Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T01:41:47.890Z Has data issue: false hasContentIssue false

Part VI - Intensive Longitudinal Designs

Published online by Cambridge University Press:  23 March 2020

Aidan G. C. Wright
Affiliation:
University of Pittsburgh
Michael N. Hallquist
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Achenbach, T. (2006). As Others See Us: Clinical and Research Implications of Cross-Informant Correlations of Psychopathology. Current Directions in Psychological Science, 15(2), 9498Google Scholar
Alpers, G. W. (2009). Ambulatory Assessment in Panic Disorder and Specific Phobia. Psychological Assessment, 21(4), 476485.Google Scholar
Armey, M. F., Schatten, H. T., Haradhvala, N., & Miller, I. W. (2015). Ecological Momentary Assessment (EMA) of Depression-Related Phenomena. Current Opinion in Psychology, 4, 2125.Google Scholar
Barley, R. (1991). The Ecological Validity of Laboratory and Analogue Assessment Methods of ADHD Symptoms. Journal of Abnormal Child Psychology, 19(2), 149178.CrossRefGoogle Scholar
Ben-Zeev, D., Ellington, K., Swendsen, J., & Granholm, E. (2011). Examining a Cognitive Model of Persecutory Ideation in the Daily Life of People with Schizophrenia: A Computerized Experience Sampling Study. Schizophrophrenia Bulletin, 37(6), 12481256.CrossRefGoogle ScholarPubMed
Ben-Zeev, D., Frounfelker, R., Morris, S. B., & Corrigan, P. W. (2012a). Predictors of Self-Stigma in Schizophrenia: New Insights Using Mobile Technologies. Journal Dual Diagnosis, 8(4), 305314.Google Scholar
Ben-Zeev, D., Morris, S., Swendsen, J., & Granholm, E. (2012b). Predicting the Occurrence, Conviction, Distress, and Disruption of Different Delusional Experiences in the Daily Life of People with Schizophrenia. Schizophrophrenia Bulletin, 38(4), 826837.Google Scholar
Bindoff, I., de Salas, K., Peterson, G., Ling, T., Lewis, I., Wells, L., … Ferguson, S. G. (2016). Quittr: The Design of a Video Game to Support Smoking Cessation. Journal of Medical Internet Research Serious Games, 4(2), e19.Google Scholar
Birney, A. J., Gunn, R., Russell, J. K., & Ary, D. V. (2016). MoodHacker Mobile Web App With Email for Adults to Self-Manage Mild-to-Moderate Depression: Randomized Controlled Trial. Journal of Medical Internet Research Mhealth Uhealth, 4(1), e8.CrossRefGoogle ScholarPubMed
Boivin, D. (2000). Influence of Sleep-Wake and Circadian Rhythm Disturbances in Psychiatric Disorders. Journal of Psychiatry & Neuroscience, 25(5), 446458.Google Scholar
Burke, L. E., Shiffman, S., Music, E., Styn, M. A., Kriska, A., Smailagic, A., … Rathbun, S. L. (2017). Ecological Momentary Assessment in Behavioral Research: Addressing Technological and Human Participant Challenges. Journal of Medical Internet Research, 19(3), e77.Google Scholar
Burns, M. N., Begale, M., Duffecy, J., Gergle, D., Karr, C. J., Giangrande, E., & Mohr, D. C. (2011). Harnessing Context Sensing to Develop a Mobile Intervention for Depression. Journal of Medical Internet Research, 13(3), e55.Google Scholar
Businelle, M. S., Ma, P., Kendzor, D. E., Frank, S. G., Vidrine, D. J., & Wetter, D. W. (2016a). An Ecological Momentary Intervention for Smoking Cessation: Evaluation of Feasibility and Effectiveness. Journal of Medical Internet Research, 18(12), e321.Google Scholar
Businelle, M. S., Ma, P., Kendzor, D. E., Frank, S. G., Wetter, D. W., & Vidrine, D. J. (2016b). Using Intensive Longitudinal Data Collected via Mobile Phone to Detect Imminent Lapse in Smokers Undergoing a Scheduled Quit Attempt. Journal of Medical Internet Research, 18(10), e275.Google Scholar
Carroll, J. F. X. (2016). What Constitutes “Success” in Addiction Treatment and How Do We Determine What Works Best? Alcoholism Treatment Quarterly, 34(2), 252260.Google Scholar
Conner, T., & Lehman, B. (2012). Getting Started: Launching a Study in Daily Life. In Mehl, M. & Conner, T. (Eds.), Handbook of Research Methods for Studying Daily Life (pp. 89107). New York: The Guilford Press.Google Scholar
Delespaul, P., deVries, M., & van Os, J. (2002). Determinants of Occurrence and Recovery from Hallucinations in Daily Life. Social Psychiatry and Psychiatric Epidemiology, 37(7), 97104.Google Scholar
De Montjoye, A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in the Crowd: The Privacy Bounds of Human Mobility. Scientific Reports, 3(1376), 15.CrossRefGoogle ScholarPubMed
Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M. R., & Christensen, H. (2013). Smartphones for Smarter Delivery of Mental Health Programs: A Systematic Review. Journal of Medical Internet Research, 15(11), e247.Google Scholar
Ebner-Priemer, U. W., Welch, S. S., Grossman, P., Reisch, T., Linehan, M. M., & Bohus, M. (2007). Psychophysiological Ambulatory Assessment of Affective Dysregulation in Borderline Personality Disorder. Psychiatry Research, 150(3), 265275.CrossRefGoogle ScholarPubMed
Elliston, K. G., Ferguson, S. G., Schuz, N., & Schuz, B. (2017). Situational Cues and Momentary Food Environment Predict Everyday Eating Behavior in Adults with Overweight and Obesity. Health Psychology, 36(4), 337345.Google Scholar
Ferguson, S. G., Frandsen, M., Dunbar, M. S., & Shiffman, S. (2015). Gender and Stimulus Control of Smoking Behavior. Nicotine & Tobacco Research, 17(4), 431437.Google Scholar
Firth, J., Cotter, J., Torous, J., Bucci, S., Firth, J. A., & Yung, A. R. (2016). Mobile Phone Ownership and Endorsement of “mHealth” Among People with Psychosis: A Meta-Analysis of Cross-Sectional Studies. Schizophrophrenia Bulletin, 42(2), 448455.Google Scholar
Firth, J., Torous, J., Nicholas, J., Carney, R., Rosenbaum, S., & Sarris, J. (2017). Can Smartphone Mental Health Interventions Reduce Symptoms of Anxiety? A Meta-Analysis of Randomized Controlled Trials. Journal of Affective Disorders, 218, 1522.Google Scholar
Gainsbury, S., & Blaszczynski, A. (2011). A Systematic Review of Internet-Based Therapy for the Treatment of Addictions. Clinical Psychology Review, 31(3), 490498.Google Scholar
Gaudiano, B. A., Moitra, E., Ellenberg, S., & Armey, M. F. (2015). The Promises and Challenges of Ecological Momentary Assessment in Schizophrenia: Development of an Initial Experimental Protocol. Healthcare (Basel), 3(3), 556573.CrossRefGoogle ScholarPubMed
Gunlicks-Stoessel, M., Mufson, L., Westervelt, A., Almirall, D., & Murphy, S. (2016). A Pilot SMART for Developing an Adaptive Treatment Strategy for Adolescent Depression. Journal of Clinical Child & Adolescent Psychology, 45(4), 480494.Google Scholar
Hammersley, R. (1994). A Digest of Memory Phenomena for Addiction Research. Addiction, 89(3), 283293.Google Scholar
Havermans, R., Nicolson, N. A., Berkhof, J., & deVries, M. W. (2011). Patterns of Salivary Cortisol Secretion and Responses to Daily Events in Patients with Remitted Bipolar Disorder. Psychoneuroendocrinology, 36(2), 258265.CrossRefGoogle ScholarPubMed
Hufford, M. R., Shields, A. L., Shiffman, S., Paty, J., & Balabanis, M. (2002). Reactivity to Ecological Momentary Assessment: An Example Using Undergraduate Problem Drinkers. Psychology of Addictive Behaviors, 16(3), 205211.Google Scholar
Hufford, M. R., & Shiffman, S. (2002). Methodological Issues Affecting the Value of Patient-Reported Outcomes Data. Expert Review on Pharmacoeconomic Outcomes Research, 2(2), 119128.CrossRefGoogle ScholarPubMed
Kaplan, R. M., & Stone, A. A. (2013). Bringing the Laboratory and Clinic to the Community: Mobile Technologies for Health Promotion and Disease Prevention. Annual Reviews Psychology, 64, 471498.Google Scholar
Kimhy, D., Delespaul, P., Ahn, H., Cai, S., Shikhman, M., Lieberman, J. A., … Sloan, R. P. (2010). Concurrent Measurement of “Real-World” Stress and Arousal in Individuals with Psychosis: Assessing the Feasibility and Validity of a Novel Methodology. Schizophrophrenia Bulletin, 36(6), 11311139.Google Scholar
