Book contents
- Frontmatter
- Dedication
- Contents
- Preface to the First Edition
- Preface to the Second Edition
- 1 Introduction to Probabilities, Graphs, and Causal Models
- 2 A Theory of Inferred Causation
- 3 Causal Diagrams and the Identification of Causal Effects
- 4 Actions, Plans, and Direct Effects
- 5 Causality and Structural Models in Social Science and Economics
- 6 Simpson’s Paradox, Confounding, and Collapsibility
- 7 The Logic of Structure-Based Counterfactuals
- 8 Imperfect Experiments: Bounding Effects and Counterfactuals
- 9 Probability of Causation: Interpretation and Identification
- 10 The Actual Cause
- 11 Reflections, Elaborations, and Discussions with Readers
- Epilogue The Art and Science of Cause and Effect
- Bibliography
- Name Index
- Subject Index
Preface to the First Edition
Published online by Cambridge University Press: 05 March 2013
- Frontmatter
- Dedication
- Contents
- Preface to the First Edition
- Preface to the Second Edition
- 1 Introduction to Probabilities, Graphs, and Causal Models
- 2 A Theory of Inferred Causation
- 3 Causal Diagrams and the Identification of Causal Effects
- 4 Actions, Plans, and Direct Effects
- 5 Causality and Structural Models in Social Science and Economics
- 6 Simpson’s Paradox, Confounding, and Collapsibility
- 7 The Logic of Structure-Based Counterfactuals
- 8 Imperfect Experiments: Bounding Effects and Counterfactuals
- 9 Probability of Causation: Interpretation and Identification
- 10 The Actual Cause
- 11 Reflections, Elaborations, and Discussions with Readers
- Epilogue The Art and Science of Cause and Effect
- Bibliography
- Name Index
- Subject Index
Summary
The central aim of many studies in the physical, behavioral, social, and biological sciences is the elucidation of cause–effect relationships among variables or events. However, the appropriate methodology for extracting such relationships from data – or even from theories – has been fiercely debated.
The two fundamental questions of causality are: (1) What empirical evidence is required for legitimate inference of cause–effect relationships? (2) Given that we are willing to accept causal information about a phenomenon, what inferences can we draw from such information, and how? These questions have been without satisfactory answers in part because we have not had a clear semantics for causal claims and in part because we have not had effective mathematical tools for casting causal questions or deriving causal answers.
In the last decade, owing partly to advances in graphical models, causality has undergone a major transformation: from a concept shrouded in mystery into a mathematical object with well-defined semantics and well-founded logic. Paradoxes and controversies have been resolved, slippery concepts have been explicated, and practical problems relying on causal information that long were regarded as either metaphysical or unmanageable can now be solved using elementary mathematics. Put simply, causality has been mathematized.
This book provides a systematic account of this causal transformation, addressed primarily to readers in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Following a description of the conceptual and mathematical advances in causal inference, the book emphasizes practical methods for elucidating potentially causal relationships from data, deriving causal relationships from combinations of knowledge and data, predicting the effects of actions and policies, evaluating explanations for observed events and scenarios, and – more generally – identifying and explicating the assumptions needed for substantiating causal claims.
Ten years ago, when I began writing Probabilistic Reasoning in Intelligent Systems (1988), I was working within the empiricist tradition. In this tradition, probabilistic relationships constitute the foundations of human knowledge, whereas causality simply provides useful ways of abbreviating and organizing intricate patterns of probabilistic relationships. Today, my view is quite different. I now take causal relationships to be the fundamental building blocks both of physical reality and of human understanding of that reality, and I regard probabilistic relationships as but the surface phenomena of the causal machinery that underlies and propels our understanding of the world.
- Type
- Chapter
- Information
- CausalityModels, Reasoning, and Inference, pp. xv - xviiiPublisher: Cambridge University PressPrint publication year: 2009