Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T18:11:02.642Z Has data issue: false hasContentIssue false

13 - Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment

Published online by Cambridge University Press:  05 July 2014

P. David Polly
Affiliation:
Indiana University
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

How do communities and species respond to environmental change? For the palaeontologist, the answer to this question is key to addressing its converse: how can we measure palaeoenvironmental change from fossil species and assemblages? This paper examines the association between community-level carnivoran locomotor morphology and climatic parameters to determine whether the average locomotor habits of carnivoran communities are associated closely enough with vegetation cover, topography, and related climatic factors to be used as an independent estimator of palaeoenvironment.

Community-level morphology has the potential to be a powerful indicator of climate. When a particular morphological feature mediates between an organism and its environment – the structure of the foot in relation to the substrate, for example – the average morphology of that feature can be expected to follow whatever environmental gradient is most closely associated with its function (Valverde, 1964; Fortelius et al., 2002). Such a distribution will arise by the effects of climate on individual species, either through local adaptation (evolution by natural selection), by geographic range sorting (migration to more palatable regions), by extinction (Hughes, 2000; Lister, 2004; Davis et al., 2005), or by the interaction of adaptation and range changes (Holt, 2003). All three kinds of species-level change will affect the community's composition and, therefore, the mean morphology of the community. The cumulative effect of climate on the community's mean morphology is likely to be more predictable than the effect on any one species.

