical functions of cell motility is often poorly understood. This is a result of the fact that cells can exhibit a number of different types of motility depending on factors such as cell type and local chemical and mechanical perturbations. Due to these factors, even a genetically homogeneous cell population presents a confusing array of different motility phenotypes to the experimentalist. Therefore, we suggest a new approach to understanding cell mechanical functions through reverse systems engineering. Through quantitative analysis, we have observed that, though motility over a population of cells is heterogeneous, at a particular time and location at the cell edge, a cell exhibits only one of a limited number of modular, morphodynamic states of the acto-myosin cytoskeleton. Furthermore, a single motility module can exhibit a heterogeneous cycle of individual steps, with chemical and mechanical interactions changing over the course of this cycle. Thus, much in the way an engineer would describe the functions of components in a car engine, we should be able to approach many problems in cell motility by first describing the molecular steps involved in the basic motility modules and then showing how signaling pathways regulate those modules in order to perform cell-wide functions. In the case of cell motility, we believe there are less than thirty distinct motility modules. With a detailed, quantitative understanding of normal cell motility functions, it will be possible to understand how their malfunction can result in disease processes and to develop therapies that target specific motility modules.

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 181 - 195
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kostic, A., and Sheetz, M. P.. 2006. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol Biol Cell 17: 2684–2695.CrossRefGoogle ScholarPubMed
Giannone, G., and Sheetz, M. P.. 2006. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16: 213–223.CrossRefGoogle ScholarPubMed
Vogel, V., and Sheetz, M.. 2006. Local force and geometry sensing regulate cell functions. Nature Revs 7: 265–275.CrossRefGoogle ScholarPubMed
Glogauer, M., Arora, P., Yao, G., Sokholov, I., Ferrier, J., and McCulloch, C. A.. 1997. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 110(Pt 1): 11–21.Google ScholarPubMed
Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S., and Sheetz, M. P.. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127: 1015–1026.CrossRefGoogle ScholarPubMed
Tamada, M., Sheetz, M. P., and Sawada, Y.. 2004. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7: 709–718.CrossRefGoogle ScholarPubMed
Fillingham, I., Gingras, A. R., Papagrigoriou, E., Patel, B., Emsley, J., Critchley, D. R., Roberts, G. C., and Barsukov, I. L.. 2005. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13: 65–74.CrossRefGoogle Scholar
Raucher, D., and Sheetz, M. P.. 1999. Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77: 1992–2002.CrossRefGoogle ScholarPubMed
Raucher, D., and Sheetz, M. P.. 2000. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Bio 148: 127–136.CrossRefGoogle ScholarPubMed
Heo, W. D., and Meyer, T.. 2003. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 113: 315–328.CrossRefGoogle ScholarPubMed
Yoshida, K., and Soldati, T.. 2006. Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119: 3833–3844.CrossRefGoogle ScholarPubMed
Dubin-Thaler, B. J., Giannone, G., Dobereiner, H. G., and Sheetz, M. P.. 2004. Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys J 86: 1794–1806.CrossRefGoogle ScholarPubMed
Döbereiner, H. G., Dubin-Thaler, B., Giannone, G., Xenias, H. S., and Sheetz, M. P.. 2004. Dynamic phase transitions in cell spreading. Phys Rev Lett 93: 108105.CrossRefGoogle ScholarPubMed
Ayala, R., Shu, T., and Tsai, L. H.. 2007. Trekking across the brain: The journey of neuronal migration. Cell 128: 29–43.CrossRefGoogle ScholarPubMed
Marin, O., Valdeolmillos, M., and Moya, F.. 2006. Neurons in motion: Same principles for different shapes?Trends Neurosci 29: 655–661.CrossRefGoogle ScholarPubMed
Friedl, P., den Boer, A. T., and Gunzer, M.. 2005. Tuning immune responses: Diversity and adaptation of the immunological synapse. Nat Rev Immunol 5: 532–545.CrossRefGoogle Scholar
Sahai, E., and Marshall, C. J.. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.CrossRefGoogle ScholarPubMed
Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., and Condeelis, J. S.. 2007. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67: 3505–3511.CrossRefGoogle ScholarPubMed
Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., and Sheetz, M. P.. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128: 561–575.CrossRefGoogle ScholarPubMed
Dubin-Thaler, B., Hofman, J. M., Xenias, H., Spielman, I., Shneidman, A. V., David, L. A., Dobereiner, H. G., Wiggins, C. H., and Sheetz, M. P.. 2008. Quantification of cell edge velocities and fraction forces reveals distinct motility modules during cell spreading. PLOS ONE 3(11): e 3735.CrossRefGoogle Scholar
Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M., and Faix, J.. 2005. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7: 619–625.CrossRefGoogle ScholarPubMed
