Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T06:10:37.115Z Has data issue: false hasContentIssue false

18 - Functional imaging of symptoms

from Section 2 - Cancer Symptom Mechanisms and Models: Clinical and Basic Science

Published online by Cambridge University Press:  05 August 2011

T. Dorina Papageorgiou
Affiliation:
Baylor College of Medicine
Javier O. Valenzuela
Affiliation:
The University of Texas M. D. Anderson Cancer Center
Edward F. Jackson
Affiliation:
The University of Texas M. D. Anderson Cancer Center
Charles S. Cleeland
Affiliation:
University of Texas, M. D. Anderson Cancer Center
Michael J. Fisch
Affiliation:
University of Texas, M. D. Anderson Cancer Center
Adrian J. Dunn
Affiliation:
University of Hawaii, Manoa
Get access

Summary

The brain is the stage upon which peripheral information is assembled and translated into perceptions, including consciousness of the symptoms produced by disease and treatment. The theme of this book is to bring together research findings from various scientific disciplines to help us understand why patients with cancer develop symptoms. Recent breakthroughs in functional imaging techniques – such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) – can help us investigate the localization of symptom expression in the brain. The abundance of literature on the functional imaging of pain, together with the growing number of studies of other cancer-related symptoms such as dyspnea (shortness of breath), nausea, loss of appetite, disturbed sleep, and fatigue, are beginning to help us understand how brain changes occur at the electrophysiological, hemodynamic, and metabolic levels. These functional imaging technologies have revolutionized basic and translational research and are directly applicable to clinical care.

What is unique about imaging cancer-related symptoms is that cancer is a dynamic process. First, tumor growth does not develop all at once but rather progresses over time, enabling us to examine symptoms as they develop. Second, the toxic nature of many cancer treatments results in the rapid development of symptoms in patients who are often symptom-free before the start of treatment. Finally, the dosage of symptom management drugs (such as analgesics, steroids, and antiemetics) used to control disease-related and treatment-related symptoms is continuously modified as the disease progresses.

Type
Chapter
Information
Cancer Symptom Science
Measurement, Mechanisms, and Management
, pp. 206 - 223
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Logothetis, NK, Pauls, J, Augath, M, Trinath, T, Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157, 2001.CrossRefGoogle ScholarPubMed
Ogawa, S, Menon, RS, Tank, DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812, 1993.CrossRefGoogle ScholarPubMed
Drake, CT, Iadecola, C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang 102(2):141–152, 2007.CrossRefGoogle ScholarPubMed
Ogawa, S, Tank, DW, Menon, R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955, 1992.CrossRefGoogle ScholarPubMed
Bandettini, PA, Jesmanowicz, A, Wong, EC, Hyde, JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30(2):161–173, 1993.CrossRefGoogle ScholarPubMed
DeYoe, EA, Felleman, DJ, Essen, DC, McClendon, E. Multiple processing streams in occipitotemporal visual cortex. Nature 371(6493):151–154, 1994.CrossRefGoogle ScholarPubMed
Craig, AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666, 2002.CrossRefGoogle Scholar
Craig, AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505, 2003.CrossRefGoogle Scholar
Damasio, A. Feelings of emotion and the self. Ann N Y Acad Sci 1001:253–261, 2003.CrossRefGoogle ScholarPubMed