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 374 - 410
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, R. G. (1998). Ecoregions map of North America. U.S. Forest Service Miscellaenous Publication, 1548, 1–10.Google Scholar
Bailey, R. G. (2005). Identifying ecoregion boundaries. Environmental Management, 34, S14–26.CrossRefGoogle Scholar
Baker, C. M. (1992). Atilax paludinosus. Mammalian Species, 408, 1–6.
Barnosky, A. D., Kaplan, M. H. and Carrasco, M. A. (2004). Assessing the effect of Middle Pleistocene climate change on Marmota populations from the Pit Locality. In Biodiversity Response to Climate Change in the Middle Pleistocene, ed. Barnosky, A. D.. Berkeley, CA: University of California Press, pp. 332–40.CrossRefGoogle Scholar
Bekoff, M. (1977). Canis latrans. Mammalian Species, 79, 1–9.
Belcher, R. L. and Lee, T. E.. (2002). Arctocephalus townsendi. Mammalian Species, 700, 1–5.2.0.CO;2>CrossRef
Berta, A. (1986). Atelocynus microtis. Mammalian Species, 256, 1–3.
Brown, J. H. and Nicoletto, P. F. (1991). Spatial scaling of species compositions: body masses of North American land mammals. American Naturalist, 138, 1478–95.CrossRefGoogle Scholar
Carrano, M. T. (1997). Morphological indicators of foot posture in mammals: a statistical and biomechanical analysis. Zoological Journal of the Linnean Society, 121, 77–104.CrossRefGoogle Scholar
Carrano, M. T. (1999). What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology, 247, 29–42.CrossRefGoogle Scholar
Carrier, D. R., Heglund, N. C. and Earls, K. D. (1994). Variable gearing during locomotion in the human musculoskeletal system. Science, 265, 651–53.CrossRefGoogle ScholarPubMed
Caumul, R. and Polly, P. D. (2005). Comparative phylogenetic and environmental components of morphological variation: skull, mandible and molar shape in marmots (Marmota, Rodentia). Evolution, 59, 2460–72.CrossRefGoogle Scholar
Cavallini, P. (1992). Herpestes pulverulentus. Mammalian Species, 409, 1–4.
Chorn, J. and Hoffmann, R. S. (1978). Ailuropoda melanoleuca. Mammalian Species, 110, 1–6.
Clark, T. W. (1975). Arctocephalus galapogoensis. Mammalian Species, 64, 1–2.
Clark, T. W. (1987). Martes americana. Mammalian Species, 64, 1–8.
Croft, D. A. (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (Cenograms). Diversity and Distributions, 7, 271–87.CrossRefGoogle Scholar
Damuth, J. and Fortelius, M. (2001). Reconstructing mean annual precipitation based on mammalian dental morphology and local species richness. In EEDEN Programme Plenary Workshop on Late Miocene to Early Pliocene Environments and Ecosystems, ed. Agustí, J. and Oms, O.. Brussels: European Science Foundation, pp. 23–24.Google Scholar
Damuth, J., Fortelius, M., Andrews, P., et al. (2002). Reconstructing mean annual precipitation based on mammalian dental morphology and local species richness. Journal of Vertebrate Paleontology, 22, 48A.Google Scholar
Davis, M. B., Shaw, R. G. and Etterson, J. E. (2005). Evolutionary responses to climate change. Ecology, 86, 1704–14.CrossRefGoogle Scholar
Dayan, T. and Simberloff, D. (1996). Patterns of size separation in carnivore communities. In Carnivore Behavior, Ecology, and Evolution. Vol. 2, ed. Gittleman, J. L.. Ithaca, NY: Comstock-Cornell, pp. 243–66.Google Scholar
Dayan, T. and Simberloff, D. (2005). Ecological and community-wide character displacement: the next generation. Ecology Letters, 8, 875–94.CrossRefGoogle Scholar
Dice, L. R. (1943). The Biotic Provinces of North America. Ann Arbor, MI: University of Michigan Press.Google Scholar
Ewer, R. G. (1973). The Carnivores. Ithaca, NY: Cornell University Press.Google Scholar
Fortelius, M., Eronen, J., Jernvall, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–16.Google Scholar
Garland, T. and Janis, C. M. (1992). Does metatarsal/femur ratio predict running speed in cursorial mammals?Journal of Zoology (London), 229, 133–51.CrossRefGoogle Scholar
Goldman, C. A. (1987). Crossarchus obscurus. Mammalian Species, 348, 1–3.
Goldman, C. A. and Taylor, M. E. (1990). Liberiictis kuhni. Mammalian Species, 348, 1–3.
Gregersen, C. S. and Carrier, D. R. (2004). Gear ratios at the limb joints of jumping dogs. Journal of Biomechanics, 37, 1011–18.CrossRefGoogle ScholarPubMed
Gregory, W. K. (1912). Notes on the principles of quadrupedal locomotion and of the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences, 22, 267–94.CrossRefGoogle Scholar
Hall, E. R. (1981). The Mammals of North America. New York, NY: John Wiley & Sons.Google Scholar
Heikinheimo, H., Fortelius, M., Eronen, J. and Mannila, H. (2007). Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 1053–64.CrossRefGoogle Scholar
Holt, R. D. (2003). On the evolutionary ecology of species' ranges. Evolutionary Ecology Research, 5, 159–78.Google Scholar
Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent?Trends in Ecology and Evolution, 15, 56–61.CrossRefGoogle ScholarPubMed
Hwang, Y. T. and Larivière, S. (2001). Mephitis macroura. Mammalian Species, 686, 1–3.2.0.CO;2>CrossRef
Janis, C. M. and Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews, 63, 197–230.CrossRefGoogle ScholarPubMed
Jenks, G. F. (1977). Optimal data classification for choropleth maps. University of Kansas Department of Geography Occasional Papers, 2, 1–24.Google Scholar
Kaufman, L. and Rousseeuw, P. J. (1989). Finding Groups in Data: An Introduction to Cluster Analysis. New York, NY: Wiley-Interscience.Google Scholar
