Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T02:39:42.121Z Has data issue: false hasContentIssue false

6 - Functional Neuroimaging of Psychedelic Experience: An Overview of Psychological and Neural Effects and their Relevance to Research on Creativity, Daydreaming, and Dreaming

from Part II - Pharmacology and Psychopathology

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, S., Ihalainen, J., Hirvonen, J., Kajander, J., Scheinin, H., Tanila, H., … Syvälahti, E. (2005). Cortical glutamate–dopamine interaction and ketamine-induced psychotic symptoms in man. Psychopharmacology, 182(3), 375383.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes and dynamic control. Annals of the New York Academy of Sciences, 1316(1), 2952.CrossRefGoogle ScholarPubMed
Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: Effects on ideation and problem finding and solving in an industrial research organization. Organizational Behavior and Human Performance, 30(1), 4170.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795.CrossRefGoogle ScholarPubMed
Bekhtereva, N., Starchenko, M., Klyucharev, V., Vorob’ev, V., Pakhomov, S., & Medvedev, S. (2000). Study of the brain organization of creativity: II. Positron-emission tomography data. Human Physiology, 26(5), 516522.CrossRefGoogle Scholar
Binder, D. K., & Scharfman, H. E. (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3), 123131.CrossRefGoogle ScholarPubMed
Bloom, H. (1963). The visionary company: A reading of English romantic poetry. Ithaca, NY: Cornell University Press.Google Scholar
Bouso, J. C., Palhano-Fontes, F., Rodríguez-Fornells, A., Ribeiro, S., Sanches, R., Crippa, J. A. S., … Riba, J. (2015). Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. European Neuropsychopharmacology, 25(4), 483492.CrossRefGoogle ScholarPubMed
Bowdle, A. T., Radant, A. D., Cowley, D. S., Kharasch, E. D., Strassman, R. J., & Roy-Byrne, P. P. (1998). Psychedelic effects of ketamine in healthy volunteers relationship to steady-state plasma concentrations. The Journal of the American Society of Anesthesiologists, 88(1), 8288.Google ScholarPubMed
Brockmeyer, D., & Kendig, J. (1995). Selective effects of ketamine on amino acid-mediated pathways in neonatal rat spinal cord. British Journal of anaesthesia, 74(1), 7984.CrossRefGoogle ScholarPubMed
Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11(8), 11691180.CrossRefGoogle ScholarPubMed
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. doi:10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Burkert, W. (1972). Lore and science in ancient Pythagoreanism. Cambridge, MA: Harvard University Press.Google Scholar
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., … Murphy, K. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 21382143.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., … Nutt, D. J. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia bulletin, 39(6), 13431351.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Leech, R., Williams, T., Erritzoe, D., Abbasi, N., Bargiotas, T., … Feilding, A. (2012). Implications for psychedelic-assisted psychotherapy: Functional magnetic resonance imaging study with psilocybin. The British Journal of Psychiatry, 200(3), 238244.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., … Nutt, D. J. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences, 113(17), 48534858. doi:10.1073/pnas.1518377113CrossRefGoogle ScholarPubMed
Christoff, K., Cosmelli, D., Legrand, D., & Thompson, E. (2011). Specifying the self for cognitive neuroscience. Trends in Cognitive Sciences, 15(3), 104112. doi:10.1016/j.tics.2011.01.001CrossRefGoogle ScholarPubMed
de Araujo, D. B., Ribeiro, S., Cecchi, G. A., Carvalho, F. M., Sanchez, T. A., Pinto, J. P., … Santos, A. C. (2012). Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Human Brain Mapping, 33(11), 25502560.CrossRefGoogle ScholarPubMed