DesMarais, V., Ghosh, M., Eddy, R., and Condeelis, J.. 2005. Cofilin takes the lead. J Cell Sci 118: 19–26.CrossRefGoogle Scholar
Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., and Waterman-Storer, C. M.. 2005. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 168: 619–631.CrossRefGoogle ScholarPubMed
Machacek, M., and Danuser, G.. 2006. Morphodynamic profiling of protrusion phenotypes. Biophys J 90: 1439–1452.CrossRefGoogle ScholarPubMed
Dubin-Thaler, B. J., Hofman, J. M., Cai, Y., Xenias, H., Spielman, I., Shneidman, A. V., David, L. A., Dobereiner, H. G., Wiggins, C. H., and Sheetz, M. P.. 2008. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading. PloS One 3: e 3735.CrossRefGoogle Scholar
Gupton, S. L., and Waterman-Storer, C. M.. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125: 1361–1374.CrossRefGoogle ScholarPubMed
Johnson, K. E. 1976. Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J Cell Sci 22: 575–583.Google Scholar
Sims, T. N., Soos, T. J., Xenias, H., Dubin-Thaler, B., Hofman, J., Waite, J., Cameron, T. O., Thomas, V. K., Varma, R., Wiggins, C., Sheetz, M. P., Littman, D. R., and Dustin, M. L.. 2007. Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129: 773–785.CrossRefGoogle ScholarPubMed
Vial, E., Sahai, E., and Marshall, C. J.. 2003. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79.CrossRefGoogle ScholarPubMed
Munevar, S., Wang, Y. L., and Dembo, M.. 2004. Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117: 85–92.CrossRefGoogle Scholar
Kirschner, M., and Gerhart, J.. 2005. The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven, CT.Google Scholar
Wittkopp, P. J. 2006. Evolution of cis-regulatory sequence and function in Diptera. Heredity 97: 139–147.CrossRefGoogle ScholarPubMed
Han, Y. H., Chung, C. Y., Wessels, D., Stephens, S., Titus, M. A., Soll, D. R., and Firtel, R. A.. 2002. Requirement of a vasodilator-stimulated phosphoprotein family member for cell adhesion, the formation of filopodia, and chemotaxis in dictyostelium. J Biol Chem 277: 49877–49887.CrossRefGoogle ScholarPubMed
Edwards, R. A., and Bryan, J.. 1995. Fascins, a family of actin bundling proteins. Cell Motility and the Cytoskeleton 32: 1–9.CrossRefGoogle ScholarPubMed
Kureishy, N., Sapountzi, V., Prag, S., Anilkumar, N., and Adams, J. C.. 2002. Fascins, and their roles in cell structure and function. Bioessays 24: 350–361.CrossRefGoogle ScholarPubMed
Applewhite, D. A., Barzik, M., Kojima, S. I., Svitkina, T. M., Gertler, F. B., and Borisy, G. G.. 2007. Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol Biol Cell. 18(7): 2579–2591.CrossRefGoogle Scholar
Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C.. 2002. Role of formins in actin assembly: Nucleation and barbed-end association. Science 297: 612–615.CrossRefGoogle ScholarPubMed
Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., and Pollard, T. D.. 2006. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124: 423–435.CrossRefGoogle ScholarPubMed
Schirenbeck, A., Arasada, R., Bretschneider, T., Schleicher, M., and Faix, J.. 2005. Formins and VASPs may co-operate in the formation of filopodia. Biochem Soc Trans 33: 1256–1259.CrossRefGoogle ScholarPubMed
Brangwynne, C. P., Koenderink, G. H., Barry, E., Dogic, Z., Mackintosh, F. C., and Weitz, D. A.. 2007. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys J 93(1): 346–59.CrossRefGoogle ScholarPubMed
Medalia, O., Beck, M., Ecke, M., Weber, I., Neujahr, R., Baumeister, W., and Gerisch, G.. 2007. Organization of actin networks in intact filopodia. Curr Biol 17: 79–84.CrossRefGoogle ScholarPubMed
Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., and Borisy, G. G.. 2006. Role of fascin in filopodial protrusion. J Cell Biol 174: 863–875.CrossRefGoogle ScholarPubMed
Bohil, A. B., Robertson, B. W., and Cheney, R. E.. 2006. Myosin-X is a molecular motor that functions in filopodia formation. Proc Nat Acad Sci USA 103: 12411–12416.CrossRefGoogle ScholarPubMed
Mattila, P. K., Pykalainen, A., Saarikangas, J., Paavilainen, V. O., Vihinen, H., Jokitalo, E., and Lappalainen, P.. 2007. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176: 953–964.CrossRefGoogle ScholarPubMed
Mejillano, M. R., Kojima, S., Applewhite, D. A., Gertler, F. B., Svitkina, T. M., and Borisy, G. G.. 2004. Lamellipodial versus filopodial mode of the actin nanomachinery: Pivotal role of the filament barbed end. Cell 118: 363–373.CrossRefGoogle ScholarPubMed
Haviv, L., Brill-Karniely, Y., Mahaffy, R., Backouche, F., Ben-Shaul, A., Pollard, T. D., and Bernheim-Groswasser, A.. 2006. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc Nat Acad Sci USA 103: 4906–4911.CrossRefGoogle Scholar
Vignjevic, D., Yarar, D., Welch, M. D., Peloquin, J., Svitkina, T., and Borisy, G. G.. 2003. Formation of filopodia-like bundles in vitro from a dendritic network. J Cell Biol 160: 951–962.CrossRefGoogle Scholar
Bukharova, T., Weijer, G., Bosgraaf, L., Dormann, D., van Haastert, P. J., and Weijer, C. J.. 2005. Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during Dictyostelium development. J Cell Sci 118: 4295–4310.CrossRefGoogle ScholarPubMed
