Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
3 - Borel Sets, Analytic Sets and Beyond: Δ21
Published online by Cambridge University Press: 14 January 2025
- Frontmatter
- Dedication
- Contents
- Preface
- Prologue: Regular Variation
- 1 Preliminaries
- 2 Baire Category and Related Results
- 3 Borel Sets, Analytic Sets and Beyond: Δ21
- 4 Infinite Combinatorics in Rn: Shift-Compactness
- 5 Kingman Combinatorics and Shift-Compactness
- 6 Groups and Norms: BirkhoffKakutani Theorem
- 7 Density Topology
- 8 Other Fine Topologies
- 9 CategoryMeasure Duality
- 10 Category Embedding Theorem and Infinite Combinatorics
- 11 Effros’ Theorem and the Cornerstone Theorems of Functional Analysis
- 12 Continuity and Coincidence Theorems
- 13 * Non-separable Variants
- 14 Contrasts between Category and Measure
- 15 Interior-Point Theorems: Steinhaus–Weil Theory
- 16 Axiomatics of Set Theory
- Epilogue: Topological Regular Variation
- References
- Index
Summary
This chapter may be viewed as a brief treatment of such parts of descriptive set theory as are needed in the main body of the text. The Borel hierarchy and analytic sets (Chapter 1) are developed further. The theorems of Souslin (analytic plus co-analytic imply Borel), Nikodym (preservation of the Baire property under the Souslin operation) and Marczewski (preservation of measurability under the Souslin operation) are stated (proved in more generality in Chapter 12). The Cantor Intersection Theorem is extended from closed (or compact) sets to analytic sets (Analytic Cantor Theorem). The Borel hierarchy is extended to the projective hierarchy: starting with the analytic sets $\sum^1_1$, their complements $\prod^1_1$ and the intersection of these, $\Delta^1_1$ (the Borel sets), one proceeds inductively: $\sum^1_{n+1}$ contains projections of $\prod^1_n$; their complements give $\prod^1_{n+1}$; intersections of these give $\Delta^1_{n+1}$, etc. The special importance of $\Delta^1_2$ is discussed.
Keywords
- Type
- Chapter
- Information
- Category and MeasureInfinite Combinatorics, Topology and Groups, pp. 51 - 70Publisher: Cambridge University PressPrint publication year: 2025