Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T19:28:39.409Z Has data issue: false hasContentIssue false

26 - Girls, Boys, and Schools

On Gender (In)equalities in Education

from Section 5 - Inequality and Social Justice

Published online by Cambridge University Press:  20 July 2020

Fanny M. Cheung
Affiliation:
The Chinese University of Hong Kong
Diane F. Halpern
Affiliation:
Claremont McKenna College, California
Get access

Summary

Concerns about gender-equality in education persist in spite of substantial historical progress. We review some of the major issues occupying researchers today, while considering findings across cultures and nations. We discuss patterns of gender gaps based on cross-national assessments, research on gender stereotypes and biases in the classroom, women’s participation in STEM domains, and possible educational interventions. Some consistencies and many inconsistencies that emerge across cultures are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Readings

Michal Berkowitz is a postdoctoral researcher at the Chair for Research on Learning and Instruction at ETH Zurich. She studied psychology at Tel-Aviv University and began her career in clinical psychology. She later moved on to research in cognitive psychology, and obtained her doctoral degree in 2017 at ETH Zurich. Her doctoral research focused on cognitive predictors of advanced STEM achievements, particularly in math-intensive domains. Her research interests include spatial ability’s role in STEM learning, mathematical thinking and learning, and the interplay between working memory, intelligence, and learning. She is mother of a 12-year-old girl and a 6-year-old boy. She was born in the US, grew up in Israel and since 2009 is living in Switzerland. In addition to living in Switzerland and Israel, she spent a year living in New York. Berkowitz identifies herself as secular-Jewish.

Elsbeth Stern is a cognitive psychologist with a focus on STEM learning at various age levels. As a Professor for Learning and Instruction at ETH Zurich since 2006, she is heading the teacher education program. Stern was born and raised in Germany. After completing her doctorate at the University of Hamburg, she worked at the Max-Planck Institute for Psychological Research in Munich, and in 1994 became a Professor at the University of Leipzig. In 1997, she moved to the Max-Planck Institute for Human Development in Berlin. In more than 100 papers and several books, Stern has focused on the interaction between individual preconditions and instructional support of learning.

Sarah Isabelle Hofer is a postdoctoral researcher at the Centre for International Student Assessment (ZIB) at the TUM School of Education in Germany. From 2011 to 2016, she worked as a doctoral and later as a postdoctoral researcher in Elsbeth Stern’s group at the Chair for Research on Learning and Instruction at the ETH Zurich in Switzerland, where she received her doctoral degree in 2015. Hofer studied pedagogical psychology, reflexive social psychology, and neurocognitive psychology. Her research addresses individual, classroom, and institutional factors that contribute to educational success. With a focus on the STEM domain, she investigates how intelligence, prior knowledge, and gender interact with performance assessment and instructional methods to build theory and derive recommendations for practice. At the institutional level, she is interested in internal and external school evaluation as tools to increase educational effectiveness. She is the mother of a 2-year-old boy and a 7-year-old girl.

Anne Deiglmayr is a Full Professor for Educational Psychology in the Teacher Education Program at the University of Leipzig in Germany. She obtained her PhD in Psychology from the University of Freiburg, Germany, and has worked as a postdoctoral researcher in educational psychology and as a teacher educator in Germany and Switzerland. Her research interests include the assessment and training of experimentation skills, beliefs and biases in STEM education, and the co-construction of knowledge in dialogues between peers. She is the mother of a school-age boy and a girl, which makes this chapter on gender and education personally relevant to her.

Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114(4), 924976. doi:10.1086/595942.CrossRefGoogle ScholarPubMed
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103127. doi:10.1037/a0018053.Google Scholar
Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153166. doi:10.1007/s11199–011-9996-2.CrossRefGoogle Scholar
Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., … Gonsalkorale, K. (2009). National differences in gender – science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1059310597. doi:10.1073/pnas.0809921106.CrossRefGoogle ScholarPubMed
Robinson-Cimpian, J. P., Lubienski, S. T., Ganley, C. M., & Copur-Gencturk, Y. (2014). Teachers’ perceptions of students’ mathematics proficiency may exacerbate early gender gaps in achievement. Developmental Psychology, 50(4), 12621281. doi:10.1037/a0035073.Google Scholar
Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in science, technology, engineering, and mathematics education. Psychological Science, 29(4), 581593. doi:10.1177/0956797617741719.Google Scholar
van den Hurk, A., Meelissen, M., & van Langen, A. (2019). Interventions in education to prevent STEM pipeline leakage. International Journal of Science Education, 41(2), 115. doi:10.1080/09500693.2018.1540897CrossRefGoogle Scholar

References

Ahr, E., Borst, G., & Houdé, O. (2016). The learning brain. Zeitschrift für Psychologie, 224(4), 277285. doi:10.1027/2151-2604/a000263Google Scholar
Baker, D. P., & Jones, D. P. (1993). Creating gender equality: Cross-national gender stratification and mathematical performance. Sociology of Education, 66(2), 91103. doi:10.2307/2112795Google Scholar
Bauer, C. C., & Baltes, B. B. (2002). Reducing the effects of gender stereotypes on performance evaluations. Sex Roles, 47(9), 465476. doi:10.1023/A:1021652527696CrossRefGoogle Scholar
Baye, A., & Monseur, C. (2016). Gender differences in variability and extreme scores in an international context. Large-Scale Assessments in Education, 4(1), 116.CrossRefGoogle Scholar
Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15(3), 75141. doi:10.1177/1529100614541236Google Scholar
Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135, 218261. doi:10.1037/a0014412Google Scholar
Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114(4), 924976. doi:10.1086/595942CrossRefGoogle ScholarPubMed
Charles, M., Harr, B., Cech, E., & Hendley, A. (2014). Who likes math where? Gender differences in eighth-graders’ attitudes around the world. International Studies in Sociology of Education, 24(1), 85112. doi:10.1080/09620214.2014.895140Google Scholar
Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97(6), 10451060. doi:10.1037/a0016239.Google Scholar
Collins, R., Chafetz, J. S., Blumberg, R. L., Coltrane, S., & Turner, J. H. (1993). Toward an integrated theory of gender stratification. Sociological Perspectives, 36(3), 185216. doi:10.2307/1389242Google Scholar
Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12(3), 258261. doi:10.1111/1467-9280.00347CrossRefGoogle ScholarPubMed
DeBoer, J., & Ater Kranov, A. (2017). Key factors in the tertiary educational trajectories of women in engineering: Trends and opportunities in Saudi Arabia, the GCC, and comparative national settings. Berlin: Gerlach Press. Available at: http://www.jstor.org/stable/j.ctt1m3p2gh.Google Scholar
Dehaene, S. (1999). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. From monkey brain to human brain (pp. 133157). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Dekhtyar, S., Weber, D., Helgertz, J., & Herlitz, A. (2018). Sex differences in academic strengths contribute to gender segregation in education and occupation: A longitudinal examination of 167,776 individuals. Intelligence, 67, 8492. doi:10.1016/j.intell.2017.11.007Google Scholar