Craig, AD. The functional anatomy of lamina I and its role in post-stroke central pain. In: Sandkühler, J, Bromm, B, Gebhart, GF, eds. Nervous System Plasticity and Chronic Pain. Amsterdam: Elsevier, 2000:137–151. Progress in Brain Research; vol. 129.CrossRefGoogle Scholar
Greenspan, JD, Winfield, JA. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 50(1):29–39, 1992.CrossRefGoogle ScholarPubMed
Schmahmann, JD, Leifer, D. Parietal pseudothalamic pain syndrome: clinical features and anatomic correlates. Arch Neurol 49(10):1032–1037, 1992.CrossRefGoogle ScholarPubMed
Bassetti, C, Bogousslavsky, J, Regli, F. Sensory syndromes in parietal stroke. Neurology 43(10):1942–1949, 1993.CrossRefGoogle ScholarPubMed
Freund, HJ. Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193, 2003.Google ScholarPubMed
Diserens, K, Vuadens, P, Michel, P, et al. Acute autonomic dysfunction contralateral to acute strokes: a prospective study of 100 consecutive cases. Eur J Neurol 13(11):1245–1250, 2006.CrossRefGoogle ScholarPubMed
Rainville, P, Duncan, GH, Price, DD, Carrier, B, Bushnell, MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–971, 1997.CrossRefGoogle Scholar
Craig, AD, Reiman, EM, Evans, A, Bushnell, MC. Functional imaging of an illusion of pain. Nature 384(6606):258–260, 1996.CrossRefGoogle ScholarPubMed
Melzack, R, Casey, KL. Sensory, motivational, and central control determinants of pain: a new conceptual model. In: Kenshalo, DR, ed. The Skin Senses: Proceedings of the First International Symposium on the Skin Senses. Springfield IL: Thomas, 1968.Google Scholar
Portenoy, RK, Conn, M. Cancer pain syndromes. In: Bruera, E, Portenoy, RK, eds. Cancer Pain: Assessment and Management. Cambridge UK: Cambridge University Press, 2003:89–108.CrossRefGoogle Scholar
Casey, KL. Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci U S A 96(14):7668–7674, 1999.CrossRefGoogle ScholarPubMed
Treede, RD, Kenshalo, DR, Gracely, RH, Jones, AK. The cortical representation of pain. Pain 79(2–3):105–111, 1999.CrossRefGoogle Scholar
Peyron, R, Laurent, B, García-Larrea, L. Functional imaging of brain responses to pain: a review and meta-analysis (2000). Neurophysiol Clin 30(5):263–288, 2000.CrossRefGoogle Scholar
Rainville, P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12(2):195–204, 2002.CrossRefGoogle ScholarPubMed
Porro, CA. Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9(5):354–369, 2003.CrossRefGoogle ScholarPubMed
Apkarian, AV, Bushnell, MC, Treede, RD, Zubieta, JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484, 2005.CrossRefGoogle ScholarPubMed
Dunckley, P, Wise, RG, Aziz, Q, et al. Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness. Neuroscience 133(2):533–542, 2005.CrossRefGoogle ScholarPubMed
Peyron, R, García-Larrea, L, Grégoire, MC, et al. Parietal and cingulate processes in central pain: a combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 84(1):77–87, 2000.CrossRefGoogle ScholarPubMed
Casey, KL, Minoshima, S, Berger, KL, Koeppe, RA, Morrow, TJ, Frey, KA. Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71(2):802–807, 1994.CrossRefGoogle ScholarPubMed
Tarkka, IM, Treede, RD. Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10(4):513–519, 1993.CrossRefGoogle ScholarPubMed
Price, DD. Psychological and neural mechanisms of the affective dimension of pain. Science 288(5472):1769–1772, 2000.CrossRefGoogle ScholarPubMed
Borsook, D, Becerra, LR. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2:30, 2006.CrossRefGoogle ScholarPubMed
Strigo, IA, Duncan, GH, Boivin, M, Bushnell, MC. Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89(6):3294–3303, 2003.CrossRefGoogle ScholarPubMed