Kirchner, T. R., Cantrell, J., Anesetti-Rothermel, A., Ganz, O., Vallone, D. M., & Abrams, D. B. (2013). Geospatial Exposure to Point-of-Sale Tobacco: Real-Time Craving and Smoking-Cessation Outcomes. American Journal of Preventive Medicine, 45(4), 379385.Google Scholar
Klasnja, P., Hekler, E. B., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A., & Murphy, S. A. (2015). Microrandomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions. Health Psychology, 34S, 12201228.Google Scholar
Klasnja, P., Consolvo, S., McDonald, D. W., Landay, J. A., & Pratt, W. (2009). Using Mobile & Personal Sensing Technologies to Support Health Behavior Change in Everyday Life: Lessons Learned. American Medical Informatics Association Annual Symposium, 2009, 338342.Google Scholar
Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., … Swendeman, D. (2013). Mobile Health Technology Evaluation: The mHealth Evidence Workshop. American Journal of Preventive Medicine, 45(2), 228236.Google Scholar
Labrique, A. B., Vasudevan, L., Kochi, E., Fabricant, R., & Mehl, G. (2013). mHealth Innovations as Health System Strengthening Tools: 12 Common Applications and a Visual Framework. Global Health Science and Practice, 1(2), 160171.Google Scholar
Maclure, M., & Mittleman, M. A. (2000). Should We Use a Case-Crossover Design? Annual Review of Public Health, 21, 193221.CrossRefGoogle ScholarPubMed
Martin, P. (2003). The Epidemiology of Anxiety Disorders: A Review. Dialogues in Clinical Neuroscience, 5(3), 281298.Google Scholar
McFall, R. M. (1977). Parameters of Self-Monitoring. In Stuart, R. B. (Ed.), Behavioral Self-Management: Strategies, Techniques, and Outcome (pp. 196214). New York: Brunner/Mazel.Google Scholar
McClure, J. B., Hartzler, A. L., & Catz, S. L. (2016). Design Considerations for Smoking Cessation Apps: Feedback From Nicotine Dependence Treatment Providers and Smokers. Journal of Medical Internet Research Mhealth Uhealth, 4(1), e17.CrossRefGoogle ScholarPubMed
Mehl, M. R. (2017). The Electronically Activated Recorder (EAR): A Method for the Naturalistic Observation of Daily Social Behavior. Current Directions in Psychological Science, 26(2), 184190.CrossRefGoogle Scholar
Mohr, D. C., Zhang, M., & Schueller, S. M. (2017). Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology, 13, 2347.Google Scholar
Moskowitz, D. S., & Young, S. N. (2006). Ecological Momentary Assessment: What It Is and Why It Is a Method of the Future in Clinical Psychopharmacology. Journal of Psychiatry and Neuroscience, 31(1), 1320.Google Scholar
Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & van Os, J. (2009). Experience Sampling Research in Psychopathology: Opening the Black Box of Daily Life. Psychology & Medicine, 39(9), 15331547.Google Scholar
Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K., Tewari, A., & Murphy, S. A. (2016). Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support. Annals of Behavioral Medicine, 52(6), 446462.Google Scholar
Naughton, F., Hopewell, S., Lathia, N., Schalbroeck, R., Brown, C., Mascolo, C., … Sutton, S. (2016). A Context-Sensing Mobile Phone App (Q Sense) for Smoking Cessation: A Mixed-Methods Study. Journal of Medical Internet Research Mhealth Uhealth, 4(3), e106.Google Scholar
Oorschot, M., Lataster, T., Thewissen, V., Wichers, M., & Myin-Germeys, I. (2012). Mobile Assessment in Schizophrenia: A Data-Driven Momentary Approach. Schizophrenia Bulletin, 38(3), 405413.Google Scholar
Picard, R. W., Fedor, S., & Ayzenberg, Y. (2016). Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emotion Review, 8(1), 6275.Google Scholar
Przeworski, A., & Newman, M. G. (2004). Palmtop Computer-Assisted Group Therapy for Social Phobia. Journal of Clinical Psychology, 60(2), 179188.Google Scholar
Rodgers, A., Corbett, T., Bramley, D., Riddell, T., Wills, M., Lin, R. B., & Jones, M. (2005). Do U Smoke After Txt? Results of a Randomised Trial of Smoking Cessation Using Mobile Phone Text Messaging. Tobacco Control, 14(4), 255261.Google Scholar
Runyan, J. D., Steenbergh, T. A., Bainbridge, C., Daugherty, D. A., Oke, L., & Fry, B. N. (2013). A Smartphone Ecological Momentary Assessment/Intervention “App” for Collecting Real-Time Data and Promoting Self-Awareness. PLOS ONE, 8(8), e71325.CrossRefGoogle ScholarPubMed
Saeb, S., Zhang, M., Karr, C. J., Schueller, S. M., Corden, M. E., Kording, K. P., Mohr, D.C. (2015). Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. Journal of Medical Internet Research Mhealth Uhealth, 17, e175.Google Scholar
Schüz, B., Bower, J., & Ferguson, S. G. (2015). Stimulus Control and Affect in Dietary Behaviours: An Intensive Longitudinal Study. Appetite, 87, 310317.Google Scholar
Schwartz, S., Schultz, S., Reider, A., & Saunders, E. F. (2016). Daily Mood Monitoring of Symptoms Using Smartphones in Bipolar Disorder: A Pilot Study Assessing the Feasibility of Ecological Momentary Assessment. Journal of Affective Disorders, 191, 8893.Google Scholar
Shiffman, S. (2009). Ecological Momentary Assessment (EMA) in Studies of Substance Use. Psychological Assessment, 21(4), 486497.Google Scholar
Shiffman, S. (2014). Ecological Momentary Assessment. In Sher, K. J. (Ed.), The Oxford Handbook of Substance Use Disorders (Vol. 2). Oxford: Oxford University Press.Google Scholar
Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological Momentary Assessment. Annual Review of Clinical Psychology, 4, 132.Google Scholar
Shiffman, S., Dunbar, M. S., Li, X., Scholl, S. M., Tindle, H. A., Anderson, S. J., & Ferguson, S. G. (2014). Smoking Patterns and Stimulus Control in Intermittent and Daily Smokers. PLOS ONE, 9(3), e89911.CrossRefGoogle ScholarPubMed
Shiffman, S., Dunbar, M. S., & Ferguson, S. G. (2015). Stimulus Control in Intermittent and Daily Smokers. Psychology of Addictive Behaviors, 29(4), 847855.Google Scholar
Smyth, J. M., Wonderlich, S. A., Sliwinski, J. M., Crosby, D. R., Engel, S. G., Mitchell, J. E., & Calogero, R. M. (2009). Ecological Momentary Assessment of Affect, Stress, and Binge- Purge Behaviors: Day of Week and Time of Day Effects in the Natural Environment. International Journal of Eating Disorders, 42(5), 429436.Google Scholar
Spook, J. E., Paulussen, T., Kok, G., & Van Empelen, P. (2013). Monitoring Dietary Intake and Physical Activity Electronically: Feasibility, Usability, and Ecological Validity of a Mobile-Based Ecological Momentary Assessment tool. Journal of Medical Internet Research, 15(9), e214.Google Scholar
Stone, A. A., & Shiffman, S. (1994). Ecological Momentary Assessment (EMA) in Behavioral Medicine. Annals of Behavioral Medicine, 16(3), 199202.Google Scholar
Stone, A. A., Broderick, J. E., Schwartz, J. E., Shiffman, S., Litcher-Kelly, L., & Calvanese, P. (2003a). Intensive Momentary Reporting of Pain with an Electronic Diary: Reactivity, Compliance, and Patient Satisfaction. Pain, 104(1), 343351.Google Scholar
Stone, A. A., Shiffman, S., Schwartz, J. E., Broderick, J. E., & Hufford, M. R. (2003b). Patient Compliance with Paper and Electronic Diaries. Controlled Clinical Trials, 24(2), 182199.CrossRefGoogle ScholarPubMed
Tahmasian, M., Khazaie, H., Golshani, S., & Avis, K. T. (2013). Clinical Application of Actigraphy in Psychotic Disorders: A Systematic Review. Current Psychiatry Reports, 15(6), 359.Google Scholar
Thornorarinsdottir, H., Kessing, L. V., & Faurholt-Jepsen, M. (2017). Smartphone-Based Self-Assessment of Stress in Healthy Adult Individuals: A Systematic Review. Journal of Medical Internet Research, 19(2), e41.Google Scholar
Tilley, P. J., & Rees, C. S. (2014). A Clinical Case Study of the Use of Ecological Momentary Assessment in Obsessive Compulsive Disorder. Frontiers in Psychology, 5, 339.CrossRefGoogle ScholarPubMed
