from 3 - Logic, mathematics, and judgement
Published online by Cambridge University Press: 28 March 2008
INTRODUCTION
It is uncontroversial to say that the period in question saw more important changes in the philosophy of mathematics than any previous period of similar length in the history of philosophy. Above all, it is in this period that the study of the foundations of mathematics became partly a mathematical investigation itself. So rich a period is it, that this survey article is only the merest sketch; inevitably, some subjects and figures will be inadequately treated (the most notable omission being discussion of Peano and the Italian schools of geometry and logic). Of prime importance in understanding the period are the changes in mathematics itself that the nineteenth century brought, for much foundational work is a reaction to these, resulting either in an expansion of the philosophical horizon to incorporate and systematise these changes, or in articulated opposition. What, in broad outline, were the changes?
First, traditional subjects were treated in entirely new ways. This applies to arithmetic, the theory of real and complex numbers and functions, algebra, and geometry. (a) Some central concepts were characterised differently, or properly characterised for the first time, for example, from analysis, those of continuity (Weierstrass, Cantor, Dedekind) and integrability (Jordan, Lebesgue, Young), from geometry, that of congruence (Pasch, Hilbert), and geometry itself was recast as a purely synthetic theory (von Staudt, Pasch, Hilbert). (b) Theories were treated in entirely new ways, for example, as axiomatic systems (Pasch, Peano and the Italian School, Hilbert), as structures (Dedekind, Hilbert), or with entirely different primitives (Riemann, Cantor, Frege, Russell).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.