Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T22:49:04.295Z Has data issue: false hasContentIssue false

Chapter 18 - Leukemia: Acute and Chronic

Published online by Cambridge University Press:  23 October 2024

Laurie J. Mckenzie
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Denise R. Nebgen
Affiliation:
University of Texas MD Anderson Cancer Center, Houston
Get access

Summary

Leukemias represent a range of bone marrow disorders that are broadly differentiated into acute and chronic. Acute leukemias, characterized by the proliferation of immature blood cells (blasts) and defined by peripheral blood or bone marrow blast percentage of 20 percent or more, are aggressive hematologic malignancies that are universally fatal without treatment. Chronic leukemias are mature leukemias with differentiated cells. Obstetric and gynecologic complications pose significant risk to the patient. Knowledge regarding uterine bleeding, fertility planning, and the management of the pregnant patient with leukemia are necessary in order to appropriately address these patients. In this chapter, we briefly review both acute and chronic leukemias, epidemiology, diagnosis and management, obstetric and gynecologic complications, teratogenicity of chemotherapies utilized in the treatment of each leukemia and finally detail our approach to the management of these patients.

Type
Chapter
Information
Caring for the Female Cancer Patient
Gynecologic Considerations
, pp. 304 - 330
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinho, S., Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nature Reviews Molecular Cell Biology. 2019;20(5):303–20.CrossRefGoogle ScholarPubMed
Brown, P. A., Shah, B., Advani, A., et al. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021;19(9):1079–109.Google ScholarPubMed
Döhner, H., Wei, A. H., Appelbaum, F. R., et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140(12):1345–77.CrossRefGoogle Scholar
Stelmach, P., Trumpp, A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica. 2023;108(2):353–66.CrossRefGoogle ScholarPubMed
Brunner, A. M., Graubert, T. A. Chapter 58 – Pathobiology of Acute Myeloid Leukemia. In: Hoffman, R., Benz, E. J., Silberstein, L. E., et al., editors. Hematology (7th ed.). Elsevier; 2018. pp. 913–23.Google Scholar
Burns, M., Armstrong, S. A., Gutierrez, A. Chapter 64 – Pathobiology of Acute Lymphoblastic Leukemia. In: Hoffman, R., Benz, E. J., Silberstein, L. E., et al., editors. Hematology (7th ed.). Elsevier; 2018. pp. 1005–19.e11.Google Scholar
Inaba, H., Mullighan, C. G. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524–39.CrossRefGoogle ScholarPubMed
Swaminathan, S., Klemm, L., Park, E., et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology. 2015;16(7):766–74.CrossRefGoogle ScholarPubMed
Surveillance, Epidemiology, and End Results (SEER) Program Populations (1969-2020). National Cancer Institute. 2022.Google Scholar
Sasaki, K., Jabbour, E., Short, N. J., et al. Acute lymphoblastic leukemia: A population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980–2017. American Journal of Hematology. 2021;96(6):650–8.CrossRefGoogle ScholarPubMed
Faderl, S., Kantarjian, H. M. Chapter 59 – Clinical Manifestations and Treatment of Acute Myeloid Leukemia. In: Hoffman, R., Benz, E. J., Silberstein, L. E. et al., editors. Hematology (7th ed.) Elsevier; 2018. pp. 924–43.Google Scholar
de Haas, V., Ismaila, N., Advani, A., et al. Initial diagnostic work-up of acute leukemia: ASCO Clinical Practice Guideline Endorsement of the College of American Pathologists and American Society of Hematology Guideline. Journal of Clinical Oncology. 2018;37(3):239–53.Google ScholarPubMed
Dinner, S., Gurbuxani, S., Jain, N., Stock, W. Chapter 66 – Acute Lymphoblastic Leukemia in Adults. In: Hoffman, R., Benz, E. J., Silberstein, L. E. et al., editors. Hematology (7th ed.) Elsevier; 2018. Pp. 1029–54.e2.Google Scholar