Eccles, J., Adler, T., Futterman, R., Goff, S., Kaczala, C., Meece, J., & Midgley, C. (1983). Expectations, values and academic behaviors. In Spence, J. T. (Ed.), Perspective on achievement and achievement motives: Psychological and sociological approaches (pp. 75146). San Francisco: Freeman.Google Scholar
Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53(1), 109132. doi:10.1146/annurev.psych.53.100901.135153Google Scholar
Ehrtmann, L., & Wolter, I. (2018). The impact of students’ gender-role orientation on competence development in mathematics and reading in secondary school. Learning and Individual Differences, 61, 256264. doi:10.1016/j.lindif.2018.01.004CrossRefGoogle Scholar
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103127. doi:10.1037/a0018053Google Scholar
Endendijk, J. J., Groeneveld, M. G., van der Pol, L. D., van Berkel, S. R., Hallers-Haalboom, E. T., Mesman, J., & Bakermans-Kranenburg, M. J. (2014). Boys don’t play with dolls: Mothers’ and fathers’ gender talk during picture book reading. Parenting, 14(3–4), 141161. doi:10.1080/15295192.2014.972753Google Scholar
Espinoza, P.da Luz Fontes, A. B., & Arms-Chavez, C. J. (2014). Attributional gender bias: Teachers’ ability and effort explanations for students’ math performance. Social Psychology of Education, 17(1), 105126. doi:10.1007/s11218–013-9226-6Google Scholar
Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 5569. doi:10.1007/BF00311015Google Scholar
Flore, P. C., & Wicherts, J. M. (2015). Does stereotype threat influence performance of girls in stereotyped domains? A meta-analysis. Journal of School Psychology, 53(1), 2544. doi:10.1016/j.jsp.2014.10.002Google Scholar
Freeman, J. (2003). Gender differences in gifted achievement in Britain and the U.S. Gifted Child Quarterly, 47(3), 202211. doi:10.1177/001698620304700304Google Scholar
Gaspard, H., Dicke, A.-L., Flunger, B., Brisson, B. M., Häfner, I., Nagengast, B., & Trautwein, U. (2015). Fostering adolescents’ value beliefs for mathematics with a relevance intervention in the classroom. Developmental Psychology, 51(9), 12261240. doi:10.1037/dev0000028Google Scholar
Gerber, T. P., & Schaefer, D. R. (2004). Horizontal stratification of higher education in Russia: Trends, gender differences, and labor market outcomes. Sociology of Education, 77(1), 3259. doi:10.1177/003804070407700102Google Scholar
Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153166. doi:10.1007/s11199–011-9996-2Google Scholar
Gurian, M. (2010). Boys and girls learn differently! A guide for teachers and parents: Revised 10th anniversary edition. New York: Wiley.Google Scholar
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 151. doi:10.1111/j.1529-1006.2007.00032.xGoogle Scholar
Halpern, D. F., Eliot, L., Bigler, R. S., Fabes, R. A., Hanish, L. D., Hyde, J., … Martin, C. L. (2011). The pseudoscience of single-sex schooling. Science, 333(6050), 17061707. doi:10.1126/science.1205031CrossRefGoogle ScholarPubMed
Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Giffen, C. J., Blair, S. S., Rouse, D. I., & Hyde, J. S. (2014). Closing the social class achievement gap for first-generation students in undergraduate biology. Journal of Educational Psychology, 106(2), 375389. doi:10.1037/a0034679Google Scholar
Hedges, L., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269(5220), 4145. doi:10.1126/science.7604277Google Scholar
Heller, K. A., Finsterwald, M., & Ziegler, A. (2001). Implicit theories of German mathematics and physics teachers on gender specific giftedness and motivation. Psychological Test and Assessment Modeling, 43(1), 172189.Google Scholar
Hofer, S. I. (2015). Studying gender bias in physics grading: The role of teaching experience and country. International Journal of Science Education, 37(17), 28792905. doi:10.1080/09500693.2015.1114190Google Scholar
Hofer, S. I., Schumacher, R., Rubin, H., & Stern, E. (2018). Enhancing physics learning with cognitively activating instruction: A quasi-experimental classroom intervention study. Journal of Educational Psychology, 110(8), 11751191. doi:10.1037/edu0000266Google Scholar