Tomko, R. L., Brown, W. C., Tragesser, S. L., Wood, P. K., Mehl, M. R., & Trull, T. J. (2014). Social Context of Anger in Borderline Personality Disorder and Depressive Disorders: Findings from a Naturalistic Observation Study. Journal of Personality Disorders, 28(3), 434448.Google Scholar
Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective Instability: Measuring a Core Feature of Borderline Personality Disorder with Ecological Momentary Assessment. Journal of Abnormal Psychology, 117(3), 647661.Google Scholar
Ubhi, H. K., Michie, S., Kotz, D., Wong, W. C., & West, R. (2015). A Mobile App to Aid Smoking Cessation: Preliminary Evaluation of SmokeFree28. Journal of Medical Internet Research, 17(1), e17.Google Scholar
Vallance, J. K., Winkler, E. A., Gardiner, P. A., Healy, G. N., Lynch, B. M., & Owen, N. (2011). Associations of Objectively-Assessed Physical Activity and Sedentary Time with Depression: NHANES (2005‒2006). Preventive Medicine, 53(4‒5), 284288.Google Scholar
Walz, L. C., Nauta, M. H., & Aan Het Rot, M. (2014). Experience Sampling and Ecological Momentary Assessment for Studying the Daily Lives of Patients with Anxiety Disorders: A Systematic Review. Journal of Anxiety Disorders, 28(8), 925937.Google Scholar
Wheeler, L., & Reis, H. T. (1991). Self-Recording of Everyday Life Events: Origins, Types, and Uses. Journal of Personality, 59(3), 339354.CrossRefGoogle Scholar
Whittaker, R., McRobbie, H., Bullen, C., Rodgers, A., & Gu, Y. (2016). Mobile Phone-Based Interventions for Smoking Cessation. Cochrane Database of Systematic Reviews, 4, CD006611.Google ScholarPubMed
Wilhelm, F. H., Pfaltz, M. C., & Grossman, P. (2006). Continuous Electronic Data Capture of Physiology, Behavior and Experience in Real Life: Towards Ecological Momentary Assessment of Emotion. Interacting with Computers, 18(2), 171186.Google Scholar
Wright, C. J., Dietze, P. M., Crockett, B., & Lim, M. S. (2016). Participatory Development of MIDY (Mobile Intervention for Drinking in Young People). BMC Public Health, 16, 184.Google Scholar
Zhao, J., Freeman, B., & Li, M. (2016). Can Mobile Phone Apps Influence People’s Health Behavior Change? An Evidence Review. Journal of Medical Internet Research, 18(1), e287.Google Scholar

References

American Psychiatric Association (APA) (Ed.). (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (5th edn.). Washington, DC: American Psychiatric Association.Google Scholar
Box, G. E. P., & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.Google Scholar
Brandt, P. T., & Williams, J. T. (2007). Multiple Time Series Models. Thousand Oaks, CA: Sage.Google Scholar
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data. PLOS ONE, 8(4), e60188.Google Scholar
Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., … Kuppens, P. (2016). Assessing Temporal Emotion Dynamics Using Networks. Assessment, 23(4), 425435.Google Scholar
Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling. Psychological Methods, 22(3), 409425.Google Scholar
Bringmann, L. F., Ferrer, E., Hamaker, E. L., Borsboom, D., & Tuerlinckx, F. (2018). Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model. Multivariate Behavioral Research, 53, 293314.Google Scholar
Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., ... Snippe, E. (2019). What Do Centrality Measures Measure in Psychological Networks? Journal of Abnormal Psychology. Retrieved from https://doi.org/10.1037/abn0000446CrossRefGoogle Scholar
Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2016). Using Raw VAR Regression Coefficients to Build Networks can be Misleading. Multivariate Behavioral Research, 51(2–3), 330344.Google Scholar
Bulteel, K., Mestdagh, M., Tuerlinckx, F., & Ceulemans, E. (2018). VAR(1) Based Models Do not Always Outpredict AR(1) Models in Typical Psychological Applications. Psychological Methods, 23, 740756.Google Scholar
Bylsma, L. M., Taylor-Clift, A., & Rottenberg, J. (2011). Emotional Reactivity to Daily Events in Major and Minor Depression. Journal of Abnormal Psychology, 120(1), 155167.Google Scholar
Cabrieto, J., Tuerlinckx, F., Kuppens, P., Grassmann, M., & Ceulemans, E. (2017). Detecting Correlation Changes in Multivariate Time Series: A Comparison of Four Non-Parametric Change Point Detection Methods. Behavior Research Methods, 49(3), 9881005.Google Scholar
Cabrieto, J., Tuerlinckx, F., Kuppens, P., Hunyadi, B., & Ceulemans, E. (2018). Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach. Scientific Reports, 8(1), 769.Google Scholar
Cattell, R. B. (1952). The Three Basic Factor-Analytic Research Designs: Their Interrelations and Derivatives. Psychological Bulletin, 49, 499520.CrossRefGoogle ScholarPubMed
Ceulemans, E., Wilderjans, T. F., Kiers, H. A. L., & Timmerman, M. E. (2016). MultiLevel Simultaneous Component Analysis: A Computational Shortcut and Software Package. Behavior Research Methods, 48, 10081020.Google Scholar
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., & Tuerlinckx, F. (2019). Complex Affect Dynamics Add Limited Information to the Prediction of Psychological Well-Being. Nature Human Behaviour, 3, 478491.Google Scholar
Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation Modeling with R Package ctsem. Journal of Statistical Software, 77(5), 135.Google Scholar
Ebner-Priemer, U. W., Houben, M., Santangelo, P., Kleindienst, N., Tuerlinckx, F., Oravecz, Z., … Kuppens, P. (2015). Unraveling Affective Dysregulation in Borderline Personality Disorder: A Theoretical Model and Empirical Evidence. Journal of Abnormal Psychology, 124(1), 186198.Google Scholar
Erbas, Y., Ceulemans, E., Pe, M. L., Koval, P., & Kuppens, P. (2014). Negative Emotion Differentiation: Its Personality and Well-Being Correlates and a Comparison of Different Assessment Methods. Cognition and Emotion, 28(7), 11961213.Google Scholar
First, M. B., Williams, J. B. W., Karg, R. S., & Spitzer, R. L. (2015). Structured Clinical Interview for DSM-5 ‒ Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). Arlington, VA: American Psychiatric Association.Google Scholar
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2012). Modeling Between-Subject and Within-Subject Variances in Ecological Momentary Assessment Data Using Mixed-Effects Location Scale Models. Statistics in Medicine, 31(27), 33283336.Google Scholar
Hepp, J., Carpenter, R. W., Lane, S. P., & Trull, T. J. (2016). Momentary Symptoms of Borderline Personality Disorder as a Product of Trait Personality and Social Context. Personality Disorders, 7(4), 384393.Google Scholar
Heylen, J., Verduyn, P., Van Mechelen, I., & Ceulemans, E. (2015). Variability in Anger Intensity Profiles: Structure and Predictive Basis. Cognition and Emotion, 29(1), 168177.Google Scholar
Heylen, J., Van Mechelen, I., Verduyn, P., & Ceulemans, E. (2016). KSC-N: Clustering of Hierarchical Time Profile Data. Psychometrika, 81(2), 411433.CrossRefGoogle ScholarPubMed
Hollenstein, T., & Lewis, M. D. (2006). A State Space Analysis of Emotion and Flexibility in Parent-Child Interactions. Emotion, 6(4), 656662.Google Scholar
Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The Relation between Short-Term Emotion Dynamics and Psychological Well-Being: A Meta-Analysis. Psychological Bulletin, 141(4), 901930.Google Scholar
Houben, M., Vansteelandt, K., Claes, L., Sienaert, P., Berens, A., Sleuwaegen, E., & Kuppens, P. (2016). Emotional Switching in Borderline Personality Disorder: A Daily Life Study. Personality Disorders: Theory, Research, and Treatment, 7(1), 5060.CrossRefGoogle ScholarPubMed
Houben, M., Claes, L., Vansteelandt, K., Berens, A., Sleuwaegen, E., & Kuppens, P. (2017). The Emotion Regulation Function of Nonsuicidal Self-Injury: A Momentary Assessment Study in Inpatients with Borderline Personality Disorder Features. Journal of Abnormal Psychology, 126(1), 8995.Google Scholar