De Simoni, S., Schwarz, A. J., O’Daly, O. G., Marquand, A. F., Brittain, C., Gonzales, C., … Mehta, M. A. (2013). Test–retest reliability of the BOLD pharmacological MRI response to ketamine in healthy volunteers. NeuroImage, 64, 7590.CrossRefGoogle ScholarPubMed
Deakin, J. W., Lees, J., McKie, S., Hallak, J. E., Williams, S. R., & Dursun, S. M. (2008). Glutamate and the neural basis of the subjective effects of ketamine: A pharmaco–magnetic resonance imaging study. Archives of General Psychiatry, 65(2), 154164.CrossRefGoogle ScholarPubMed
Deliganis, A. V., Pierce, P. A., & Peroutka, S. J. (1991). Differential interactions of dimethyltryptamine (DMT) with 5-HT 1A and 5-HT 2 receptors. Biochemical Pharmacology, 41(11), 17391744.CrossRefGoogle Scholar
Dittrich, A. (1998). The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry, 31(Suppl. 2), 8084.CrossRefGoogle ScholarPubMed
Domhoff, G. W. (2011). The neural substrate for dreaming: Is it a subsystem of the default network? Conscious Cogn, 20(4), 11631174. doi:10.1016/j.concog.2011.03.001CrossRefGoogle Scholar
Domhoff, G. W., & Fox, K. C. R. (2015). Dreaming and the default network: A review, synthesis, and counterintuitive research proposal. Conscious Cognition, 33, 342353.CrossRefGoogle ScholarPubMed
Driesen, N. R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D’Souza, D. C., … Suckow, R. F. (2013). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Molecular Psychiatry, 18(11), 11991204.CrossRefGoogle ScholarPubMed
Editorial. (1996). Ketamine: Its mechanism (s) of action and unusual clinical uses. British Journal of Anaesthesia, 77(4), 441444.CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 17831794. doi:10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Ellamil, M., Fox, K. C., Dixon, M. L., Pritchard, S., Todd, R. M., Thompson, E., & Christoff, K. (2016). Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage, 136, 186196.CrossRefGoogle ScholarPubMed
Farrow, T. F., Zheng, Y., Wilkinson, I. D., Spence, S. A., Deakin, J. W., Tarrier, N., … Woodruff, P. W. (2001). Investigating the functional anatomy of empathy and forgiveness. Neuroreport, 12(11), 24332438.CrossRefGoogle ScholarPubMed
Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition, 57(2), 109128.CrossRefGoogle Scholar
Fox, K. C. R., Nijeboer, S., Solomonova, E., Domhoff, G. W., & Christoff, K. (2013). Dreaming as mind wandering: Evidence from functional neuroimaging and first-person content reports. Frontiers in Human Neuroscience, 7, 412. doi:10.3389/fnhum.2013.00412CrossRefGoogle ScholarPubMed
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621.CrossRefGoogle ScholarPubMed
Garcia, L., Comim, C. M., Valvassori, S. S., Réus, G. Z., Barbosa, L. M., Andreazza, A. C., … Kapczinski, F. (2008). Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(1), 140144.CrossRefGoogle ScholarPubMed
Garcia, L., Comim, C. M., Valvassori, S. S., Réus, G. Z., Stertz, L., Kapczinski, F., … Quevedo, J. (2009). Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(3), 450455.CrossRefGoogle ScholarPubMed
Glennon, R. A., Titeler, M., & McKenney, J. (1984). Evidence for 5-HT 2 involvement in the mechanism of action of hallucinogenic agents. Life Sciences, 35(25), 25052511.CrossRefGoogle ScholarPubMed
Gonzalez-Maeso, J., & Sealfon, S. C. (2009). Psychedelics and schizophrenia. Trends in Neurosciences, 32(4), 225232.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Johnson, M. W., Richards, W. A., Richards, B. D., McCann, U., & Jesse, R. (2011). Psilocybin occasioned mystical-type experiences: Immediate and persisting dose-related effects. Psychopharmacology, 218(4), 649665.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Richards, W. A., Johnson, M. W., McCann, U. D., & Jesse, R. (2008). Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. Journal of Psychopharmacology, 22(6), 621632.CrossRefGoogle ScholarPubMed
Griffiths, R. R., Richards, W. A., McCann, U., & Jesse, R. (2006). Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology, 187(3), 268283.CrossRefGoogle ScholarPubMed