Hofer, S. I., & Stern, E. (2016). Underachievement in physics: When intelligent girls fail. Learning and Individual Differences, 51, 119131. doi:10.1016/j.lindif.2016.08.006Google Scholar
Huguet, P., & Régner, I. (2007). Stereotype threat among schoolgirls in quasi-ordinary classroom circumstances. Journal of Educational Psychology, 99(3), 545560. doi:10.1037/0022-0663.99.3.545CrossRefGoogle Scholar
Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326(5958), 14101412. doi:10.1126/science.1177067Google Scholar
Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494495. doi:10.1126/science.1160364Google Scholar
International Association for the Evaluation of Educational Achievement. (2016). PIRLS 2016 assessment frameworks. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College.Google Scholar
Kenney-Benson, G. A., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in math performance: The role of children’s approach to schoolwork. Developmental Psychology, 42(1), 1126. doi:10.1037/0012-1649.42.1.11Google Scholar
Kimball, M. M. (1989). A new perspective on women’s math achievement. Psychological Bulletin, 105, 198214. doi:10.1037/0033-2909.105.2.198Google Scholar
Kirchhoff, A. (1897). Die akademische Frau: Gutachten hervorragender Universitätsprofessoren, Frauenlehrer und Schriftsteller über die Befähigung der Frau zum wissenschaftlichen Studium und Berufe. Berlin: Steinitz.Google Scholar
Labudde, P., Herzog, W., Neuenschwander, M. P., Violi, E., & Gerber, C. (2000). Girls and physics: Teaching and learning strategies tested by classroom interventions in grade 11. International Journal of Science Education, 22(2), 143157. doi:10.1080/095006900289921CrossRefGoogle Scholar
Lauermann, F., Tsai, Y.-M., & Eccles, J. S. (2017). Math-related career aspirations and choices within Eccles et al.’s expectancy–value theory of achievement-related behaviors. Developmental Psychology, 53(8), 15401559. doi:10.1037/dev0000367Google Scholar
Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262265. doi:10.1126/science.1261375CrossRefGoogle ScholarPubMed
Li, M., Zhang, Y., Liu, H., & Hao, Y. (2018). Gender differences in mathematics achievement in Beijing: A meta-analysis. British Journal of Educational Psychology, 88(4), 566583.CrossRefGoogle ScholarPubMed
Liu, O. L. (2009). An investigation of factors affecting gender differences in standardized math performance: Results from US and Hong Kong 15 year olds. International Journal of Testing, 9(3), 215237. doi:10.1080/15305050903106875.Google Scholar
Logel, C., Walton, G. M., Spencer, S. J., Iserman, E. C., von Hippel, W., & Bell, A. E. (2009). Interacting with sexist men triggers social identity threat among female engineers. Journal of Personality and Social Psychology, 96(6), 10891103. doi:10.1037/a0015703Google Scholar
Lubinski, D. S., & Benbow, C. P. (2007). Sex differences in personal attributes for the development of scientific expertise. In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science? Top researchers debate the evidence (pp. 79100). Washington, DC: American Psychological Association. doi:10.1037/11546-007Google Scholar
Lummis, M., & Stevenson, H. W. (1990). Gender differences in beliefs and achievement: A cross-cultural study. Developmental Psychology, 26(2), 254263. doi:10.1037/0012-1649.26.2.254Google Scholar
Makel, M. C., Wai, J., Peairs, K., & Putallaz, M. (2016). Sex differences in the right tail of cognitive abilities: An update and cross cultural extension. Intelligence, 59, 815. doi:10.1016/j.intell.2016.09.003Google Scholar
Maloney, E. A., Schaeffer, M. W., & Beilock, S. L. (2013). Mathematics anxiety and stereotype threat: Shared mechanisms, negative consequences and promising interventions. Research in Mathematics Education, 15(2), 115128. doi:10.1080/14794802.2013.797744Google Scholar