Hox, J. J., Moerbeek, M., & van de Schoot, R. (2010). Multilevel Analysis: Techniques and Applications (2nd edn.). New York: Routledge.Google Scholar
Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of Affective Instability in Ecological Momentary Assessment: Indices Using Successive Difference and Group Comparison via Multilevel Modeling. Psychological Methods, 13(4), 354375.Google Scholar
Jones, C. J., & Nesselroade, J. R. (1990). Multivariate, Replicated, Single-Subject, Repeated Measures Designs and P-Technique Factor Analysis: A Review of Intraindividual Change Studies. Experimental Aging Research, 16, 171183.Google Scholar
Koval, P., Ogrinz, B., Kuppens, P., den Bergh, O. V., Tuerlinckx, F., & Sütterlin, S. (2013a). Affective Instability in Daily Life Is Predicted by Resting Heart Rate Variability. PLOS ONE, 8(11), e81536.Google Scholar
Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013b). Affect Dynamics in Relation to Depressive Symptoms: Variable, Unstable or Inert? Emotion, 13(6), 11321141.Google Scholar
Krone, T., Albers, C. J., & Timmerman, M. E. (2016). Comparison of Estimation Procedures for Multilevel AR(1) Models. Frontiers in Psychology, 7, 486.Google Scholar
Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010a). Emotional Inertia and Psychological Maladjustment. Psychological Science, 21(7), 984991.CrossRefGoogle ScholarPubMed
Kuppens, P., Oravecz, Z., & Tuerlinckx, F. (2010b). Feelings Change: Accounting for Individual Differences in the Temporal Dynamics of Affect. Journal of Personality and Social Psychology, 99(6), 10421060.Google Scholar
Lamey, A., Hollenstein, T., Lewis, M. D., & Granic, I. (2004). GridWare (Version 1.1). [Computer software]. Retrieved from http://statespacegrids.orgGoogle Scholar
Lane, S. T., & Gates, K. M. (2017). Automated Selection of Robust Individual-Level Structural Equation Models for Time Series Data. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 115.Google Scholar
Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. (2019). Uncovering General, Shared, and Unique Temporal Patterns in Ambulatory Assessment Data. Psychological Methods, 24, 5469.Google Scholar
Linehan, M. (1993). Cognitive-Behavioral Treatment of Borderline Personality Disorder. New York: Guilford Press.Google Scholar
Liu, S. (2017). Person-Specific versus Multilevel Autoregressive Models: Accuracy in Parameter Estimates at the Population and Individual Levels. British Journal of Mathematical and Statistical Psychology, 70, 480498.Google Scholar
Lougheed, J. P., & Hollenstein, T. (2016). Socioemotional Flexibility in Mother-Daughter Dyads: Riding the Emotional Rollercoaster across Positive and Negative Contexts. Emotion, 16(5), 620633.Google Scholar
Manolov, R., & Onghena, P. (2018). Analyzing Data from Single-Case Alternating Treatments Designs. Psychological Methods, 23, 480504.Google Scholar
McArdle, J. J., & Nesselroade, J. R. (2003). Growth Curve Analysis in Contemporary Psychological Research. In Schinka, J. A. & Velicer, W. F. (Eds.), Handbook of Psychology: Research Methods in Psychology (Vol. 2, pp. 447480). New York: Wiley.Google Scholar
Mestdagh, M., Pe, M. L., Pestman, W., Verdonck, S., Kuppens, P., & Tuerlinckx, F. (2018). Sidelining the Mean: The Relative Variability Index as a Generic Mean-Corrected Variability Measure for Bounded Variables. Psychological Methods, 23, 690707.Google Scholar
Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., & van Os, J. (2009). Experience Sampling Research in Psychopathology: Opening the Black Box of Daily Life. Psychological Medicine, 39(9), 15331547.Google Scholar
Nezlek, J. B. (2008). An Introduction to Multilevel Modeling for Social and Personality Psychology. Social and Personality Psychology Compass, 2(2), 842860.CrossRefGoogle Scholar
Nezlek, J. B., & Plesko, R. M. (2001). Day-to-Day Relationships among Self-Concept Clarity, Self-Esteem, Daily Events, and Mood. Personality and Social Psychology Bulletin, 27(2), 201211.Google Scholar
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics. Psychological Methods, 16(4), 468490.Google Scholar
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2012). BHOUM: Bayesian Hierarchical Ornstein-Uhlenbeck Modeling [Computer Software]. Retrieved from www.zitaoravecz.net/Google Scholar
Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F., Tuerlinckx, F., Mestdagh, M., … Gotlib, I. H. (2015). Emotion-Network Density in Major Depressive Disorder. Clinical Psychological Science, 3(2), 292300.CrossRefGoogle Scholar
Peeters, F., Berkhof, J., Delespaul, P., Rottenberg, J., & Nicolson, N. A. (2006). Diurnal Mood Variation in Major Depressive Disorder. Emotion, 6(3), 383391.Google Scholar
Radloff, L. S. (1977). The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Applied Psychological Measurement, 1(3), 385401.Google Scholar
Rovine, M., & Walls, T. (2006). A Multilevel Autoregressive Model to Describe Interindividual Differences in the Stability of a Process. In Schafer, J. and Walls, T. (Eds.), Models for Intensive Longitudinal Data (pp. 124147). New York: Oxford University Press.CrossRefGoogle Scholar
Santangelo, P. S., Limberger, M. F., Stiglmayr, C., Houben, M., Coosemans, J., Verleysen, G., … Ebner-Priemer, U. W. (2016). Analyzing Subcomponents of Affective Dysregulation in Borderline Personality Disorder in Comparison to Other Clinical Groups Using Multiple e-Diary Datasets. Borderline Personality Disorder and Emotion Dysregulation, 3(1), 5.Google Scholar
Sbarra, D. A. (2006). Predicting the Onset of Emotional Recovery Following Nonmarital Relationship Dissolution: Survival Analyses of Sadness and Anger. Personality & Social Psychology Bulletin, 32(3), 298312.Google Scholar
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass Correlations: Uses in Assessing Rater Reliability. Psychological Bulletin, 86, 420428.CrossRefGoogle ScholarPubMed
Thompson, R. J., Mata, J., Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Gotlib, I. H. (2012). The Everyday Emotional Experience of Adults with Major Depressive Disorder: Examining Emotional Instability, Inertia, and Reactivity. Journal of Abnormal Psychology, 121(4), 819829.Google Scholar
Timmerman, M. E. (2006). Multilevel Component Analysis. British Journal of Mathematical and Statistical Psychology, 59(2), 301320.Google Scholar
Timmerman, M. E., & Kiers, H. A. L. (2003). Four Simultaneous Component Models for the Analysis of Multivariate Time Series from More than One Subject to Model Intraindividual and Interindividual Differences. Psychometrika, 68(1), 105121.Google Scholar
Tomko, R. L., Lane, S. P., Pronove, L. M., Treloar, H. R., Brown, W. C., Solhan, M. B., … Trull, T. J. (2015). Undifferentiated Negative Affect and Impulsivity in Borderline Personality and Depressive Disorders: A Momentary Perspective. Journal of Abnormal Psychology, 124(3), 740753.Google Scholar
Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory Assessment. Annual Review of Clinical Psychology, 9, 151176.CrossRefGoogle ScholarPubMed
Trull, T. J., Solhan, M. B., Tragesser, S. L., Jahng, S., Wood, P. K., Piasecki, T. M., & Watson, D. (2008). Affective Instability: Measuring a Core Feature of Borderline Personality Disorder with Ecological Momentary Assessment. Journal of Abnormal Psychology, 117, 647661.Google Scholar
Verduyn, P., Delvaux, E., Van Coillie, H., Tuerlinckx, F., & Van Mechelen, I. (2009). Predicting the Duration of Emotional Experience: Two Experience Sampling Studies. Emotion, 9(1), 8391.CrossRefGoogle ScholarPubMed
Wichers, M., Groot, P. C., & Psychosystems, ESM Group, EWS Group. (2016). Critical Slowing Down as a Personalized Early Warning Signal for Depression. Psychotherapy and Psychosomatics, 85(2), 114116.CrossRefGoogle ScholarPubMed