Baron, R. Mechanisms of disease: neuropathic pain: a clinical perspective. Nat Clin Pract Neurol 2(2):95–106, 2006.CrossRefGoogle ScholarPubMed
Hsieh, JC, Belfrage, M, Stone-Elander, S, Hansson, P, Ingvar, M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63(2):225–236, 1995.CrossRefGoogle ScholarPubMed
Peyron, R, García-Larrea, L, Grégoire, MC, et al. Allodynia after lateral-medullary (Wallenberg) infarct: a PET study. Brain 121(Pt 2):345–356, 1998.CrossRefGoogle ScholarPubMed
Peyron, R, Schneider, F, Faillenot, I, et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63(10):1838–1846, 2004.CrossRefGoogle ScholarPubMed
Maihöfner, C, Handwerker, HO. Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28(4):996–1006, 2005.CrossRefGoogle ScholarPubMed
Maihöfner, C, Handwerker, HO, Birklein, F. Functional imaging of allodynia in complex regional pain syndrome. Neurology 66(5):711–717, 2006.CrossRefGoogle ScholarPubMed
Ushida, T, Ikemoto, T, Taniguchi, S, et al. Virtual pain stimulation of allodynia patients activates cortical representation of pain and emotions: a functional MRI study. Brain Topogr 18(1):27–35, 2005.CrossRefGoogle ScholarPubMed
Schweinhardt, P, Glynn, C, Brooks, J, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32(1):256–265, 2006.CrossRefGoogle ScholarPubMed
Witting, N, Kupers, RC, Svensson, P, Jensen, TS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 120(1–2):145–154, 2006.CrossRefGoogle ScholarPubMed
Hunt, SP, Mantyh, PW. The molecular dynamics of pain control. Nat Rev Neurosci 2(2):83–91, 2001.CrossRefGoogle ScholarPubMed
Petrovic, P, Ingvar, M, Stone-Elander, S, Petersson, KM, Hansson, P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 83(3):459–470, 1999.CrossRefGoogle ScholarPubMed
Colebatch, JG, Deiber, MP, Passingham, RE, Friston, KJ, Frackowiak, RS. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65(6):1392–1401, 1991.CrossRefGoogle ScholarPubMed
Corfield, DR, Fink, GR, Ramsay, SC, et al. Evidence for limbic system activation during CO2-stimulated breathing in man. J Physiol 488(Pt 1):77–84, 1995.CrossRefGoogle ScholarPubMed
Brannan, S, Liotti, M, Egan, G, et al. Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air. Proc Natl Acad Sci U S A 98(4):2029–2034, 2001.CrossRefGoogle ScholarPubMed
Liotti, M, Brannan, S, Egan, G, et al. Brain responses associated with consciousness of breathlessness (air hunger). Proc Natl Acad Sci U S A 98(4):2035–2040, 2001.CrossRefGoogle Scholar
Parsons, LM, Egan, G, Liotti, M, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci U S A 98(4):2041–2046, 2001.CrossRefGoogle ScholarPubMed
Peiffer, C, Poline, JB, Thivard, L, Aubier, M, Samson, Y. Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med 163(4):951–957, 2001.CrossRefGoogle ScholarPubMed
Evans, KC, Banzett, RB, Adams, L, McKay, L, Frackowiak, RS, Corfield, DR. BOLD fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol 88(3):1500–1511, 2002.CrossRefGoogle ScholarPubMed
Macey, KE, Macey, PM, Woo, MA, et al. fMRI signal changes in response to forced expiratory loading in congenital central hypoventilation syndrome. J Appl Physiol 97(5):1897–1907, 2004.CrossRefGoogle ScholarPubMed
Macey, PM, Woo, MA, Macey, KE, et al. Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome. J Appl Physiol 98(3):958–969, 2005.CrossRefGoogle ScholarPubMed
Woo, MA, Macey, PM, Macey, KE, et al. FMRI responses to hyperoxia in congenital central hypoventilation syndrome. Pediatr Res 57(4):510–518, 2005.CrossRefGoogle ScholarPubMed