Porcu, P., Cripe, L. D., Ng, E. W., et al. Hyperleukocytic leukemias and leukostasis: A review of pathophysiology, clinical presentation and management. Leukemia & Lymphoma. 2000;39(1–2):118.CrossRefGoogle Scholar
Macaron, W., Sargsyan, Z., Short, N. J. Hyperleukocytosis and leukostasis in acute and chronic leukemias. Leukemia & Lymphoma. 2022;63(8):1780–91.CrossRefGoogle ScholarPubMed
Dinnel, J., Moore, B. L., Skiver, B. M., Bose, P. Rasburicase in the management of tumor lysis: An evidence-based review of its place in therapy. Core Evid. 2015;10:2338.Google ScholarPubMed
Kahlon, D. K., Dinand, V., Yadav, S. P., Sachdeva, A. Sevelamer is an effective drug in treating hyperphosphatemia due to tumor lysis syndrome in children: A developing world experience. Indian J Hematol Blood Transfus. 2016;32(1):7882.CrossRefGoogle ScholarPubMed
Bewersdorf, J. P., Zeidan, A. M. Hyperleukocytosis and leukostasis in acute myeloid leukemia: Can a better understanding of the underlying molecular pathophysiology lead to novel treatments? Cells. 2020;9(10).CrossRefGoogle ScholarPubMed
Kadia, T. M., Ravandi, F., Borthakur, G., et al. Long-term results of low-intensity chemotherapy with clofarabine or cladribine combined with low-dose cytarabine alternating with decitabine in older patients with newly diagnosed acute myeloid leukemia. American Journal of Hematology. 2021;96(8):914–24.CrossRefGoogle ScholarPubMed
DiNardo, C. D., Jonas, B. A., Pullarkat, V., et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. New England Journal of Medicine. 2020;383(7):617–29.CrossRefGoogle ScholarPubMed
Senapati, J., Kadia, T. M. Which FLT3 inhibitor for treatment of AML? Curr Treat Options Oncol. 2022;23(3):359–80.CrossRefGoogle ScholarPubMed
DiNardo, C. D., Stein, E. M., de Botton, S., et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. New England Journal of Medicine. 2018;378(25):2386–98.CrossRefGoogle ScholarPubMed
Venugopal, S., Takahashi, K., Daver, N., et al. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal. 2022;12(1):10.CrossRefGoogle Scholar
Desikan, S. P., Daver, N., DiNardo, C., et al. Resistance to targeted therapies: Delving into FLT3 and IDH. Blood Cancer J. 2022;12(6):91.CrossRefGoogle ScholarPubMed
Short, N. J., Kantarjian, H., Jabbour, E. Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: New drugs and evolving paradigms. Leukemia. 2021;35(11):3044–58.CrossRefGoogle ScholarPubMed
Jain, N., Roberts, K. G., Jabbour, E., et al. Ph-like acute lymphoblastic leukemia: A high-risk subtype in adults. Blood. 2017;129(5):572–81.CrossRefGoogle ScholarPubMed
Foà, R., Chiaretti, S. Philadelphia chromosome–positive acute lymphoblastic leukemia. New England Journal of Medicine. 2022;386(25):2399–411.CrossRefGoogle ScholarPubMed
Thomas, X. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy. World J Stem Cells. 2012;4(6):4452.CrossRefGoogle ScholarPubMed
Desikan, S. P., Senapati, J., Jabbour, E., et al. Outcomes of adult patients with relapsed/refractory CRLF2 rearranged B-cell acute lymphoblastic leukemia. Am J Hematol. 2023;98(6):E142–e4.CrossRefGoogle ScholarPubMed
Jabbour, E., Patel, K., Jain, N., et al. Impact of Philadelphia chromosome-like alterations on efficacy and safety of blinatumomab in adults with relapsed/refractory acute lymphoblastic leukemia: A post hoc analysis from the phase 3 TOWER study. American Journal of Hematology. 2021;96(10):E379–E83.CrossRefGoogle ScholarPubMed
Jabbour, E., Sasaki, K., Short, N. J., et al. Long-term follow-up of salvage therapy using a combination of inotuzumab ozogamicin and mini–hyper-CVD with or without blinatumomab in relapsed/refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. Cancer. 2021;127(12):2025–38.CrossRefGoogle ScholarPubMed