Wright, A. G. C., Gates, K. M., Arizmendi, C., Lane, S. T., Woods, W. C., & Edershile, E. A. (2019). Focusing Personality Assessment on the Person: Modeling General, Shared, and Person Specific Processes in Personality and Psychopathology. Psychological Assessment, 31, 502515.CrossRefGoogle ScholarPubMed
Yang, J., & Leskovec, J. (2011). Patterns of Temporal Variation in Online Media. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (pp. 177186). New York: ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1935863Google Scholar

References

Beltz, A. M., Beekman, C., Molenaar, P. C. M., & Buss, K. A. (2013). Mapping Temporal Dynamics in Social Interactions with Unified Structural Equation Modeling: A Description and Demonstration Revealing Time-Dependent Sex Differences in Play Behavior. Applied Developmental Psychology, 17, 152168.Google Scholar
Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M. (2016). Bridging the Nomothetic and Idiographic Approaches to the Analysis of Clinical Data. Assessment, 23, 447458.CrossRefGoogle Scholar
Bergman, L. R., Magnusson, D., & El-Khouri, B. (2003). Studying Individual Development in an Interactive Context: A Person-Oriented Approach. Mahwah, NJ: Erlbaum.Google Scholar
Birkhoff, G. (1931). Proof of the Ergodic Theorem. Proceedings of the National Academy of Science of the USA, 17, 656660.Google Scholar
Borsboom, D. (2005). Measuring the Mind: Conceptual Issues in Contemporary Psychometrics. Cambridge: Cambridge University Press.Google Scholar
Bulteel, K., Tuerlinckx, F., Brose, A., & Ceulemans, E. (2016). Clustering Vector Autoregressive Models: Capturing Qualitative Differences in Within-Person Dynamics. Frontiers in Psychology, 7, 1540.Google Scholar
Cattell, R. B. (1952). The Three Basic Factor-Analytic Designs – Their Interrelations and Derivatives. Psychological Bulletin, 49, 499520.Google Scholar
Ceulemans, E., & Kiers, H. A. L. (2006). Selecting among Three-Mode Principal Component Models of Different Types and Complexities: A Numerical Convex Hull Based Method. British Journal of Mathematical and Statistical Psychology, 59, 133150.Google Scholar
Choe, G. H. (2005). Computational Ergodic Theory. Berlin: Springer-Verlag.Google Scholar
De Groot, A. D. (1954). Scientific Personality Diagnosis. Acta Psychologica, 10, 220241.Google Scholar
Dolan, C. V. (2010). MKFM6: Multi-Group, Multi-Subject Stationary Time Series Modeling Based on the Kalman Filter (Computer Software). Amsterdam: University of Amsterdam.Google Scholar
Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2017). Discovering Psychological Dynamics: The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. arXiv:1609.04156v5 [stat.ME], 15 September.Google Scholar
Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (Eds.). (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. New York: Academic Press.Google Scholar
Gates, K. M., & Molenaar, P. C. M. (2012). Group Search Algorithm Recovers Effective Connectivity Maps for Individuals in Homogeneous and Heterogeneous Samples. NeuroImage, 63, 310319.Google Scholar
Gates, K. M., Molenaar, P. C. M., Iyer, S. P., Nigg, J. T., & Fair, D. A. (2014). Organizing Heterogeneous Samples Using Community Detection of GIMME-Derived Resting State Functional Networks. PLoS-ONE, 9, e91322.Google Scholar
Hannan, E. J. (1970). Multiple Time Series. New York: Wiley.Google Scholar
Isidori, A. (1985). Nonlinear Control Systems. London: Springer-Verlag.Google Scholar
Lamiell, J. T. (2003). Beyond Individual and Group Differences: Human Individuality, Scientific Psychology, and William Stern’s Critical Personalism. Thousand Oaks, CA: Sage.Google Scholar
Mäkikangas, A., & Kinnunen, U. (2016). The Person-Oriented Approach to Burnout: A Systematic Review. Burnout Research, 3, 1123.CrossRefGoogle Scholar
Millsap, R. E. (2011). Statistical Approaches to Measurement Invariance. New York: Routledge.Google Scholar
Molenaar, P. C. M. (1987). Dynamic Assessment and Adaptive Optimisation of the Therapeutic Process. Behavioral Assessment, 9, 389416.Google Scholar
Molenaar, P. C. M. (2004). A Manifesto on Psychology as Idiographic Science: Bringing the Person back into Scientific Psychology, This Time Forever. Measurement: Interdisciplinary Research and Perspectives, 2, 201218.Google Scholar
Molenaar, P. C. M. (2010a). Testing All Six Person-Oriented Principles in Dynamic Factor Analysis. Development and Psychopathology, 22, 255259.Google Scholar
Molenaar, P. C. M. (2010b). Note on Optimization of Psychotherapeutic Processes. Journal of Mathematical Psychology, 54, 208213.CrossRefGoogle Scholar
Molenaar, P. C. M. (2014). Equivalent Dynamic Models. Sells Award Address. 54th Annual Society of Multivariate Experimental Psychology Meeting, Nashville, TN, October 8‒11.Google Scholar
Molenaar, P. C. M. (2015). On the Relation between Person-Oriented and Subject-Specific Approaches. Journal for Person-Oriented Research, 1, 3441.Google Scholar
Molenaar, P. C. M., & Campbell, C. G. (2009). The New Person-Specific Paradigm in Psychology. Current Directions in Psychological Science, 18, 112117.Google Scholar
Molenaar, P. C. M., & Nesselroade, J. R. (2015). Systems Methods for Developmental Research. In Overton, W. F. & Molenaar, P. C. M. (Eds.), Handbook of Child Psychology and Developmental Science (7th edn., Vol. 1, pp. 652682). Hoboken, NJ: Wiley.Google Scholar
Molenaar, P. C. M., & Newell, K. M. (Eds.). (2010). Individual Pathways of Change: Statistical Models for Analyzing Learning and Development. Washington, DC: American Psychological Association.Google Scholar
Molenaar, P. C. M., Huizenga, H. M., & Nesselroade, J. R. (2003). The Relationship between the Structure of Interindividual and Intraindividual Variability: A Theoretical and Empirical Vindication of Developmental Systems Theory. In Staudinger, U. M. & Lindenberger, U. (Eds.), Understanding Human Development: Dialogues with Lifespan Psychology (pp. 339360). Dordrecht: Kluwer Academic Publishers.Google Scholar
Molenaar, P. C. M., Sinclair, K. O., Rovine, M. J., Ram, N., & Corneal, S. E. (2009). Analyzing Developmental Processes on an Individual Level Using Non-Stationary Time Series Modeling. Developmental Psychology, 45, 260271.Google Scholar
Molenaar, P. C. M., Lerner, R. M., & Newell, K. M. (Eds.). (2014). Handbook of Developmental Systems Theory & Methodology. New York: Guilford Press.Google Scholar
Molenaar, P. C. M., Beltz, A. M., Gates, K. M., & Wilson, S. J. (2016). State Space Modeling of Time-Varying Contemporaneous and Lagged Relations in Connectivity Maps. NeuroImage, 125, 791802.Google Scholar
Nesselroade, J. R., & Molenaar, P. C. M. (2016). Some Behavioral Measurement Concerns and Proposals. Multivariate Behavioral Research, 51, 396412.Google Scholar
Schiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological Momentary Assessment. Annual Review of Clinical Psychology, 4, 131.Google Scholar
Sterba, S. K., & Bauer, D. J. (2010a). Matching Method with Theory in Person-Oriented Developmental Psychopathology Research. Development and Psychopathology, 22, 239254.Google Scholar
Sterba, S. K., & Bauer, D. J. (2010b). Statistically Evaluating Person-Oriented Methods Revisited. Development and Psychopathology, 22, 287294.Google Scholar
Valsiner, J., Molenaar, P. C. M., Lyra, M. C. D. P., & Chaudary, N. (Eds.). (2009). Dynamic Process Methodology in the Social and Developmental Sciences. Berlin: Springer-Verlag.Google Scholar
Voelkle, M. C., Brose, A., Schmiedek, F., & Lindenberger, U. (2014). Toward a Unified Framework for the Study of Between-Person and Within-Person Structures: Building a Bridge between Two Research Paradigms. Multivariate Behavioral Research, 49, 193213.Google Scholar
Wang, Q., Molenaar, P. C. M., Harsh, S., Freeman, K., Xie, J., Zhou, J., … Rovine, M. J. (2014). Personalized State-Space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose and Meal Intake: An Extended Kalman Filter Approach. Journal of Diabetes Technology and Science, 8, 331345.Google Scholar