Miller, AD, Rowley, HA, Roberts, TP, Kucharczyk, J. Human cortical activity during vestibular- and drug-induced nausea detected using MSI. Ann N Y Acad Sci 781:670–672, 1996.CrossRefGoogle ScholarPubMed
Bles, W, Bos, JE, Kruit, H. Motion sickness. Curr Opin Neurol 13(1):19–25, 2000.CrossRefGoogle ScholarPubMed
Brandt, T, Bartenstein, P, Janek, A, Dieterich, M. Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758, 1998.CrossRefGoogle ScholarPubMed
Wenzel, R, Bartenstein, P, Dieterich, M, et al. Deactivation of human visual cortex during involuntary ocular oscillations: a PET activation study. Brain 119(Pt 1):101–110, 1996.CrossRefGoogle ScholarPubMed
Tataranni, PA, Gautier, JF, Chen, K, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96(8):4569–4574, 1999.CrossRefGoogle ScholarPubMed
O'Doherty, J, Rolls, ET, Francis, S, et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11(4):893–897, 2000.CrossRefGoogle ScholarPubMed
Araújo, IE. [Taste representation in the human cortex and the central control of appetite]. Rev Bras Psiquiatr 25(Suppl 2):25–28, 2003.CrossRefGoogle Scholar
Wang, GJ, Volkow, ND, Telang, F, et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 21(4):1790–1797, 2004.CrossRefGoogle ScholarPubMed
Simmons, WK, Martin, A, Barsalou, LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 15(10):1602–1608, 2005.CrossRefGoogle ScholarPubMed
Porubská, K, Veit, R, Preissl, H, Fritsche, A, Birbaumer, N. Subjective feeling of appetite modulates brain activity: an fMRI study. Neuroimage 32(3):1273–1280, 2006.CrossRefGoogle Scholar
Rolls, ET. Smell, taste, texture, and temperature multimodal representations in the brain, and their relevance to the control of appetite. Nutr Rev 62(11 Pt 2):S193–S204, 2004.CrossRefGoogle ScholarPubMed
Rolls, ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc 66(1):96–112, 2007.CrossRefGoogle ScholarPubMed
Liu, Y, Gao, JH, Liu, HL, Fox, PT. The temporal response of the brain after eating revealed by functional MRI. Nature 405(6790):1058–1062, 2000.CrossRefGoogle ScholarPubMed
Liu, JZ, Dai, TH, Sahgal, V, Brown, RW, Yue, GH. Nonlinear cortical modulation of muscle fatigue: a functional MRI study. Brain Res 957(2):320–329, 2002.CrossRefGoogle ScholarPubMed
Benwell, NM, Byrnes, ML, Mastaglia, FL, Thickbroom, GW. Primary sensorimotor cortex activation with task-performance after fatiguing hand exercise. Exp Brain Res 167(2):160–164, 2005.CrossRefGoogle ScholarPubMed
Benwell, NM, Mastaglia, FL, Thickbroom, GW. Reduced functional activation after fatiguing exercise is not confined to primary motor areas. Exp Brain Res 175(4):575–583, 2006.CrossRefGoogle Scholar
Roelcke, U, Kappos, L, Lechner-Scott, J, et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48(6):1566–1571, 1997.CrossRefGoogle ScholarPubMed
Filippi, M, Rocca, MA, Colombo, B, et al. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15(3):559–567, 2002.CrossRefGoogle ScholarPubMed
Rocca, MA, Agosta, F, Colombo, B, et al. fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFNbeta-1a injection. Hum Brain Mapp 28(5):373–382, 2007.CrossRefGoogle ScholarPubMed
Tartaglia, MC, Narayanan, S, Arnold, DL. Mental fatigue alters the pattern and increases the volume of cerebral activation required for a motor task in multiple sclerosis patients with fatigue. Eur J Neurol 15(4):413–419, 2008.CrossRefGoogle ScholarPubMed
Deluca, J, Genova, HM, Hillary, FG, Wylie, G. Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. J Neurol Sci 270(1–2):28–39, 2008.CrossRefGoogle ScholarPubMed
Lange, FP, Kalkman, JS, Bleijenberg, G, et al. Neural correlates of the chronic fatigue syndrome: an fMRI study. Brain 127(Pt 9):1948–1957, 2004.CrossRefGoogle Scholar