Jabbour, E. J., Sasaki, K., Ravandi, F., et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer. 2019;125(15):2579–86.CrossRefGoogle ScholarPubMed
Kantarjian, H., Haddad, F. G., Jain, N., et al. Results of salvage therapy with mini-hyper-CVD and inotuzumab ozogamicin with or without blinatumomab in pre-B acute lymphoblastic leukemia. Journal of Hematology & Oncology. 2023;16(1):44.CrossRefGoogle ScholarPubMed
Kantarjian, H., Jabbour, E. Incorporating immunotherapy into the treatment strategies of B-cell adult acute lymphoblastic leukemia: The role of blinatumomab and inotuzumab ozogamicin. American Society of Clinical Oncology Educational Book. 2018(38):574–8.CrossRefGoogle ScholarPubMed
Cohen, M. H., Johnson, J. R., Justice, R., Pazdur, R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13(6):709–14.CrossRefGoogle ScholarPubMed
Pullarkat, V. A., Lacayo, N. J., Jabbour, E., et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11(6):1440–53.CrossRefGoogle ScholarPubMed
Takahashi, K. Untangling the relationship between clonal hematopoiesis and ovarian cancer therapies. J Natl Cancer Inst. 2022;114(4):487–8.CrossRefGoogle ScholarPubMed
DeZern, A. E., Malcovati, L., Ebert, B. L. CHIP, CCUS, and other acronyms: Definition, implications, and impact on practice. Am Soc Clin Oncol Educ Book. 2019;39:400–10.Google ScholarPubMed
Nebgen, D. R., Rhodes, H. E., Hartman, C., Munsell, M. F., Lu, K. H. Abnormal uterine bleeding as the presenting symptom of hematologic cancer. Obstet Gynecol. 2016;128(2):357–63.CrossRefGoogle ScholarPubMed
Purisch, S. E., Shanis, D., Zerbe, C., et al. Management of uterine bleeding during hematopoietic stem cell transplantation. Obstet Gynecol. 2013;121(2 Pt 2 Suppl 1):424–7.CrossRefGoogle ScholarPubMed
Quaas, A. M., Ginsburg, E. S. Prevention and treatment of uterine bleeding in hematologic malignancy. Eur J Obstet Gynecol Reprod Biol. 2007;134(1):38.CrossRefGoogle ScholarPubMed
Ghalie, R., Porter, C., Radwanska, E., et al. Prevention of hypermenorrhea with leuprolide in premenopausal women undergoing bone marrow transplantation. Am J Hematol. 1993;42(4):350–3.CrossRefGoogle ScholarPubMed
Laufer, M. R., Townsend, N. L., Parsons, K. E., et al. Inducing amenorrhea during bone marrow transplantation. A pilot study of leuprolide acetate. J Reprod Med. 1997;42(9):537–41.Google ScholarPubMed
Chiusolo, P., Salutari, P., Sica, S., et al. Luteinizing hormone-releasing hormone analogue: Leuprorelin acetate for the prevention of menstrual bleeding in premenopausal women undergoing stem cell transplantation. Bone Marrow Transplant. 1998;21(8):821–3.CrossRefGoogle ScholarPubMed
Lhommé, C., Brault, P., Bourhis, J. H., et al. Prevention of menstruation with leuprorelin (GnRH agonist) in women undergoing myelosuppressive chemotherapy or radiochemotherapy for hematological malignancies: A pilot study. Leuk Lymphoma. 2001;42(5):1033–41.CrossRefGoogle ScholarPubMed
Chang, K., Merideth, M. A., Stratton, P. Hormone use for therapeutic amenorrhea and contraception during hematopoietic cell transplantation. Obstet Gynecol. 2015;126(4):779–84.CrossRefGoogle ScholarPubMed
Munro, M. G., Mainor, N., Basu, R., Brisinger, M., Barreda, L. Oral medroxyprogesterone acetate and combination oral contraceptives for acute uterine bleeding: A randomized controlled trial. Obstet Gynecol. 2006;108(4):924–9.CrossRefGoogle ScholarPubMed
Kakaire, O., Byamugisha, J. K., Tumwesigye, N. M, Gemzell-Danielsson, K. Intrauterine contraception among women living with human immunodeficiency virus: A randomized controlled trial. Obstet Gynecol. 2015;126(5):928–34.CrossRefGoogle ScholarPubMed
Kakaire, O., Tumwesigye, N. M., Byamugisha, J. K., Gemzell-Danielsson, K. Acceptability of intrauterine contraception among women living with human immunodeficiency virus: A randomised clinical trial. Eur J Contracept Reprod Health Care. 2016;21(3):220–6.CrossRefGoogle ScholarPubMed