Ward, J. H. Jr. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236244.Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. Journal of Personality and Social Psychology, 54, 10631070.Google Scholar
Wohlwill, J. F. (1973). The Study of Behavioral Development. New York: Academic Press.Google Scholar

References

Ainsworth, M. D. S. (1969). Object Relations, Dependency, and Attachment: A Theoretical Review of the Infant-Mother Relationship. Child Development, 40, 9691025.Google Scholar
Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of Attachment: A Psychological Study of the Strange Situation. Hillsdale, NJ: Erlbaum.Google Scholar
American Psychological Association (APA). (2017). Ethical Principles of Psychologists and Code of Conduct (2002, Amended June 1, 2010 and January 1, 2017). Retrieved from http://www.apa.org/ethics/code/index.aspxGoogle Scholar
Aspland, H., & Gardner, F. (2003). Observational Measures of Parent-Child Interaction: An Introductory Review. Child and Adolescent Mental Health, 8, 136143.Google Scholar
Baucom, B. (2010). Power and Arousal: New Methods for Assessing Couples. In Hahlweg, K., Grawe-Gerber, M., & Baucom, D. H. (Eds.), Enhancing Couples: The Shape of Couple Therapy to Come (pp. 171184). Cambridge, MA: Hogrefe.Google Scholar
Baucom, B. R., Atkins, D. C., Eldridge, K., McFarland, P., Sevier, M., & Christensen, A. (2011). The Language of Demand/Withdraw: Verbal and Vocal Expression in Dyadic Interactions. Journal of Family Psychology, 25, 570580.Google Scholar
Baucom, B. R. W., Leo, K., Adamo, C., Georgiou, P., & Baucom, K. J. W. (2017). Conceptual and Statistical Issues in Couples Observational Research: Rationale and Methods for Design Decisions. Journal of Family Psychology, 31, 972982.Google Scholar
Baucom, B. R. W., Baucom, K. J. W., Hogan, J. N., Crenshaw, A. O., Bourne, S. V., Crowell, S. E., … Goodwin, M. S. (2018). Cardiovascular Reactivity during Marital Conflict in Laboratory and Naturalistic Settings: Differential Associations with Relationship and Individual Functioning across Contexts. Family Process, 57, 662678.Google Scholar
Beauchaine, T. P. (2015). Future Directions in Emotion Dysregulation and Youth Psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.Google Scholar
Beauchaine, T. P., & Crowell, S. E. (Eds.). (In press). Oxford Handbook of Emotion Dysregulation. New York: Oxford University Press.Google Scholar
Beauchaine, T. P., & Thayer, J. F. (2015). Heart Rate Variability as a Transdiagnostic Biomarker of Psychopathology. International Journal of Psychophysiology, 98, 338350.Google Scholar
Beckes, L., & Coan, J. A. (2011). Our Social Baseline: The Role of Social Proximity in Economy of Action. Social and Personality Psychology Compass, 12, 89104.Google Scholar
Billman, G. E. (2011). Heart Rate Variability – A Historical Perspective. Frontiers in Physiology, 2, 113.Google Scholar
Black, M. P., Katsamanis, A., Baucom, B. R., Lee, C. C., Lammert, A. C., Christensen, A., … Narayanan, S. S. (2013). Toward Automating a Human Behavioral Coding System for Married Couples’ Interactions Using Speech Acoustic Features. Speech Communication, 55, 121.Google Scholar
Bowlby, J. (1951). Maternal Care and Mental Health (Vol. 2). Geneva: World Health Organization.Google ScholarPubMed
Bowlby, J. (1960). Separation Anxiety. International Journal of Psychoanalysis, 41, 89114.Google Scholar
Bowlby, J. (1982). Attachment and Loss: Retrospect and Prospect. American Journal of Orthopsychiatry, 52, 664678.Google Scholar
Bowlby, J., Ainsworth, M., Boston, M., & Rosenbluth, D. (1956). The Effects of Mother-Child Separation: A Follow-Up Study. British Journal of Medical Psychology, 29, 211247.Google Scholar
Brechwald, W. A., & Prinstein, M. J. (2011). Beyond Homophily: A Decade of Advances in Understanding Peer Influence Processes. Journal of Research on Adolescence, 21, 166179.Google Scholar
Bretherton, I. (1985). Attachment Theory: Retrospect and Prospect. Monographs of the Society for Research in Child Development, 50, 335.Google Scholar
Bryan, C. J., Baucom, B. R., Crenshaw, A. O., Imel, Z., Atkins, D. C., Clemans, T. A., … Rudd, M. D. (2018). Associations of Patient-Rated Emotional Bond and Vocally Encoded Emotional Arousal among Clinicians and Acutely Suicidal Military Personnel. Journal of Consulting and Clinical Psychology, 86, 372383.Google Scholar
Bukowski, W. M., Laursen, B., & Rubin, K. H. (Eds.). (2018). Handbook of Peer Interactions, Relationships, and Groups (2nd edn.). New York: Guilford Press.Google Scholar
Butler, E. A. (2015). Interpersonal Affect Dynamics: It Takes Two (and Time) to Tango. Emotion Review, 7, 336341.Google Scholar
Butler, E. A., & Randall, A. K. (2013). Emotional Coregulation in Close Relationships. Emotion Review, 5, 202210.Google Scholar
Butler, E. A., Wilhelm, F. H., & Gross, J. J. (2006). Respiratory Sinus Arrhythmia, Emotion, and Emotion Regulation during Social Interaction. Psychophysiology, 43, 612622.Google Scholar
Butner, J., Behrends, A. A., & Baucom, B. R. (2017). Mapping Co-Regulation in Social Relations through Exploratory Topology Analysis. In Vallacher, R. R., Read, S. J., & Nowak, A. (Eds.), Computational Social Psychology (pp. 144177). New York: Routledge.Google Scholar
Butner, J., Diamond, L. M., & Hicks, A. M. (2007). Attachment Style And Two Forms of Affect Coregulation between Romantic Partners. Personal Relationships, 14, 431455.Google Scholar
Campbell, D. J., Shic, F., Macari, S., & Chawarska, K. (2014). Gaze Response to Dyadic Bids at 2 Years Related to Outcomes at 3 Years in Autism Spectrum Disorders: A Subtyping Analysis. Journal of Autism and Developmental Disorders, 44, 431442.Google Scholar
Carter, A. S., & Briggs-Gowan, M. J. (2006). ITSEA: Infant-Toddler Social and Emotional Assessment Examiner’s Manual. San Antonio, TX: PsychCorp.Google Scholar
Cassidy, J., & Shaver, P. R. (1999). Handbook of Attachment: Theory, Research, and Clinical Applications. New York: Guilford Press.Google Scholar
Cheng, Y., Chen, C., Lin, C. P., Chou, K. H., & Decety, J. (2010). Love Hurts: An fMRI Study. Neuroimage, 51, 923929.Google Scholar
Chauvigné, L. A. S., Belyk, M., Brown, S. (2018). Taking Two to Tango: fMRI Analysis of Improvised Joint Action with Physical Contact. PLoS ONE, 13, e0191098.Google Scholar
Chorney, J. M., McMurtry, C. M., Chambers, C. T., & Bakeman, R. (2015). Developing and Modifying Behavioral Coding Schemes in Pediatric Psychology: A Practical Guide. Journal of Pediatric Psychology, 40, 154164.Google Scholar
Choukas-Bradley, S., Giletta, M., Cohen, G. L., & Prinstein, M. J. (2015). Peer Influence, Peer Status, and Prosocial Behavior: An Experimental Investigation of Peer Socialization of Adolescents’ Intentions to Volunteer. Journal of Youth and Adolescence, 44, 21972210.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A Developmental Psychopathology Perspective on Adolescence. Journal of Consulting and Clinical Psychology, 70, 620.Google Scholar
Coan, J. A. (2008). Toward a Neuroscience of Attachment. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of Attachment: Theory, Research, and Clinical Applications (2nd edn., pp. 241265). New York: Guilford Press.Google Scholar
Coan, J. A. (2010). Adult Attachment and the Brain. Journal of Social and Personal Relationships, 27, 210217.Google Scholar
Coan, J. A., & Gottman, J. M. (2007). The Specific Affect Coding System (SPAFF). In Coan, J. A. & Allen, J. J. B. (Eds.), Handbook of Emotion Elicitation and Assessment: Series in Affective Science (pp. 267285). New York: Oxford University Press.Google Scholar
Coan, J. A., Schaefer, H. S., & Davidson, R. J. (2006). Lending a Hand: Social Regulation of the Neural Response to Threat. Psychological Science, 17, 10321039.Google Scholar