Tanaka, M, Sadato, N, Okada, T, et al. Reduced responsiveness is an essential feature of chronic fatigue syndrome: a fMRI study. BMC Neurol 6:9, 2006.CrossRefGoogle ScholarPubMed
Schmaling, KB, Lewis, DH, Fiedelak, JI, Mahurin, R, Buchwald, DS. Single-photon emission computerized tomography and neurocognitive function in patients with chronic fatigue syndrome. Psychosom Med 65(1):129–136, 2003.CrossRefGoogle ScholarPubMed
Lange, G, Steffener, J, Cook, DB, et al. Objective evidence of cognitive complaints in Chronic Fatigue Syndrome: a BOLD fMRI study of verbal working memory. Neuroimage 26(2):513–524, 2005.CrossRefGoogle ScholarPubMed
Cook, DB, O'Connor, PJ, Lange, G, Steffener, J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage 36(1):108–122, 2007.CrossRefGoogle ScholarPubMed
Lewis, DH, Mayberg, HS, Fischer, ME, et al. Monozygotic twins discordant for chronic fatigue syndrome: regional cerebral blood flow SPECT. Radiology 219(3):766–773, 2001.CrossRefGoogle ScholarPubMed
Yamamoto, S, Ouchi, Y, Onoe, H, et al. Reduction of serotonin transporters of patients with chronic fatigue syndrome. Neuroreport 15(17):2571–2574, 2004.CrossRefGoogle ScholarPubMed
Siessmeier, T, Nix, WA, Hardt, J, Schreckenberger, M, Egle, UT, Bartenstein, P. Observer independent analysis of cerebral glucose metabolism in patients with chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 74(7):922–928, 2003.CrossRefGoogle ScholarPubMed
Lange, FP, Koers, A, Kalkman, JS, et al. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain 131(Pt 8):2172–2180, 2008.CrossRefGoogle ScholarPubMed
Lövblad, KO, Thomas, R, Jakob, PM, et al. Silent functional magnetic resonance imaging demonstrates focal activation in rapid eye movement sleep. Neurology 53(9):2193–2195, 1999.CrossRefGoogle ScholarPubMed
Buchsbaum, MS, Gillin, JC, Wu, J, et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci 45(15):1349–1356, 1989.CrossRefGoogle ScholarPubMed
Maquet, P, Péters, JM, Aerts, J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166, 1996.CrossRefGoogle ScholarPubMed
Maquet, P, Dive, D, Salmon, E, et al. Cerebral glucose-utilization during stage-2 sleep in man. Brain Res 571(1):149–153, 1992.CrossRefGoogle ScholarPubMed
Madsen, PL, Schmidt, JF, Holm, S, Vorstrup, S, Lassen, NA, Wildschiødtz, G. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2). Brain Res 557(1–2):217–220, 1991.CrossRefGoogle Scholar
Nofzinger, EA, Mintun, MA, Wiseman, M, Kupfer, DJ, Moore, RY. Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1–2):192–201, 1997.CrossRefGoogle Scholar
Braun, AR, Balkin, TJ, Wesensten, NJ, et al. Dissociated pattern of activity in visual cortices and their projections during human rapid eye movement sleep. Science 279(5347):91–95, 1998.CrossRefGoogle ScholarPubMed
Braun, AR, Balkin, TJ, Wesenten, NJ, et al. Regional cerebral blood flow throughout the sleep-wake cycle: an H2(15)O PET study. Brain 120(Pt 7):1173–1197, 1997.CrossRefGoogle ScholarPubMed
Drummond, SP, Brown, GG, Salamat, JS, Gillin, JC. Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep 27(3):445–451, 2004.Google ScholarPubMed
Nofzinger, EA. What can neuroimaging findings tell us about sleep disorders?Sleep Med 5(Suppl 1):S16–S22, 2004.CrossRefGoogle ScholarPubMed
Borsook, D, Ploghaus, A, Becerra, L. Utilizing brain imaging for analgesic drug development. Curr Opin Investig Drugs 3(9):1342–1347, 2002.Google ScholarPubMed
Schweinhardt, P, Bountra, C, Tracey, I. Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed 19(6):702–711, 2006.CrossRefGoogle ScholarPubMed
Lawrence, J, Mackey, SC. Role of neuroimaging in analgesic drug development. Drugs R D 9(5):323–334, 2008.