Achilles, S. L., Creinin, M. D., Stoner, K. A., et al. Changes in genital tract immune cell populations after initiation of intrauterine contraception. Am J Obstet Gynecol. 2014;211(5):489.e1–9.CrossRefGoogle ScholarPubMed
Morrison, C. S., Hofmeyr, G. J., Thomas, K. K., et al. Effects of depot medroxyprogesterone acetate, copper intrauterine devices, and levonorgestrel implants on early HIV disease progression. AIDS Res Hum Retroviruses. 2020;36(8):632–40.CrossRefGoogle ScholarPubMed
Stringer, E. M., Kaseba, C., Levy, J., et al. A randomized trial of the intrauterine contraceptive device vs hormonal contraception in women who are infected with the human immunodeficiency virus. Am J Obstet Gynecol. 2007;197(2):144. e1–8.CrossRefGoogle ScholarPubMed
Bonnar, J., Sheppard, B. L. Treatment of menorrhagia during menstruation: Randomised controlled trial of ethamsylate, mefenamic acid, and tranexamic acid. BMJ. 1996;313(7057):579–82.CrossRefGoogle ScholarPubMed
Kriplani, A., Kulshrestha, V., Agarwal, N., Diwakar, S. Role of tranexamic acid in management of dysfunctional uterine bleeding in comparison with medroxyprogesterone acetate. J Obstet Gynaecol. 2006;26(7):673–8.CrossRefGoogle ScholarPubMed
Kouides, P. A., Byams, V. R., Philipp, C. S., et al. Multisite management study of menorrhagia with abnormal laboratory haemostasis: A prospective crossover study of intranasal desmopressin and oral tranexamic acid. Br J Haematol. 2009;145(2):212–20.CrossRefGoogle ScholarPubMed
Lukes, A. S., Freeman, E. W., Van Drie, D., Baker, J., Adomako, T. L. Safety of tranexamic acid in women with heavy menstrual bleeding: An open-label extension study. Womens Health (Lond). 2011;7(5):591–8.Google ScholarPubMed
Preston, J. T., Cameron, I. T., Adams, E. J., Smith, S. K. Comparative study of tranexamic acid and norethisterone in the treatment of ovulatory menorrhagia. Br J Obstet Gynaecol. 1995;102(5):401–6.CrossRefGoogle ScholarPubMed
Balcerek, M., Reinmuth, S., Hohmann, C., Keil, T., Borgmann-Staudt, A. Suspected infertility after treatment for leukemia and solid tumors in childhood and adolescence. Dtsch Arztebl Int. 2012;109(7):126–31.Google ScholarPubMed
Jadoul, P., Kim, S. S. Fertility considerations in young women with hematological malignancies. J Assist Reprod Genet. 2012;29(6):479–87.CrossRefGoogle ScholarPubMed
Noetzli, J., Voruz, S., Wunder, D., et al. Ten-year single-centre experience in fertility preservation of 459 patients suffering from acute leukaemia. Br J Haematol. 2019;184(6):969–73.CrossRefGoogle ScholarPubMed
Dolmans, M. M., Marinescu, C., Saussoy, P., et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14.CrossRefGoogle ScholarPubMed
Rodriguez-Wallberg, K. A., Milenkovic, M., Papaikonomou, K., et al. Successful pregnancies after transplantation of ovarian tissue retrieved and cryopreserved at time of childhood acute lymphoblastic leukemia: A case report. Haematologica. 2021;106(10):2783–7.CrossRefGoogle ScholarPubMed
Salama, M., Anazodo, A., Woodruff, T. K. Preserving fertility in female patients with hematological malignancies: A multidisciplinary oncofertility approach. Annals of Oncology. 2019;30(11):1760–75.CrossRefGoogle ScholarPubMed
Blumenfeld, Z., Patel, B., Leiba, R., Zuckerman, T. Gonadotropin-releasing hormone agonist may minimize premature ovarian failure in young women undergoing autologous stem cell transplantation. Fertil Steril. 2012;98(5):1266–70.e1.CrossRefGoogle ScholarPubMed
Rytting, M. E., Jabbour, E. J., O’Brien, S. M., Kantarjian, H. M. Acute lymphoblastic leukemia in adolescents and young adults. Cancer. 2017;123(13):2398–403.CrossRefGoogle ScholarPubMed