Martin, M. O., Mullis, I. V. S., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College. http://timssandpirls.bc.edu/timss2015/international-results/Google Scholar
Meyer, M., Cimpian, A., & Leslie, S.-J. (2015). Women are underrepresented in fields where success is believed to require brilliance. Frontiers in Psychology, 6, Article 235. doi:10.3389/fpsyg.2015.00235Google Scholar
Mezulis, A. H., Abramson, L. Y., Hyde, J. S., & Hankin, B. L. (2004). Is there a universal positivity bias in attributions? A meta-analytic review of individual, developmental, and cultural differences in the self-serving attributional bias. Psychological Bulletin, 130, 711747. doi:10.1037/0033-2909.130.5.711Google Scholar
Miller, D. I., Eagly, A. H., & Linn, M. C. (2015). Women’s representation in science predicts national gender-science stereotypes: Evidence from 66 nations. Journal of Educational Psychology, 107(3), 631644. doi:10.1037/edu0000005Google Scholar
Min, Y., Zhang, G., Long, R. A., Anderson, T. J., & Ohland, M. W. (2011). Nonparametric survival analysis of the loss rate of undergraduate engineering students. Journal of Engineering Education, 100(2), 349373. doi:10.1002/j.2168-9830.2011.tb00017.xCrossRefGoogle Scholar
Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: A classroom study of values affirmation. Science, 330(6008), 12341237. doi:10.1126/science.1195996Google Scholar
Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 1647416479. doi: 10.1073/pnas.1211286109.Google Scholar
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College. http://timssandpirls.bc.edu/timss2015/international-results/Google Scholar
Murphy, M. C., & Walton, G. M. (2013). From prejudiced people to prejudiced places: A social-contextual approach to prejudice. In Stangor, C. & Crandall, C. (Eds.),  Stereotyping and Prejudice (pp. 181204). New York: Psychology Press.Google Scholar
Nagengast, B., Marsh, H. W., Scalas, L. F., Xu, M. K., Hau, K.-T., & Trautwein, U. (2011). Who took the “X” out of expectancyvalue theory? A psychological mystery, a substantive-methodological synergy, and a cross-national generalization. Psychological Science, 22(8), 10581066. doi:10.1177/0956797611415540.Google Scholar
Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math = male, me = female, therefore math ≠ me. Journal of Personality and Social Psychology, 83(1), 4459. doi:10.1037/0022-3514.83.1.44.Google Scholar
Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., … Gonsalkorale, K. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1059310597. doi:10.1073/pnas.0809921106.Google Scholar
O’Dea, R. E., Lagisz, M., Jennions, M. D., & Nakagawa, S. (2018). Gender differences in individual variation in academic grades fail to fit expected patterns for STEM. Nature Communications, 9(1), Article 3777. doi:10.1038/s41467–018-06292-0Google Scholar
OECD. (2016). PISA 2015 results, Vol. 1: Excellence and equity in education. Paris: PISA, OECD Publishing.Google Scholar
OECD. (2018). Education at a glance 2018: OECD indicators. Paris: OECD Publishing.Google Scholar
Pahlke, E., Hyde, J. S., & Allison, C. M. (2014). The effects of single-sex compared with coeducational schooling on students’ performance and attitudes: A meta-analysis. Psychological Bulletin, 140, 10421072. doi:10.1037/a0035740Google Scholar
Pargulski, J. R., & Reynolds, M. R. (2017). Sex differences in achievement: Distributions matter. Personality and Individual Differences, 104, 272278. doi:10.1016/j.paid.2016.08.016Google Scholar
Penner, A. M. (2008). Gender differences in extreme mathematical achievement: An international perspective on biological and social factors. American Journal of Sociology, 114(S1), S138S170. doi:10.1086/589252CrossRefGoogle ScholarPubMed
Proudfoot, D., Kay, A. C., & Koval, C. Z. (2015). A gender bias in the attribution of creativity: Archival and experimental evidence for the perceived association between masculinity and creative thinking. Psychological Science, 26(11), 17511761. doi:10.1177/0956797615598739Google Scholar