Mallavarapu, A., and Mitchison, T.. 1999. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146: 1097–1106.CrossRefGoogle Scholar
Betz, T., Lim, D., and Kas, J. A.. 2006. Neuronal growth: A bistable stochastic process. Phys Rev Lett 96: 098103–098104.CrossRefGoogle ScholarPubMed
Medeiros, N. A., Burnette, D. T., and Forscher, P.. 2006. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8: 215–226.CrossRefGoogle ScholarPubMed
Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J.. 2006. Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175: 477–490.CrossRefGoogle ScholarPubMed
Bereiter-Hahn, J., Luck, M., Miebach, T., Stelzer, H. K., and Voth, M.. 1990. Spreading of trypsinized cells: Cytoskeletal dynamics and energy requirements. J Cell Sci 96(Pt 1):171–188.Google Scholar
Boss, J. 1955. Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exp Cell Res 8: 181–187.CrossRefGoogle ScholarPubMed
Keller, H., and Eggli, P.. 1998. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell Motil Cytoskeleton 41: 181–193.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Mills, J. C., Stone, N. L., Erhardt, J., and Pittman, R. N.. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140: 627–636.CrossRefGoogle ScholarPubMed
Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J.. 2001. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3: 346–352.CrossRefGoogle Scholar
Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F.. 2001. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3: 339–345.CrossRefGoogle ScholarPubMed
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L., and Mitchison, T. J.. 2005. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365–369.CrossRefGoogle ScholarPubMed
McCarthy, N. J., Whyte, M. K., Gilbert, C. S., and Evan, G. I.. 1997. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136: 215–227.CrossRefGoogle ScholarPubMed
Mills, J. C., Stone, N. L., and Pittman, R. N.. 1999. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 146: 703–708.CrossRefGoogle ScholarPubMed
Barros, L. F., Kanaseki, T., Sabirov, R., Morishima, S., Castro, J., Bittner, C. X., Maeno, E., Ando-Akatsuka, Y., and Okada, Y.. 2003. Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death and Differentiation 10: 687–697.CrossRefGoogle ScholarPubMed
Kogel, D., Prehn, J. H., and Scheidtmann, K. H.. 2001. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays 23: 352–358.CrossRefGoogle ScholarPubMed
Deschesnes, R. G., Huot, J., Valerie, K., and Landry, J.. 2001. Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell 12: 1569–1582.CrossRefGoogle ScholarPubMed
Huot, J., Houle, F., Marceau, F., and Landry, J.. 1997. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80: 383–392.CrossRefGoogle ScholarPubMed
Huot, J., Houle, F., Rousseau, S., Deschesnes, R. G., Shah, G. M., and Landry, J.. 1998. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143: 1361–1373.CrossRefGoogle ScholarPubMed
Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sasaki, Y., and Matsumura, F.. 2000. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150: 797–806.CrossRefGoogle Scholar
Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., and Matsumura, F.. 2004. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164: 427–439.CrossRefGoogle ScholarPubMed
Yamaji, S., Suzuki, A., Kanamori, H., Mishima, W., Yoshimi, R., Takasaki, H., Takabayashi, M., Fujimaki, K., Fujisawa, S., Ohno, S., and Ishigatsubo, Y.. 2004. Affixin interacts with alpha-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell-substrate interaction. J Cell Biol 165: 539–551.CrossRefGoogle ScholarPubMed
Bailly, M., Condeelis, J. S., and Segall, J. E.. 1998. Chemoattractant-induced lamellipod extension. Microsc Res Tech 43: 433–443.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., and Condeelis, J. S.. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746.CrossRefGoogle ScholarPubMed
Horstman, D. A., DeStefano, K., and Carpenter, G.. 1996. Enhanced phospholipase C-gamma1 activity produced by association of independently expressed X and Y domain polypeptides. Proc Nat Acad Sci USA 93: 7518–7521.CrossRefGoogle Scholar
Theriot, J. A., and Mitchison, T. J.. 1991. Actin microfilament dynamics in locomoting cells. Nature 352: 126–131.CrossRefGoogle ScholarPubMed
Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H., and Kwiatkowski, D. J.. 1998. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 17: 1362–1370.CrossRefGoogle ScholarPubMed
Yamazaki, D., Fujiwara, T., Suetsugu, S., and Takenawa, T.. 2005. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells 10: 381–392.CrossRefGoogle ScholarPubMed
Gov, N. S., and Gopinathan, A.. 2006. Dynamics of membranes driven by actin polymerization. Biophys J 90: 454–469.CrossRefGoogle ScholarPubMed
Wolgemuth, C. W. 2005. Lamellipodial contractions during crawling and spreading. Biophys J 89: 1643–1649.CrossRefGoogle ScholarPubMed
Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., and Danuser, G.. 2004. Two distinct actin networks drive the protrusion of migrating cells. Science 305: 1782–1786.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×