Grimm, O., Gass, N., Weber-Fahr, W., Sartorius, A., Schenker, E., Spedding, M., … Zang, Z. (2015). Acute ketamine challenge increases resting state prefrontal–hippocampal connectivity in both humans and rats. Psychopharmacology, 232(21–22), 42314241.CrossRefGoogle ScholarPubMed
Grof, S. (2008). LSD psychotherapy: The healing potential of psychedelic medicine. Ben Lomond, CA: Multidisciplinary Association for Psychedelic Studies.Google Scholar
Harman, W. W., McKim, R. H., Mogar, R. E., Fadiman, J., & Stolaroff, M. J. (1966). Psychedelic agents in creative problem-solving: A pilot study. Psychological Reports, 19(1), 211227.CrossRefGoogle ScholarPubMed
Hofmann, A. (1980). LSD: My problem child. New York, NY: McGraw-Hill.Google Scholar
Holcomb, H. H., Lahti, A. C., Medoff, D. R., Weiler, M., & Tamminga, C. A. (2001). Sequential regional cerebral blood flow brain scans using PET with H215O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology, 25(2), 165172.CrossRefGoogle ScholarPubMed
Hollister, L. E. (1984). Effects of hallucinogens in humans. In Jacobs, B. (Ed.), Hallucinogens: Neurochemical, behavioral and clinical perspectives (pp. 1933). New York, NY: Raven Press.Google Scholar
Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging (Vol. 1). Sunderland, MA: Sinauer Associates Sunderland.Google ScholarPubMed
Huxley, A. (1954). The doors of perception. New York, NY: Harper & Row.Google Scholar
James, W. (1985). The varieties of religious experience (Vol. 13). Cambridge, MA: Harvard University Press.Google Scholar
Jansen, K. L., & Sferios, E. (2001). Ketamine: Dreams and realities. Santa Cruz, CA: Multidisciplinary Association for Psychedelic Studies.Google Scholar
Joules, R., Doyle, O., Schwarz, A., O’Daly, O., Brammer, M., Williams, S., & Mehta, M. (2015). Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile. Psychopharmacology, 232(21–22), 42054218.CrossRefGoogle ScholarPubMed
Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., … Tran, T. B. (2009). Predicting new molecular targets for known drugs. Nature, 462(7270), 175181.CrossRefGoogle ScholarPubMed
Khalili-Mahani, N., Niesters, M., van Osch, M. J., Oitzl, M., Veer, I., de Rooij, M., … Rombouts, S. A. (2015). Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. NeuroImage, 108, 396409.CrossRefGoogle Scholar
Kivy, P. (2001). The possessor and the possessed: Handel, Mozart, Beethoven, and the idea of musical genius. New Haven, CT: Yale University Press.CrossRefGoogle Scholar
Klinger, E. (2008). Daydreaming and fantasizing: Thought flow and motivation. In Markman, K. D., Klein, W. M. P., & Suhr, J. A. (Eds.), Handbook of imagination and mental simulation (pp. 225239). New York, NY: Psychology Press.Google Scholar
Klinger, E., & Cox, W. M. (1987). Dimensions of thought flow in everyday life. Imagination, Cognition and Personality, 7(2), 105128.CrossRefGoogle Scholar
Kohrs, R., & Durieux, M. E. (1998). Ketamine: Teaching an old drug new tricks. Anesthesia & Analgesia, 87(5), 11861193.Google ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Alpert, N. M. (1997). Neural systems shared by visual imagery and visual perception: A positron emission tomography study. NeuroImage, 6(4), 320334.CrossRefGoogle ScholarPubMed
Krebs, T. S., & Johansen, P.-Ø. (2012). Lysergic acid diethylamide (LSD) for alcoholism: Meta-analysis of randomized controlled trials. Journal of Psychopharmacology, 26(7), 9941002.CrossRefGoogle ScholarPubMed
Krippner, S. (1972). Mescaline psilocybin and creative artists. In Altered States of Consciousness. Hoboken, NJ: John Wiley and Sons.Google Scholar
Kupferschmidt, K. (2014). High hopes. Science, 345(6192), 1823.CrossRefGoogle ScholarPubMed
Langlitz, N. D. (2007). Neuropsychedelia. The revival of hallucinogen research since the decade of the brain. Berkeley, CA: University of California Press.Google Scholar