Purvis, J. (1991). A history of women’s education in England (Vol. 87). Milton Keynes: Open University Press.Google Scholar
Quinn, J. M., & Wagner, R. K. (2015). Gender differences in reading impairment and in the identification of impaired readers: Results from a large-scale study of at-risk readers. Journal of Learning Disabilities, 48(4), 433445. doi:10.1177/0022219413508323Google Scholar
Ready, D. D., LoGerfo, L. F., Burkam, D. T., & Lee, V. E. (2005). Explaining girls’ advantage in kindergarten literacy learning: Do classroom behaviors make a difference? Elementary School Journal, 106(1), 2138. doi:10.1086/496905CrossRefGoogle Scholar
Reilly, D., Neumann, D. L., & Andrews, G. (2017). Investigating gender differences in mathematics and science: Results from the 2011 Trends in Mathematics and Science Survey. Research in Science Education, 49(1), 2550. doi:10.1007/s11165–017-9630-6Google Scholar
Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48(2), 268302. doi:10.3102/0002831210372249Google Scholar
Robinson-Cimpian, J. P., Lubienski, S. T., Ganley, C. M., & Copur-Gencturk, Y. (2014). Teachers’ perceptions of students’ mathematics proficiency may exacerbate early gender gaps in achievement. Developmental Psychology, 50(4), 12621281. doi:10.1037/a0035073Google Scholar
Rozek, C. S., Svoboda, R. C., Harackiewicz, J. M., Hulleman, C. S., & Hyde, J. S. (2017). Utility-value intervention with parents increases students’ STEM preparation and career pursuit. Proceedings of the National Academy of Sciences of the United States of America, 114(5), 909914. doi:10.1073/pnas.1607386114Google Scholar
Sadker, D., & Zittleman, K. R. (2009). Still failing at fairness: How gender bias cheats girls and boys in school and what we can do about it. New York: Simon & Schuster.Google Scholar
Seidel, T. (2007). The role of student characteristics in studying micro teaching–learning environments. Learning Environments Research, 9(3), 253271. doi:10.1007/s10984–006-9012-xGoogle Scholar
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604614. doi:10.1037/0022-0663.93.3.604Google Scholar
Solomon, B. M. (1985). In the company of educated women: A history of women and higher education in America. New Haven: Yale University Press.Google Scholar
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review. American Psychologist, 60, 950958. doi:10.1037/0003-066X.60.9.950Google Scholar
Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 428. doi:10.1006/jesp.1998.1373Google Scholar
Spitzer, B., & Aronson, J. (2015). Minding and mending the gap: Social psychological interventions to reduce educational disparities. British Journal of Educational Psychology, 85(1), 118. doi:10.1111/bjep.12067Google Scholar
Stadler, H., Duit, R., & Benke, G. (2000). Do boys and girls hold different notions of understanding in physics. Physics Education, 35(5), 417422.Google Scholar
Stankov, L., & Lee, J. (2017). Self-beliefs: Strong correlates of mathematics achievement and intelligence. Intelligence, 61, 1116. doi:10.1016/j.intell.2016.12.001Google Scholar
Stetsenko, A., Little, T. D., Gordeeva, T., Grasshof, M., & Oettingen, G. (2000). Gender effects in children’s beliefs about school performance: A cross-cultural study. Child Development, 71(2), 517527. doi:10.1111/1467-8624.00161Google Scholar
Stoet, G., & Geary, D. C. (2015). Sex differences in academic achievement are not related to political, economic, or social equality. Intelligence, 48, 137151. doi:10.1016/j.intell.2014.11.006Google Scholar
Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in science, technology, engineering, and mathematics education. Psychological Science, 29(4), 581593. doi:10.1177/0956797617741719Google Scholar
Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100(2), 255270. doi:10.1037/a0021385CrossRefGoogle ScholarPubMed