Rossi, B. V., Missmer, S., Correia, K. F., Wadleigh, M., Ginsburg, E. S. Ovarian reserve in women treated for acute lymphocytic leukemia or acute myeloid leukemia with chemotherapy, but not stem cell transplantation. ISRN Oncol. 2012;2012:956190.CrossRefGoogle Scholar
McCormick, A., Peterson, E. Cancer in pregnancy. Obstetrics and Gynecology Clinics of North America. 2018;45(2):187200.CrossRefGoogle ScholarPubMed
Shapira, T., Pereg, D., Lishner, M. How I treat acute and chronic leukemia in pregnancy. Blood Rev. 2008;22(5):247–59.CrossRefGoogle Scholar
Chelghoum, Y., Vey, N., Raffoux, E., et al. Acute leukemia during pregnancy. Cancer. 2005;104(1):110–17.CrossRefGoogle ScholarPubMed
Fracchiolla, N. S., Sciumè, M., Dambrosi, F., et al. Acute myeloid leukemia and pregnancy: Clinical experience from a single center and a review of the literature. BMC Cancer. 2017;17(1):442.CrossRefGoogle Scholar
Wang, P., Yang, Z., Shan, M., et al. Maternal and fetal outcomes of acute leukemia in pregnancy: A retrospective study of 52 patients. Front Oncol. 2021;11:803994.CrossRefGoogle ScholarPubMed
Arnon, J., Meirow, D., Lewis-Roness, H., Ornoy, A. Genetic and teratogenic effects of cancer treatments on gametes and embryos. Hum Reprod Update. 2001;7(4):394403.CrossRefGoogle ScholarPubMed
Buekers, T. E., Lallas, T. A. Chemotherapy in pregnancy. Obstet Gynecol Clin North Am. 1998;25(2):323–9.CrossRefGoogle ScholarPubMed
Haram, K., Mortensen, J. H., Myking, O., et al. Early development of the human placenta and pregnancy complications. The Journal of Maternal-Fetal & Neonatal Medicine. 2020;33(20):3538–45.CrossRefGoogle ScholarPubMed
Elshazzly, M., Lopez, M. J., Reddy, V., Caban, O. Embryology, Central Nervous System. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023.Google ScholarPubMed
Esposito, S., Tenconi, R., Preti, V., Groppali, E., Principi, N. Chemotherapy against cancer during pregnancy: A systematic review on neonatal outcomes. Medicine (Baltimore). 2016;95(38):e4899.CrossRefGoogle ScholarPubMed
Framarino-Dei-Malatesta, M., Sammartino, P., Napoli, A. Does anthracycline-based chemotherapy in pregnant women with cancer offer safe cardiac and neurodevelopmental outcomes for the developing fetus? BMC Cancer. 2017;17(1):777.CrossRefGoogle ScholarPubMed
Triarico, S., Rivetti, S., Capozza, M. A., et al. Transplacental passage and fetal effects of antineoplastic treatment during pregnancy. Cancer (Basel). 2022;14(13).CrossRefGoogle ScholarPubMed
Chang, A., Patel, S. Treatment of acute myeloid leukemia during pregnancy. Annals of Pharmacotherapy. 2015;49(1):4868.CrossRefGoogle ScholarPubMed
Chelghoum, Y., Vey, N., Raffoux, E., et al. Acute leukemia during pregnancy: A report on 37 patients and a review of the literature. Cancer. 2005;104(1):110–17.CrossRefGoogle Scholar
Giovannoni, G., Galazka, A., Schick, R., et al. Pregnancy outcomes during the clinical development program of cladribine in multiple sclerosis: An integrated analysis of safety. Drug Saf. 2020;43(7):635–43.CrossRefGoogle ScholarPubMed
Serman, L., Vlahović, M., Sijan, M., et al. The impact of 5-azacytidine on placental weight, glycoprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta. 2007;28(8–9):803–11.CrossRefGoogle ScholarPubMed
Karagiannis, P., Alsdorf, W., Tallarek, A. C., et al. Treatment of refractory acute myeloid leukaemia during pregnancy with venetoclax, high-dose cytarabine and mitoxantrone. Br J Haematol. 2021;192(2):e60–e3.CrossRefGoogle ScholarPubMed
Alrajhi, A. M., Alhazzani, S. A., Alajaji, N. M., et al. The use of 5-azacytidine in pregnant patient with Acute Myeloid Leukemia (AML): A case report. BMC Pregnancy Childbirth. 2019;19(1):394.CrossRefGoogle ScholarPubMed
Lee, B. S., Sathar, J., Ong, T. C. Teratogenic effect of decitabine in a pregnant patient with acute myeloid leukemia: A case report. Hematol Transfus Cell Ther. 2022;44(3):429–32.CrossRefGoogle Scholar