Cole, P. M., Michel, M. K., & Teti, L. O. D. (1994). The Development of Emotion Regulation and Dysregulation: A Clinical Perspective. Monographs of the Society for Research in Child Development, 59, 73100.Google Scholar
Collins, N. L., & Feeney, B. C. (2004). Working Models of Attachment Shape Perceptions of Social Support: Evidence from Experimental and Observational Studies. Journal of Personality and Social Psychology, 87, 363383.Google Scholar
Collins, N. L., & Read, S. J. (1990). Adult Attachment, Working Models, and Relationship Quality in Dating Couples. Journal of Personality and Social Psychology, 58, 644663.Google Scholar
Conradt, E., & Ablow, J. (2010). Infant Physiological Response to the Still-Face Paradigm: Contributions of Maternal Sensitivity and Infants’ Early Regulatory Behavior. Infant Behavior and Development, 33, 251265.Google Scholar
Cook, W. L., & Kenny, D. A. (2005). The Actor-Partner Interdependence Model: A Model of Bidirectional Effects in Developmental Studies. International Journal of Behavioral Development, 29, 101109.Google Scholar
Crowell, S. E. (2016). Biting the Hand That Feeds: Current Opinion on the Interpersonal Causes, Correlates, and Consequences of Borderline Personality Disorder. F1000Research, 5.Google Scholar
Crowell, S. E., Beauchaine, T. P., McCauley, E., Smith, C. J., Vasilev, C. A., & Stevens, A. L. (2008). Parent-Child Interactions, Peripheral Serotonin, and Self-Inflicted Injury in Adolescents. Journal of Consulting and Clinical Psychology, 76, 1521.Google Scholar
Crowell, S. E., Beauchaine, T. P., Bride, D. L., Hsiao, R. C., & McCauley, E. (2011). Dyadic Psychophysiology during Conflict: Family Process and Emotion Dysregulation in Self-Injuring and Depressed Adolescents. Paper presented at the Society for Research in Child Development, Montreal, Quebec, Canada. April.Google Scholar
Crowell, S. E., Baucom, B. R., McCauley, E., Potapova, N. V., Fitelson, M., Barth, H., … Beauchaine, T. P. (2013). Mechanisms of Contextual Risk for Adolescent Self-Injury: Invalidation and Conflict Escalation in Mother-Child Interactions. Journal of Clinical Child and Adolescent Psychology, 42, 467480.Google Scholar
Crowell, S. E., Butner, J. E., Wiltshire, T. J., Munion, A. K., Yaptangco, M., & Beauchaine, T. P. (2017a). Evaluating Emotional and Biological Sensitivity to Maternal Behavior among Self-Injuring and Depressed Adolescent Girls Using Nonlinear Dynamics. Clinical Psychological Science, 5, 272285.Google Scholar
Crowell, S. E., Price, C. J., Puzia, M. E., Yaptangco, M., & Cheng, S. C. (2017b). Emotion Dysregulation and Autonomic Responses to Film, Rumination, and Body Awareness: Extending Psychophysiological Research to a Naturalistic Clinical Setting and a Chemically Dependent Female Sample. Psychophysiology, 54, 713723.Google Scholar
Crowell, S. E., Puzia, M. E., & Yaptangco, M. (2015). The Ontogeny of Chronic Distress: Emotion Dysregulation across the Life Span and Its Implications for Psychological and Physical Health. Current Opinion in Psychology, 3, 9199.Google Scholar
Dalton, W. T., Frick-Horbury, D., & Kitzmann, K. M. (2006). Young Adults’ Retrospective Reports of Parenting by Mothers and Fathers: Associations with Current Relationship Quality. Journal of General Psychology, 133, 518.CrossRefGoogle ScholarPubMed
Davison, K. K., Charles, J. N., Khandpur, N., & Nelson, T. J. (2017). Fathers’ Perceived Reasons for Their Underrepresentation in Child Health Research and Strategies to Increase Their Involvement. Maternal and Child Health Journal, 21, 267274.Google Scholar
Deater-Deckard, K., Pylas, M., & Petrill, S. A. (1997). The Parent-Child Interaction System (PARCHISY). London: Institute of Psychiatry.Google Scholar
Diamond, L. M. (2015) The Biobehavioral Legacy of Early Attachment Relationships for Adult Emotional and Interpersonal Functioning. In Zayas, V. & Hazan, C. (Eds.), Bases of Adult Attachment (pp. 79105). New York: Springer.Google Scholar
Diamond, L. M., & Fagundes, C. P. (2010). Psychobiological Research on Attachment. Journal of Social and Personal Relationships, 27, 218225.Google Scholar
Diamond, L. M., & Hicks, A. M. (2005). Attachment Style, Current Relationship Security, and Negative Emotions: The Mediating Role of Physiological Regulation. Journal of Social and Personal Relationships, 22, 499518.Google Scholar
Evans, C. A., & Porter, C. L. (2009). The Emergence of Mother-Infant Co-Regulation during the First Year: Links to Infants’ Developmental Status and Attachment. Infant Behavior and Development, 32, 147158.Google Scholar
Feeney, J. A., & Noller, P. (1990). Attachment Style as a Predictor of Adult Romantic Relationships. Journal of Personality and Social Psychology, 58, 281291.Google Scholar
Feldman, R. (2007). Parent-Infant Synchrony and the Construction of Shared Timing; Physiological Precursors, Developmental Outcomes, and Risk Conditions. Journal of Child Psychology and Psychiatry, 48, 329354.Google Scholar
Feldman, R. (2012). Parent-Infant Synchrony: A Biobehavioral Model of Mutual Influences in the Formation of Affiliative Bonds. Monographs of the Society for Research in Child Development, 77, 4251.CrossRefGoogle Scholar
Fischer, M. S., Baucom, D. H., Kirby, J. S., & Bulik, C. M. (2015). Partner Distress in the Context of Adult Anorexia Nervosa: The Role of Patients’ Perceived Negative Consequences of AN and Partner Behaviors. International Journal of Eating Disorders, 48, 6771.Google Scholar
Fraley, R. C., Waller, N. G., & Brennan, K. A. (2000). An Item Response Theory Analysis of Self-Report Measures of Adult Attachment. Journal of Personality and Social Psychology, 78, 350365.Google Scholar
Fraley, R. C., Heffernan, M. E., Vicary, A. M., & Brumbaugh, C. C. (2011). The Experiences in Close Relationships – Relationship Structures Questionnaire: A Method for Assessing Attachment Orientations across Relationships. Psychological Assessment, 23, 615625.Google Scholar
Fogel, A. (1994). Co-Regulation Coding System. Unpublished manual, University of Utah.Google Scholar
Gallo, L. C., & Smith, T. W. (2001). Attachment Style in Marriage: Adjustment and Responses to Interaction. Journal of Social and Personal Relationships, 18, 263289.Google Scholar
Gardner, M., & Steinberg, L. (2005). Peer Influence on Risk Taking, Risk Preference, and Risky Decision Making in Adolescence and Adulthood: An Experimental Study. Developmental Psychology, 41, 625635.Google Scholar
Gillath, O., Mikulincer, M., Fitzsimons, G. M., Shaver, P. R., Schachner, D. A., & Bargh, J. A. (2006). Automatic Activation of Attachment-Related Goals. Personality and Social Psychology Bulletin, 32, 13751388.Google Scholar
Granic, I., O’Hara, A., Pepler, D., & Lewis, M. D. (2007). A Dynamic Systems Analysis of Parent-Child Changes Associated with Successful “Real-World” Interventions for Aggressive Children. Journal of Abnormal Child Psychology, 35, 845857.Google Scholar
Gratz, K. L., & Roemer, L. (2004). Multidimensional Assessment of Emotion Regulation: Development, Factor Structure, and Initial Validation of the Difficulties in Emotion Regulation Scale. Journal of Psychopathology and Behavioral Assessment, 26, 4154.Google Scholar
Gyure, M. E., Quillin, J. M., Rodríguez, V. M., Markowitz, M. S., Corona, R. A., Borzelleca, J. F., … Bodurtha, J. N. (2014). Practical Considerations for Implementing Research Recruitment Etiquette. IRB: Ethics and Human Research, 36, 712.Google Scholar
Hawkley, L. C., Thisted, R. A., Masi, C. M., & Cacioppo, J. T. (2010). Loneliness Predicts Increased Blood Pressure: 5-Year Cross-Lagged Analyses in Middle-Aged and Older Adults. Psychology and Aging, 25, 132141.Google Scholar
Hazan, C., & Shaver, P. (1987). Romantic Love Conceptualized as an Attachment Process. Journal of Personality and Social Psychology, 52, 511524.Google Scholar