Klein, D. R., Meldgaard, M. and Fancy, S. G. (1987). Factors determining leg length in Rangifer tarandus. Journal of Mammalogy, 68, 642–55.CrossRefGoogle Scholar
Köppen, W. (1931). Grudriss der Klimakunde. Berlin: Walter de Gruyter.Google Scholar
Large, T. and Weller, A. (2004). Mammals. Mineola, NY: Dover.
Larivière, S. (2001a). Ursus americanus. Mammalian Species, 647, 1–11.2.0.CO;2>CrossRef
Larivière, S. (2001b). Poecilogale albinucha. Mammalian Species, 681, 1–4.2.0.CO;2>CrossRef
Larivière, S. (2005). Aonyx capensis. Mammalian Species, 671, 1–6.
Larivière, S. and Calvada, J. (2001). Genetta genetta. Mammalian Species, 680, 1–6.2.0.CO;2>CrossRef
Larivière, S. and Walton, L. R. (1997). Lynx rufus. Mammalian Species, 563, 1–8.
Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Paleovertebrata, 16, 191–212.Google Scholar
Lister, A. M. (2004). The impact of Quaternary ice ages on mammalian evolution. Philosophical Transactions of the Royal Society of London, Series B, 359, 221–41.CrossRefGoogle ScholarPubMed
Makarieva, A. M., Gorshkov, V. G. and Li, B.-L. (2005). Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society B, 272, 2325–28.CrossRefGoogle ScholarPubMed
Matthews, E. (1983). Global vegetation and land use: new high-resolution data bases for climate studies. Journal of Climatology and Applied Meteorology, 22, 474–87.2.0.CO;2>CrossRefGoogle Scholar
Matthews, E. (1984). Prescription of Land-surface Boundary Conditions in GISS GCM II: A Simple Method Based on High-resolution Vegetation Data Sets. NASA TM-86096. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Mech, L. D. (1974). Canis lupus. Mammalian Species, 37, 1–6.
Millien, V., Lyons, S. K., Olson, L., Smith, F. A., Wilson, A. B. and Yom-Tov, Y. (2006). Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters, 9, 853–69.CrossRefGoogle ScholarPubMed
Montuire, S. (1999). Mammalian faunas as indicators of environmental and climatic changes in Spain during the Pliocene–Quaternary transition. Quaternary Research, 52, 129–37.CrossRefGoogle Scholar
Murray, D. L. and Larivière, S. (2002). The relationship between foot size of wild canids and regional snow conditions: evidence for selection against a high footload?Journal of Zoology (London), 256, 289–99.CrossRefGoogle Scholar
Murray, J. L. and Gardner, G. L. (1997). Leopardus pardalis. Mammalian Species, 548, 1–10.
Nellis, D. W. (1989). Herpestes auropunctatus. Mammalian Species, 342, 1–6.
Paradiso, J. L. and Nowak, R. M. (1972). Canis rufus. Mammalian Species, 22, 1–4.
Patterson, B. D., Ceballos, G., Sechrest, W., et al. (2005). Digital Distribution Maps of the Mammals of the Western Hemisphere, Version 2.0. Arlington, VA: NatureServe.Google Scholar
Poglayen-Neuwall, I. and Toweill, D. E. (1988). Bassariscus astutus. Mammalian Species, 327, 1–8.
Polly, P. D. (2003). Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). Journal of Mammalogy, 84, 369–84.2.0.CO;2>CrossRefGoogle Scholar
Polly, P. D. (2008). Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution. In Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay, ed. Sargis, E. and Dagosto, M.. Dordrecht: Springer, pp. 165–94.Google Scholar
Powell, R. A. (1981). Martes pennanti. Mammalian Species, 156, 1–6.
Roberts, M. S. and Gittleman, J. L. (1984). Ailurus fulgens. Mammalian Species, 222, 1–8.
Row, L. W. and Hastings, D. A. (1994). TerrainBase worldwide digital terrain data (release 1.0). Boulder, CO: National Oceanic and Atomospheric Administration, National Geophysical Data Center.Google Scholar
Sillero-Zubiri, C. and Gottelli, D. (1994). Canis simensis. Mammalian Species, 485, 1–6.
Storz, J. F. and Wozencraft, W. C. (1999). Melogale moschata. Mammalian Species, 631, 1–4.
Thompson, J. N. (2005). The Geographic Mosaic of Coevolution. Chicago, IL: University of Chicago Press.Google Scholar
Trewartha, G. T. (1968). An Introduction to Climate. New York, NY: McGraw-Hill.Google Scholar
Valverde, J. A. (1964). Remarques sur la structure et l'évolution des communautés de vertébrés terrestrés. Revue d'écologie: La Terre et La Vie, 111, 121–54.Google Scholar
Van Rompaey, H. and Colyn, M. (1992). Crossarchus ansorgei. Mammalian Species, 402, 1–3.
Van Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–28.CrossRefGoogle Scholar
Walton, L. R. and Joly, D. O. (2003). Canis mesolmelas. Mammalian Species, 715, 1–9.CrossRef
Whittaker, R. H. (1970). Communities and Ecosystems. New York, NY: MacMillan.Google Scholar
Wilf, P. (1997). When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23, 373–90.CrossRefGoogle Scholar
Willmott, K. M. and Legates, D. R. (1998). Global air temperature and precipitation: regridded monthly and annual climatologies (version 2.01). Newark, DE: Center for Climatic Research, University of Delaware.Google Scholar
Wilson, D. E. and Reeder, D. M. (2005). Mammal Species of the World. A Taxonomic and Geographic Reference, 3rd ed. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Wilson, D. E. and Ruff, S. (1999). The Smithsonian Book of North American Mammals. Washington, DC: Smithsonian Institution Press.Google Scholar
Yensen, E. and Tarifa, T. (2003a). Galictis vittata. Mammalian Species, 727, 1–8.CrossRef
Yensen, E. and Tarifa, T. (2003b) Galictis cuja. Mammalian Species, 728, 1–8.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×