Mahdi, A. J., Gosrani, D., Chakraborty, M., et al. Successful molecular targeted treatment of AML in pregnancy with Azacitidine and Sorafenib with no adverse fetal outcomes. Br J Haematol. 2018;180(4):603–4.CrossRefGoogle ScholarPubMed
Terwilliger, T., Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577.CrossRefGoogle ScholarPubMed
Ravandi, F., O’Brien, S. M., Cortes, J. E., et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121(23):4158–64.CrossRefGoogle ScholarPubMed
Daver, N., Thomas, D., Ravandi, F., et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100(5):653–61.CrossRefGoogle ScholarPubMed
Jabbour, E., Short, N. J., Ravandi, F., et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: Long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):e618–e27.Google ScholarPubMed
Meirow, D., Epstein, M., Lewis, H., Nugent, D., Gosden, R. G. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Human Reproduction. 2001;16(4):632–7.CrossRefGoogle ScholarPubMed
D’Incalci, M., Sessa, C., Colombo, N., et al. Transplacental passage of cyclophosphamide. Cancer Treat Rep. 1982;66(8):1681–2.Google ScholarPubMed
Rengasamy, P. Congenital malformations attributed to prenatal exposure to cyclophosphamide. Anticancer Agents Med Chem. 2017;17(9):1211–27.CrossRefGoogle ScholarPubMed
Vaux, K. K., Kahole, N. C. O., Jones, K. L. Cyclophosphamide, methotrexate, and cytarabine embropathy: Is apoptosis the common pathway? Birth Defects Research Part A: Clinical and Molecular Teratology. 2003;67(6):403–8.CrossRefGoogle ScholarPubMed
Paladini, D., Vassallo, M., D’Armiento, M. R., Cianciaruso, B., Martinelli, P. Prenatal detection of multiple fetal anomalies following inadvertent exposure to cyclophosphamide in the first trimester of pregnancy. Birth Defects Res A Clin Mol Teratol. 2004;70(2):99100.CrossRefGoogle ScholarPubMed
Rushworth, D., Mathews, A., Alpert, A., Cooper, L. J. Dihydrofolate reductase and thymidylate synthase transgenes resistant to methotrexate interact to permit novel transgene regulation. J Biol Chem. 2015;290(38):22970–6.CrossRefGoogle ScholarPubMed
Lloyd, M. E., Carr, M., McElhatton, P., Hall, G. M., Hughes, R. A. The effects of methotrexate on pregnancy, fertility and lactation. Qjm. 1999;92(10):551–63.CrossRefGoogle ScholarPubMed
Hyoun, S. C., Običan, S. G., Scialli, A. R. Teratogen update: methotrexate. Birth Defects Res A Clin Mol Teratol. 2012;94(4):187207.CrossRefGoogle ScholarPubMed
Dawson, A. L., Riehle-Colarusso, T., Reefhuis, J., Arena, J. F. Maternal exposure to methotrexate and birth defects: A population-based study. Am J Med Genet A. 2014;164a(9):2212–16.Google ScholarPubMed
Verberne, E. A., de Haan, E., van Tintelen, J. P., Lindhout, D., van Haelst, M. M. Fetal methotrexate syndrome: A systematic review of case reports. Reprod Toxicol. 2019;87:125–39.CrossRefGoogle ScholarPubMed
Courtney, K. D., Valerio, D. A. Teratology in the Macaca mulatta. Teratology. 1968;1(2):163–72.CrossRefGoogle ScholarPubMed
Joneja, M., Ungthavorn, S. Teratogenic effects of vincristine in three lines of mice. Teratology. 1969;2(3):235–40.CrossRefGoogle ScholarPubMed
Mulvihill, J. J., McKeen, E. A., Rosner, F., Zarrabi, M. H. Pregnancy outcome in cancer patients. Experience in a large cooperative group.Cancer. 1987;60(5):1143–50.3.0.CO;2-E>CrossRefGoogle Scholar
Brenner, B., Avivi, I., Lishner, M. Haematological cancer in pregnancy. Lancet. 2012;379(9815):580–7.CrossRefGoogle Scholar
Cortes, J. E., Abruzzese, E., Chelysheva, E., et al. The impact of dasatinib on pregnancy outcomes. Am J Hematol. 2015;90(12):1111–15.CrossRefGoogle ScholarPubMed
Madabhavi, I., Sarkar, M., Modi, M., Kadakol, N. Pregnancy outcomes in chronic myeloid leukemia: A single center experience. J Glob Oncol. 2019;5:111.Google ScholarPubMed