Långsjö, J. W., Kaisti, K. K., Aalto, S., Hinkka, S., Aantaa, R., Oikonen, V., … Scheinin, H. (2003). Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. The Journal of the American Society of Anesthesiologists, 99(3), 614623.Google ScholarPubMed
Lazar, S. W., Bush, G., Gollub, R. L., Fricchione, G. L., Khalsa, G., & Benson, H. (2000). Functional brain mapping of the relaxation response and meditation. Neuroreport, 11(7), 15811585.CrossRefGoogle ScholarPubMed
Lebedev, A. V., Lövdén, M., Rosenthal, , Feilding, G., Nutt, A., , D. J., & Carhart-Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Human Brain Mapping, 36(8), 31373153.CrossRefGoogle ScholarPubMed
Lee, M. A., & Shlain, B. (1992). Acid dreams: The complete social history of LSD: The CIA, the sixties, and beyond. New York, NY: Grove Press.Google Scholar
Lilly, J. C. (1972). Programming and metaprogramming in the human biocomputer. Julian P.Google Scholar
Lou, H. C., Kjaer, T. W., Friberg, L., Wildschlodtz, G., Holm, S., & Nowak, M. (1999). A 15O-H20 PET study of meditation and the resting state of normal consciousness. Human Brain Mapping, 7, 98105.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
MacLean, K. A., Johnson, M. W., & Griffiths, R. R. (2011). Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. Journal of Psychopharmacology, 25(11), 14531461.CrossRefGoogle ScholarPubMed
Maquet, P., Péters, J.-M., Aerts, , Delfiore, J., Degueldre, G., Luxen, C., , A., & Franck, G. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383(6596), 163166.CrossRefGoogle ScholarPubMed
Marona-Lewicka, D., Thisted, R. A., & Nichols, D. E. (2005). Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology, 180(3), 427435.CrossRefGoogle ScholarPubMed
McAllister, W. B. (2000). Drug diplomacy in the twentieth century: An international history. London: Routledge.Google Scholar
McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R., & Shulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences, 90(11), 49524956.CrossRefGoogle ScholarPubMed
McGlothlin, W. H., & Arnold, D. O. (1971). LSD revisited: A ten-year follow-up of medical LSD use. Archives of General Psychiatry, 24(1), 3549.CrossRefGoogle ScholarPubMed
McGlothlin, W. H., Cohen, S., & McGlothlin, M. S. (1967). Long lasting effects of LSD on normals. Archives of General Psychiatry, 17(5), 521.CrossRefGoogle ScholarPubMed
McKenna, D. J., Towers, G. N., & Abbott, F. (1984). Monoamine oxidase inhibitors in South American hallucinogenic plants: Tryptamine and β-carboline constituents of ayahuasca. Journal of Ethnopharmacology, 10(2), 195223.CrossRefGoogle ScholarPubMed
McMahon, D. (2013). Divine fury: A history of genius. New York, NY: Basic Books.Google Scholar
Monte, A. P., Waldman, S. R., Marona-Lewicka, D., Wainscott, D. B., Nelson, D. L., Sanders-Bush, E., & Nichols, D. E. (1997). Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. Journal of Medicinal Chemistry, 40(19), 29973008.CrossRefGoogle ScholarPubMed
Mullis, K. (2010). Dancing naked in the mind field. London: Vintage.Google Scholar
Murray, P. (1989). Poetic genius and its classic origins. In Murray, P. (Ed.), Genius: The history of an idea (pp. 931). Oxford: Blackwell.Google Scholar
Murray, P. (1996). Plato on poetry: Ion; Republic 376e-398b9; Republic 595-608b10. Cambridge: Cambridge University Press.Google Scholar
Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … Singh, K. D. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience, 33(38), 1517115183.CrossRefGoogle ScholarPubMed
Nichols, D. E. (2004). Hallucinogens. Pharmacology & Therapeutics, 101(2), 131181.CrossRefGoogle ScholarPubMed
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain – A meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440457.CrossRefGoogle Scholar
Nour, M. M., & Krzanowski, J. (2015). Therapeutic potential of psychedelic agents. The British Journal of Psychiatry, 206(5), 433434.CrossRefGoogle ScholarPubMed