Thébaud, S., & Charles, M. (2018). Segregation, stereotypes, and STEM. Social Sciences, 7(7), 111. doi:10.3390/socsci7070111Google Scholar
Tiedemann, J. (2000). Parents’ gender stereotypes and teachers’ beliefs as predictors of children’s concept of their mathematical ability in elementary school. Journal of Educational Psychology, 92(1), 144151. doi:10.1037/0022-0663.92.1.144Google Scholar
Todd, B. L., & Zvoch, K. (2018). The effect of an informal science intervention on middle school girls’ science affinities. International Journal of Science Education, 41(1), 102122. doi:10.1080/09500693.2018.1534022Google Scholar
UNESCO. (2016). Gender review of the Global Education Monitoring Report series. Paris: UNESCO.Google Scholar
UNESCO Institute for Statistics. (2017). One in five children, adolescents and youth is out of school. UNESCO Institute for Statistics (UIS), fact sheet 46. Montreal: UIS.Google Scholar
van den Hurk, A., Meelissen, M., & van Langen, A. (2019). Interventions in education to prevent STEM pipeline leakage. International Journal of Science Education, 41(2), 115. doi:10.1080/09500693.2018.1540897Google Scholar
van der Pol, L. D., Groeneveld, M. G., van Berkel, S. R., Endendijk, J. J., Hallers-Haalboom, E. T., Bakermans-Kranenburg, M. J., & Mesman, J. (2015). Fathers’ and mothers’ emotion talk with their girls and boys from toddlerhood to preschool age. Emotion, 15(6), 854864. doi:10.1037/emo0000085Google Scholar
Verniers, C., & Martinot, D. (2015). Perception of students’ intelligence malleability and potential for future success: Unfavourable beliefs towards girls. British Journal of Educational Psychology, 85(3), 289299. doi:10.1111/bjep.12073Google Scholar
Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140, 11741204. doi:10.1037/a0036620Google Scholar
Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: A 30 year examination. Intelligence, 38(4), 412423. doi: 10.1016/j.intell.2010.04.006.Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817835. doi:10.1037/a0016127Google Scholar
Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 8296. doi:10.1037/0022-3514.92.1.82Google Scholar
Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health outcomes of minority students. Science, 331(6023), 14471451. doi:10.1126/science.1198364Google Scholar
Walton, G. M., Logel, C., Peach, J. M., Spencer, S. J., & Zanna, M. P. (2015). Two brief interventions to mitigate a “chilly climate” transform women’s experience, relationships, and achievement in engineering. Journal of Educational Psychology, 107(2), 468485. doi:10.1037/a0037461Google Scholar
Wang, M.-T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770775. doi:10.1177/0956797612458937Google Scholar
Wanless, S. B., McClelland, M. M., Lan, X., Son, S.-H., Cameron, C. E., Morrison, F. J., … Sung, M. (2013). Gender differences in behavioral regulation in four societies: The United States, Taiwan, South Korea, and China. Early Childhood Research Quarterly, 28(3), 621633. doi:10.1016/j.ecresq.2013.04.002Google Scholar
Weingarten, E. (2017). The STEM paradox: Why are Muslim-majority countries producing so many female engineers? slate.com/human-interest/2017/11/the-stem-paradox-why-are-muslim-majority-countries-producing-so-many-female-engineers.htmlGoogle Scholar
Whitehead, B. (1999). Women’s education in early modern Europe: A history, 1500–1800. New York: Routledge.Google Scholar
Ziegler, A., Schirner, S., Schimke, D., & Stoeger, H. (2010). Systemische Mädchenförderung in MINT: Das Beispiel CyberMentor. In Quaiser-Pohl, C. & M. Endepohls-Ulpe, (Eds.), Bildungsprozesse im MINT-Bereich – Interessen, Partizipationen von Mädchen und Jungen  (pp. 109126). Münster: Waxmann.Google Scholar
Zohar, A., & Sela, D. (2003). Her physics, his physics: Gender issues in Israeli advanced placement physics classes. International Journal of Science Education, 25(2), 245268. doi:10.1080/09500690210126766Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×