Chakravarty, E. F., Murray, E. R., Kelman, A., Farmer, P. Pregnancy outcomes after maternal exposure to rituximab. Blood. 2011;117(5):1499–506.CrossRefGoogle ScholarPubMed
Parovichnikova, E. N., Troitskaya, V. V., Gavrilina, O. A., et al. The outcome of Ph-negative acute lymphoblastic leukemia presenting during pregnancy and treated on the Russian prospective multicenter trial RALL-2009. Leuk Res. 2021;104:106536.CrossRefGoogle ScholarPubMed
Sampaio, M. M., Santos, M. L. C., Marques, H. S., et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021;12(2):6994.CrossRefGoogle ScholarPubMed
Faderl, S., Talpaz, M., Estrov, Z., et al. The biology of chronic myeloid leukemia. New England Journal of Medicine. 1999;341(3):164–72.CrossRefGoogle ScholarPubMed
Jabbour, E., Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. American Journal of Hematology. 2020;95(6):691709.CrossRefGoogle ScholarPubMed
Haznedaroğlu, İ. C., Kuzu, I., İlhan, O. WHO 2016 definition of chronic myeloid leukemia and tyrosine kinase inhibitors. Turk J Haematol. 2020;37(1):42–7.Google ScholarPubMed
Deininger, M. W., Shah, N. P., Altman, J. K., et al. Chronic myeloid leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(10):1385–415.CrossRefGoogle ScholarPubMed
Pfirrmann, M., Baccarani, M., Saussele, S., et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30(1):4856.CrossRefGoogle ScholarPubMed
Rambhatla, A., Strug, M. R., De Paredes, J. G., Cordoba Munoz, M. I., Thakur, M. Fertility considerations in targeted biologic therapy with tyrosine kinase inhibitors: A review. J Assist Reprod Genet. 2021;38(8):1897–908.CrossRefGoogle ScholarPubMed
Hernández, J. A., Land, K. J., McKenna, R. W. Leukemias, myeloma, and other lymphoreticular neoplasms. Cancer. 1995;75(1 Suppl):381–94.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):1748.CrossRefGoogle Scholar
Burger, J. A. Treatment of chronic lymphocytic leukemia. New England Journal of Medicine. 2020;383(5):460–73.CrossRefGoogle ScholarPubMed
Vitale, C., Ferrajoli, A. Richter syndrome in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2016;11(1):4351.CrossRefGoogle ScholarPubMed
Binet, J. L., Leporrier, M., Dighiero, G., et al. A clinical staging system for chronic lymphocytic leukemia: Prognostic significance. Cancer. 1977;40(2):855–64.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Tausch, E., Schneider, C., Robrecht, S., et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135(26):2402–12.CrossRefGoogle ScholarPubMed
Döhner, H., Stilgenbauer, S., Benner, A., et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–16.CrossRefGoogle ScholarPubMed
van der Straten, L., Maas, C., Levin, M. D., et al. Long-term trends in the loss in expectation of life after a diagnosis of chronic lymphocytic leukemia: A population-based study in the Netherlands, 1989–2018. Blood Cancer J. 2022;12(4):72.CrossRefGoogle ScholarPubMed
Sinisalo, M., Aittoniemi, J., Käyhty, H., Vilpo, J. Vaccination against infections in chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44(4):649–52.CrossRefGoogle ScholarPubMed
Thompson, P. A., Siddiqi, T. Treatment of Richter’s syndrome. Hematology. 2022;2022(1):329–36.CrossRefGoogle ScholarPubMed
Herrera, A. F., Ahn, K. W., Litovich, C., et al. Autologous and allogeneic hematopoietic cell transplantation for diffuse large B-cell lymphoma-type Richter syndrome. Blood Adv. 2021;5(18):3528–39.CrossRefGoogle ScholarPubMed
Rivera, D., Ferrajoli, A. Managing the risk of infection in chronic lymphocytic leukemia in the era of new therapies. Curr Oncol Rep. 2022;24(8):1003–14.CrossRefGoogle ScholarPubMed
Zhang, C., Tian, B. Nonclinical safety assessment of zanubrutinib: A novel irreversible BTK inhibitor. International Journal of Toxicology. 2020;39(3):232–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×