Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:05:06.389Z Has data issue: false hasContentIssue false

17 - Working Memory in the Modular Cognition Framework

from Part III - Linguistic Theories and Frameworks

Published online by Cambridge University Press:  08 July 2022

John W. Schwieter
Affiliation:
Wilfrid Laurier University
Zhisheng (Edward) Wen
Affiliation:
Hong Kong Shue Yan University
Get access

Summary

Working memory, as a cognitive function, needs to be understood within the context of the mind as a whole, in other words within a general framework that can connect it to related research and theory. In this chapter we present one such broad view of the mind, the Modular Cognition Framework (MCF), and apply it to the study of working memory, emphasizing its involvement in language development and use. We consider the nature of working memory as an integral part of the cognitive system, along with working memory capacity, offering a relatively fine-grained, cognitively contextualized account of what working memory is and where the capacity limits come from. This approach provides a means of understanding and further studying a range of phenomena, including the nature and use of metalinguistic knowledge, bilingual language “selection”, code-switching, switch costs and their absence, crosslinguistic influence, optionality in second language learning, and translation and interpreting.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R. (1983). The architecture of cognition. Harvard University Press.Google Scholar
Athanasopoulos, P. (2015). Conceptual representation in bilinguals: The role of language specificity and conceptual change. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 275292). Cambridge University Press.CrossRefGoogle Scholar
Baars, B. (1988). A cognitive theory of consciousness. Cambridge University Press.Google Scholar
Baddeley, A. (2007). Working memory, thought, and action. Oxford University Press.Google Scholar
Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113, 628647.Google Scholar
Bastos, A. M., Vezoli, J., & Fries, P. (2015). Communication through coherence with inter-areal delays. Current Opinion in Neurobiology, 31, 173180.Google Scholar
Beckner, C., Blythe, R., Bybee, J., Christiansen, M., Croft, W., Ellis, N., Holland, J., Ke, J., Larsen-Freeman, D., & Schoenemann, T. (2009). Language is a complex adaptive system: Position paper. Language Learning, 59, 126.Google Scholar
Bergeron, V. (2007). Anatomical and functional modularity in cognitive science: Shifting the focus. Philosophical Psychology, 20, 175195.CrossRefGoogle Scholar
Cantor, J., & Engle, R. W. (1993). Working-memory capacity as long-term memory activation: An individual-differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 11011114.Google Scholar
Carruthers, P. (2006). The architecture of the mind: Massive modularity and the flexibility of thought. Clarendon.Google Scholar
Chomsky, N. (1995). The minimalist program. MIT Press.Google Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford University Press.Google Scholar
Cowan, N., Saults, J. S., & Blume, C. L. (2014). Central and peripheral components of working memory storage. Journal of Experimental Psychology: General, 143, 18061836.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450466.Google Scholar
de Bruin, A., Samuel, A. G., & Duñabeitia, J. A. (2018). Voluntary language switching: When and why do bilinguals switch between their languages? Journal of Memory and Language, 103, 2843.Google Scholar
de Groot, A. M. B., & Starreveld, P. A. (2015). Parallel language activation in bilinguals’ word production and its modulating factors: A review and computer simulations. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 137.Google Scholar
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115142.Google Scholar
Driver, J., Davis, G., Russell, C., Turatto, M., & Freeman, E. (2001). Segmentation, attention and phenomenal visual objects. Cognition, 80, 6195.Google Scholar
French, L. M. (2003). Phonological working memory and L2 acquisition: A developmental study of Quebec Francophone children learning English. (Doctoral dissertation, Université Laval, Quebec).Google Scholar
Fuster, J. M. (2015). The prefrontal cortex (5th ed.). Elsevier.Google Scholar
Gathercole, S. E. (2006). Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics 27, 513543.Google Scholar
Grosjean, F. (2010). Bilingual: Life and reality. Harvard University Press.Google Scholar
Grosjean, F., & Li, P. (2013). The psycholinguistics of bilingualism. Wiley-Blackwell.Google Scholar
Hummel, K. M. (2009). Aptitude, phonological memory, and second language proficiency in nonnovice adult learners. Applied Psycholinguistics, 30, 225249.Google Scholar
Jackendoff, R. (1987). Consciousness and the computational mind. MIT Press.Google Scholar
Jackendoff, R. (1997). The architecture of the language faculty. MIT Press.Google Scholar
Jiang, N. (2015). Six decades of research on lexical representation and processing in bilinguals. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Juffs, A. (2015). Working memory and sentence processing: A commentary. In Wen, Z., Mota, M. B., & McNeill, A. (Eds.), Working memory in second language acquisition and processing (pp. 125135). Multilingual Matters.Google Scholar