Nutt, D. J. (2014). Mind-altering drugs and research: From presumptive prejudice to a Neuroscientific Enlightenment? EMBO Reports, 15(3), 208211.CrossRefGoogle ScholarPubMed
Nutt, D. J., King, L. A., & Nichols, D. E. (2013). Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nature Reviews Neuroscience, 14(8), 577585.CrossRefGoogle ScholarPubMed
Nutt, D. J., King, L. A., & Phillips, L. D. (2010). Drug harms in the UK: A multicriteria decision analysis. The Lancet, 376(9752), 15581565.CrossRefGoogle Scholar
Nutt, D. J., King, L. A., Saulsbury, W., & Blakemore, C. (2007). Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet, 369(9566), 10471053.CrossRefGoogle ScholarPubMed
Pahnke, W. N. (1967). LSD and religious experience. In LSD, Man & Society. (pp. 6085). Middletown, CT: Wesleyan University Press.Google Scholar
Pahnke, W. N. (1969). Psychedelic drugs and mystical experience. International Psychiatry Clinics, 5(4), 149.Google ScholarPubMed
Pahnke, W. N., Kurland, A. A., Unger, S., Savage, C., & Grof, S. (1970). The experimental use of psychedelic (LSD) psychotherapy. Journal of the American Medical Association, 212(11), 18561863.CrossRefGoogle ScholarPubMed
Pahnke, W. N., & Richards, W. A. (1966). Implications of LSD and experimental mysticism. Journal of Religion and Health, 5(3), 175208.CrossRefGoogle ScholarPubMed
Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., Santos, A. C., Crippa, J. A. S., Hallak, J. E., … de Araujo, D. B. (2015). The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS ONE, 10, e0118143.CrossRefGoogle ScholarPubMed
Passie, T., Seifert, J., Schneider, U., & Emrich, H. M. (2002). The pharmacology of psilocybin. Addiction Biology, 7(4), 357364.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585589.CrossRefGoogle ScholarPubMed
Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7(5), 695702.CrossRefGoogle ScholarPubMed
Pieper, J. (1964). Enthusiasm and divine madness: On the Platonic dialogue. Sheffield: Phaedrus.Google Scholar
Plato, , Grube, G. M. A., & Plochmann, G. K. (1974). Plato’s republic. JSTOR.Google Scholar
Plotinus, , & Katz, J. (1950). The philosophy of Plotinus. New York, NY: Appleton-Century-Crofts.Google Scholar
Plotinus, , & MacKenna, S. (1969). Plotinus the Enneads. London: Faber & Faber.Google Scholar
Pollak, T., De Simoni, S., Barimani, B., Zelaya, F., Stone, J., & Mehta, M. (2015). Phenomenologically distinct psychotomimetic effects of ketamine are associated with cerebral blood flow changes in functionally relevant cerebral foci: A continuous arterial spin labelling study. Psychopharmacology, 232(24), 45154524.CrossRefGoogle Scholar
Raichle, M. E. (2009). A brief history of human brain mapping. Trends in Neuroscience, 32(2), 118126. doi:10.1016/j.tins.2008.11.001CrossRefGoogle ScholarPubMed
Ray, T. S. (2010). Psychedelics and the human receptorome. PLoS ONE, 5(2), e9019.CrossRefGoogle ScholarPubMed
Riba, J., Romero, S., Grasa, E., Mena, E., Carrió, I., & Barbanoj, M. J. (2006). Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology, 186(1), 9398.CrossRefGoogle ScholarPubMed
Roseman, L., Leech, R., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Roth, B. L., Baner, K., Westkaemper, R., Siebert, D., Rice, K. C., Steinberg, S., … Rothman, R. B. (2002). Salvinorin A: A potent naturally occurring nonnitrogenous κ opioid selective agonist. Proceedings of the National Academy of Sciences, 99(18), 1193411939.CrossRefGoogle ScholarPubMed
Salt, T., Wilson, D., & Prasad, S. (1988). Antagonism of N-methylaspartate and synaptic responses of neurones in the rat ventrobasal thalamus by ketamine and MK-801. British Journal of Pharmacology, 94(2), 443448.CrossRefGoogle ScholarPubMed
Sarma, D. (2011). Classical Indian philosophy: A reader. New York, NY: Columbia University Press.Google Scholar
Savoy, R. L. (2001). History and future directions of human brain mapping and functional neuroimaging. Acta Psychologica, 107(1), 942.CrossRefGoogle ScholarPubMed