Henriksen, G, Willoch, F. Imaging of opioid receptors in the central nervous system. Brain 131(Pt 5):1171–1196, 2008.CrossRefGoogle ScholarPubMed
Adler, LJ, Gyulai, FE, Diehl, DJ, Mintun, MA, Winter, PM, Firestone, LL. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth Analg 84(1):120–126, 1997.CrossRefGoogle ScholarPubMed
Wise, RG, Rogers, R, Painter, D, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16(4):999–1014, 2002.CrossRefGoogle ScholarPubMed
Becerra, L, Harter, K, Gonzalez, RG, Borsook, D. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth Analg 103(1):208–216, table, 2006.CrossRefGoogle ScholarPubMed
Papageorgiou, TD. Blood-oxygen-level-dependent (BOLD) signal changes in total cortex and subcortex, pain, reward, and vigilance regions during mechanical pressure pain after morphine administration. The University of Texas Health Science Center School of Public Health, 2006.Google Scholar
Sprenger, T, Valet, M, Boecker, H, et al. Opioidergic activation in the medial pain system after heat pain. Pain 122(1–2):63–67, 2006.CrossRefGoogle ScholarPubMed
Wagner, KJ, Sprenger, T, Kochs, EF, Tölle, TR, Valet, M, Willoch, F. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 106(3):548–556, 2007.CrossRefGoogle ScholarPubMed
Firestone, LL, Gyulai, F, Mintun, M, Adler, LJ, Urso, K, Winter, PM. Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82(6):1247–1251, 1996.Google ScholarPubMed
Wagner, KJ, Willoch, F, Kochs, EF, et al. Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94(5):732–739, 2001.CrossRefGoogle ScholarPubMed
Iannetti, GD, Zambreanu, L, Wise, RG, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 102(50):18195–18200, 2005.CrossRefGoogle ScholarPubMed
Leppä, M, Korvenoja, A, Carlson, S, et al. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage 31(2):661–669, 2006.CrossRefGoogle ScholarPubMed
Mesulam, MM. From sensation to cognition. Brain 121(Pt 6):1013–1052, 1998.CrossRefGoogle Scholar
Harrison, NA, Brydon, L, Walker, C, et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66(5):415–422, 2009.CrossRefGoogle ScholarPubMed
Rosa, MJ, Kilner, J, Blankenburg, F, Josephs, O, Penny, W. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage 49(2):1496–1509, 2010.CrossRefGoogle ScholarPubMed
Muzik, O, Chugani, DC, Zou, G, et al. Multimodality data integration in epilepsy. Int J Biomed Imaging 2007:13963, 2007.Google Scholar
Iannetti, GD, Niazy, RK, Wise, RG, et al. Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. Neuroimage 28(3):708–719, 2005.CrossRefGoogle ScholarPubMed
deCharms, RC, Christoff, K, Glover, GH, Pauly, JM, Whitfield, S, Gabrieli, JD. Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436–443, 2004.CrossRefGoogle ScholarPubMed
deCharms, RC, Maeda, F, Glover, GH, et al. Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 102(51):18626–18631, 2005.CrossRefGoogle ScholarPubMed
Posse, S, Fitzgerald, D, Gao, K, et al. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage 18(3):760–768, 2003.CrossRefGoogle ScholarPubMed
Weiskopf, N, Veit, R, Erb, M, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586, 2003.CrossRefGoogle ScholarPubMed
Yoo, SS, Jolesz, FA. Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13(11):1377–1381, 2002.CrossRefGoogle ScholarPubMed
LaConte, S, Strother, S, Cherkassky, V, Anderson, J, Hu, X. Support vector machines for temporal classification of block design fMRI data. Neuroimage 26(2):317–329, 2005.CrossRefGoogle ScholarPubMed
LaConte, SM, Peltier, SJ, Hu, XP. Real-time fMRI using brain-state classification. Hum Brain Mapp 28(10):1033–1044, 2007.CrossRefGoogle ScholarPubMed
Papageorgiou, T, Curtis, WA, McHenry, M, LaConte, SM. Neurofeedback of two motor functions using supervised learning-based real-time functional magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc 1:5377–5380, 2009.Google Scholar
Papageorgiou, TD, McHenry, M, Lisinski, JM, White, JP, LaConte, SM. Speech rate control using supervised learning-based real-time fMRI. Neuroimage 47(1):S39–S41, 2009.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×