Juffs, A., & Harrington, M. W. (2011). Aspects of working memory in L2 learning. Language Teaching, 44, 137166.Google Scholar
Kleinman, D., & Gollan, T. H. (2016). Speaking two languages for the price of one: Bypassing language control mechanisms via accessibility-driven switches. Psychological Science, 27, 700714.Google Scholar
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18, 457464.Google Scholar
Kroll, J. F., Gullifer, J. W., McClain, R., Rossi, E., & Martín, M. C. (2015). Selection and control in bilingual comprehension and production. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Masoura, E. V., & Gathercole, S. E. (2005). Contrasting contributions of phonological short-term memory and long-term knowledge to vocabulary learning in a foreign language. Memory, 13, 422429.Google Scholar
McElree, B. (1998). Attended and non-attended states in working memory: Accessing categorized structures. Journal of Memory and Language, 38 , 225252.Google Scholar
Meuter, R. (2009). Neurolinguistic contributions to understanding the bilingual mental lexicon. In Pavlenko, A. (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 125). Multilingual Matters.Google Scholar
Miller, E. K., & Buschman, T. J. (2014). Neural mechanisms for the executive control of attention. In Kastner, S. & Nobre, A. C. (Eds.), The Oxford handbook of attention. Oxford University Press.Google Scholar
Nobre, A. C., & Mesulam, M.-M. (2014). Large-scale networks for attentional biases. In Kastner, S. & Nobre, A. C. (Eds.), The Oxford handbook of attention. Oxford University Press.Google Scholar
Oberauer, K. (2013). The focus of attention in working memory: From metaphors to mechanisms. Frontiers in Human Neuroscience, 7, 673.Google Scholar
Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142, 758799.Google Scholar
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, USA, 107, 75807585.CrossRefGoogle ScholarPubMed
Posner, M. I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences, USA, 91, 73987403.Google Scholar
Robertson, D., & Sorace, A. (1999). Losing the V2 constraint. In Klein, E. C. & Martohardjono, G. (Eds.), The development of second language grammars: A generative approach (pp. 317361). Benjamins.Google Scholar
Sandler, W. (1989). Phonological representation of the sign: Linearity and nonlinearity in American Sign LanguageForis.Google Scholar
Schwartz, A. (2015). Bilingual lexical access during written sentence comprehension. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing (pp. 327348). Cambridge University Press.Google Scholar
Sharwood Smith, M. A. (2014). In search of conceptual frameworks for relating brain activity to language function. Frontiers in Psychology, 5, 716.Google Scholar
Sharwood Smith, M., & Truscott, J. (2014). The multilingual mind: A modular processing perspective. Cambridge University Press.Google Scholar
Shook, A., & Marian, V. (2013). The Bilingual Language Interaction Network for Comprehension of Speech. Bilingualism: Language and Cognition, 16, 304324.Google Scholar
Szmalec, A., Brysbaert, M., & Duyck, W. (2013). Working memory and (second) language processing. In Altariba, J. & Isurin, L. (Eds.), Memory, language, and bilingualism: Theoretical and applied approaches (pp. 7494). Cambridge University Press.Google Scholar
Truscott, J. (2006). Optionality in second language acquisition: A generative, processing-oriented account. International Review of Applied Linguistics, 44, 311330.Google Scholar
Truscott, J. (2015a). Consciousness and second language learning. Multilingual Matters.Google Scholar
Truscott, J. (2015b). Consciousness in SLA: A modular perspective. Second Language Research, 31, 413434.Google Scholar
Truscott, J. (in press). Working memory and language in the modular mind. New York: Routledge.Google Scholar
Truscott, J., & Sharwood Smith, M. (2019). The internal context of bilingual processing. Benjamins.Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127154.Google Scholar
van Hell, J. G., Litcofsky, K. A., & Ting, C. Y. (2015). Intra-sentential code-switching: Cognitive and neural approaches. In Schwieter, J. W. (Ed.), The Cambridge handbook of bilingual processing. Cambridge University Press.Google Scholar
Wen, Z. (2014). Theorizing and measuring working memory in first and second language research. Language Teaching, 47, 174190.Google Scholar
Wen, Z., Mota, M. B., & McNeill, A. (Eds.). (2015). Working memory in second language acquisition and processing. Multilingual Matters.Google Scholar
White, L. (2003). Second language acquisition and Universal Grammar. Cambridge University Press.Google Scholar
Williams, J. N. (2012). Working memory and SLA. In Gass, S. M. & Mackey, A. (Eds.), The Routledge handbook of second language acquisition (pp. 427441). Routledge.Google Scholar
Williams, J. (2015). Working memory in SLA research: Challenges and prospects. In Wen, Z., Mota, M. B., & McNeill, A. (Eds.), Working memory in second language acquisition and processing (pp. 301307). Multilingual Matters.Google Scholar
Winke, P. M. (2005). Individual differences in adult Chinese second language acquisition: The relationships among aptitude, memory and strategies for learning (Doctoral dissertation, Georgetown University).Google Scholar
Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 16091612.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×