Scheidegger, M., Walter, M., Lehmann, M., Metzger, C., Grimm, S., Boeker, H., … Seifritz, E. (2012). Ketamine decreases resting state functional network connectivity in healthy subjects: Implications for antidepressant drug action. PLoS ONE, 7(9), e44799.CrossRefGoogle ScholarPubMed
Schredl, M. (2010). Characteristics and contents of dreams. International Review of Neurobiology, 92, 135154.CrossRefGoogle ScholarPubMed
Schultes, R. E. (1957). The identity of the malpighiaceous narcotics of South America. Botanical Museum Leaflets, Harvard University, 18(1), 156.CrossRefGoogle Scholar
Schultes, R. E., Hofmann, A., & Rätsch, C. (2001). Plants of the gods: Their sacred, healing, and hallucinogenic powers. Rochester, VT: Healing Arts Press.Google Scholar
Sessa, B. (2008). Is it time to revisit the role of psychedelic drugs in enhancing human creativity? Journal of Psychopharmacology, 22(8), 821827.CrossRefGoogle ScholarPubMed
Sessa, B. (2012a). The psychedelic renaissance: Reassessing the role of psychedelic drugs in 21st century psychiatry and society. London: Muswell Hill Press.Google Scholar
Sessa, B. (2012b). Shaping the renaissance of psychedelic research. The Lancet, 380(9838), 200201.CrossRefGoogle ScholarPubMed
Sherwood, J. N., Stolaroff, M. J., & Harman, W. W. (1962). The psychedelic experience – A new concept in psychotherapy. Journal of Neuropsychiatry, 4, 69.Google ScholarPubMed
Shulgin, A., & Shulgin, A. (1997). TiHKAL: The continuation. Berkeley, CA: Transform Press.Google Scholar
Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind-wandering: Phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica (Amsterdam), 136(3), 370381. doi:10.1016/j.actpsy.2011.01.002CrossRefGoogle ScholarPubMed
Stevens, C. L. (1966). Aminoketones and methods for their production: Google Patents.Google Scholar
Stevens, J. (1987). Storming heaven: LSD and the American dream. New York, NY: Grove Press.Google Scholar
Streatfeild, D. (2008). Brainwash: The secret history of mind control. London: Macmillan.Google Scholar
Studerus, E., Gamma, A., & Vollenweider, F. X. (2010). Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE, 5(8), e12412.CrossRefGoogle ScholarPubMed
Studerus, E., Kometer, M., Hasler, F., & Vollenweider, F. X. (2011). Acute, subacute and long-term subjective effects of psilocybin in healthy humans: A pooled analysis of experimental studies. Journal of Psychopharmacology, 25(11), 14341452.CrossRefGoogle ScholarPubMed
Tupper, K. W. (2008). The globalization of ayahuasca: Harm reduction or benefit maximization? International Journal of Drug Policy, 19(4), 297303.CrossRefGoogle ScholarPubMed
Vollenweider, F., & Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nature Reviews Neuroscience, 11(9), 642651.CrossRefGoogle ScholarPubMed
Vollenweider, F., Leenders, K., Scharfetter, C., Antonini, A., Maguire, P., Missimer, J., & Angst, J. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18 F] fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7(1), 924.CrossRefGoogle ScholarPubMed
Vollenweider, F., Leenders, K., Scharfetter, C., Maguire, P., Stadelmann, O., & Angst, J. (1997). Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology, 16(5), 357372.CrossRefGoogle ScholarPubMed
Wasson, R. G. (1958). The divine mushroom: Primitive religion and hallucinatory agents. Proceedings of the American Philosophical Society, 102(3), 221223.Google Scholar
Wasson, R. G., Hofmann, A., Ruck, C. A., & Smith, H. (2008). The road to Eleusis: Unveiling the secret of the mysteries. Berkeley, CA: North Atlantic Books.Google Scholar
Windt, J. M. (2010). The immersive spatiotemporal hallucination model of dreaming. Phenomenology and the Cognitive Sciences, 9(2), 295316. doi:10.1007/s11097-010-9163-1CrossRefGoogle Scholar
Windt, J. M. (2015). Dreaming: A conceptual framework for philosophy of mind and empirical research: Cambridge, MA: MIT Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×