Hesse, E. (1999). The Adult Attachment Interview: Historical and Current Perspectives. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of Attachment: Theory, Research, and Clinical Applications (pp. 395433). New York: Guilford Press.Google Scholar
Hofer, M. A. (1994). Hidden Regulators in Attachment, Separation, and Loss. Monographs of the Society for Research in Child Development, 59, 192207.Google Scholar
Hofer, M. A. (2006). Psychobiological Roots of Early Attachment. Current Directions in Psychological Science, 15, 8488.Google Scholar
Hughes, A. E., Crowell, S. E., Uyeji, L., & Coan, J. A. (2012). A Developmental Neuroscience of Borderline Pathology: Emotion Dysregulation and Social Baseline Theory. Journal of Abnormal Child Psychology, 40, 2133.Google Scholar
Joel, S., MacDonald, G., & Shimotomai, A. (2011). Conflicting Pressures on Romantic Relationship Commitment for Anxiously Attached Individuals. Journal of Personality, 79, 5174.Google Scholar
Joiner, T. E., Hom, M. A., Hagan, C. R., & Silva, C. (2016). Suicide as a Derangement of the Self-Sacrificial Aspect of Eusociality. Psychological Review, 123, 235254.Google Scholar
Kenny, D. A. (2005). Cross-Lagged Panel Design. In Everitt, B. S. & Howell, D. (Eds.), Encyclopedia of Statistics in Behavioral Science (pp. 240451). Hoboken, NJ: Wiley.Google Scholar
Kerig, P. K., & Baucom, D. H. (Eds.). (2004). Couple Observational Coding Systems. Mahwah, NJ: Erlbaum.Google Scholar
Leclère, C., Viaux, S., Avril, M., Achard, C., Chetouani, M., Missonnier, S., & Cohen, D. (2014). Why Synchrony Matters during Mother-Child Interactions: A Systematic Review. PloS One, 9, e113571.Google Scholar
Lindahl, K. M., & Malik, N. M. (2000). System for Coding Interactions and Family Functioning. Miami, FL: University of Miami.Google Scholar
Lopes, V. P., Gabbard, C., & Rodrigues, L. P. (2013). Physical Activity in Adolescents: Examining Influence of the Best Friend Dyad. Journal of Adolescent Health, 52, 752756.Google Scholar
Lotzin, A., Lu, X., Kriston, L., Schiborr, J., Musal, T., Romer, G., & Ramsauer, B. (2015). Observational Tools for Measuring Parent-Infant Interaction: A Systematic Review. Clinical Child and Family Psychology Review, 18, 99132.Google Scholar
Lunkenheimer, E., Tiberio, S. S., Buss, K. A., Lucas‐Thompson, R. G., Boker, S. M., & Timpe, Z. C. (2015). Coregulation of Respiratory Sinus Arrhythmia between Parents and Preschoolers: Differences by Children’s Externalizing Problems. Developmental Psychobiology, 57, 9941003.Google Scholar
Moore, G. A., Hill‐Soderlund, A. L., Propper, C. B., Calkins, S. D., Mills‐Koonce, W. R., & Cox, M. J. (2009). Mother-Infant Vagal Regulation in the Face‐to‐Face Still‐Face Paradigm Is Moderated by Maternal Sensitivity. Child Development, 80, 209223.Google Scholar
Ostlund, B. D., Measelle, J. R., Laurent, H. K., Conradt, E., & Ablow, J. C. (2017). Shaping Emotion Regulation: Attunement, Symptomatology, and Stress Recovery within Mother-Infant Dyads. Developmental Psychobiology, 59, 1525.Google Scholar
Parent, J., Forehand, R., Pomerantz, H., Peisch, V., & Seehuus, M. (2017). Father Participation in Child Psychopathology Research. Journal of Abnormal Child Psychology, 45, 12591270.Google Scholar
Patterson, A. C., & Veenstra, G. (2010). Loneliness and Risk of Mortality: A Longitudinal Investigation in Alameda County, California. Social Science and Medicine, 71, 181186.Google Scholar
Perry, N. S., Baucom, K. J., Bourne, S., Butner, J., Crenshaw, A. O., Hogan, J. N., … Baucom, B. R. (2017). Graphic Methods for Interpreting Longitudinal Dyadic Patterns from Repeated-Measures Actor-Partner Interdependence Models. Journal of Family Psychology, 31, 592603.Google Scholar
Pietromonaco, P. R., & Beck, L. A. (2015). Attachment Processes in Adult Romantic Relationships. In Mikulincer, M., Shaver, P. R., Simpson, J. A., & Dovidio, J. F. (Eds.), APA Handbooks in Psychology. APA Handbook of Personality and Social Psychology, Vol. 3: Interpersonal Relations (pp. 3364). Washington, DC: American Psychological Association.Google Scholar
Pietromonaco, P. R., Uchino, B., & Dunkel Schetter, C. (2014). Close Relationship Processes and Health: Implications of Attachment Theory for Health and Disease. Health Psychology, 32, 499513.Google Scholar
Prinstein, M. J., & Giletta, M. (2016). Peer Relations and Developmental Psychopathology. In Cicchetti, D. (Ed.), Developmental Psychopathology (3rd edn., pp. 529579). Hoboken, NJ: WileyGoogle Scholar
Prinstein, M. J., Borelli, J. L., Cheah, C. S., Simon, V. A., & Aikins, J. W. (2005). Adolescent Girls’ Interpersonal Vulnerability to Depressive Symptoms: A Longitudinal Examination of Reassurance-Seeking and Peer Relationships. Journal of Abnormal Psychology, 114, 676688.Google Scholar
Raby, K. L., Cicchetti, D., Carlson, E. A., Cutuli, J. J., Englund, M. M., & Egeland, B. (2012). Genetic and Caregiving-Based Contributions to Infant Attachment: Unique Associations with Distress Reactivity and Attachment Security. Psychological Science, 23, 10161023.Google Scholar
Ravitz, P., Maunder, R., Hunter, J., Sthankiya, B., & Lancee, W. (2010). Adult Attachment Measures: A 25-Year Review. Journal of Psychosomatic Research, 69, 419432.Google Scholar
Roberts, N. A., Tsai, J. L., & Coan, J. A. (2007). Emotion Elicitation Using Dyadic Interaction Tasks. In Coan, J. A. & Allen, J. B. (Eds.), Handbook of Emotion Elicitation and Assessment (pp. 106123). New York: Oxford University Press.Google Scholar
Robles, T. F., Slatcher, R. B., Trombello, J. M., & McGinn, M. M. (2014). Marital Quality and Health: A Meta-Analytic Review. Psychological Bulletin, 140, 140187.Google Scholar
Roisman, G. I., Holland, A., Fortuna, K., Fraley, R. C., Clausell, E., & Clarke, A. (2007). The Adult Attachment Interview and Self-Reports of Attachment Style: An Empirical Rapprochement. Journal of Personality and Social Psychology, 92, 678697.Google Scholar
Shaver, P. R., & Mikulincer, M. (2010). New Directions in Attachment Theory and Research. Journal of Social and Personal Relationships, 27, 163172.Google Scholar
Stankovic, J. A. (2014). Research Directions for the Internet of Things. IEEE Internet of Things Journal, 1, 39.Google Scholar
Stubbs, J., Crosby, L., Forgatch, M. S., & Capaldi, D. M. (1998). Family and Peer Process Code: A Synthesis of Three Oregon Social Learning Center Behavior Codes. Eugene: Oregon Social Learning Center.Google Scholar
Tronick, E. Z., Als, H., Adamson, L., Wise, S., & Brazelton, T. B. (1978). The Infant’s Response to Entrapment between Contradictory Messages in Face-to-Face Interaction. Journal of American Academy of Child Psychiatry, 17, 113.Google Scholar
Trout, D. L. (1980). The Role of Social Isolation in Suicide. Suicide and Life-Threatening Behavior, 10, 1023.Google Scholar
Uchino, B. N., Smith, T. W., & Berg, C. A. (2014). Spousal Relationship Quality and Cardiovascular Risk: Dyadic Perceptions of Relationship Ambivalence Are Associated with Coronary-Artery Calcification. Psychological Science, 25, 10371042.Google Scholar
Walsh, E. I., & Brinker, J. K. (2015). Delay between Recruitment and Participation Impacts on Preinclusion Attrition. Quarterly Journal of Experimental Psychology, 68, 635640.Google Scholar
Wittenborn, A. K., Dolbin‐MacNab, M. L., & Keiley, M. K. (2013). Dyadic Research in Marriage and Family Therapy: Methodological Considerations. Journal of Marital and Family Therapy, 39, 516.Google Scholar
Xiao, B., Imel, Z. E., Georgiou, P. G., Atkins, D. C., & Narayanan, S. S. (2015). “Rate My Therapist”: Automated Detection of Empathy in Drug and Alcohol Counseling via Speech and Language Processing. PLoS One, 10, e0143055.Google Scholar
Yang, Y. C., Boen, C., Gerken, K., Li, T., Schorpp, K., & Harris, K. M. (2016). Social Relationships and Physiological Determinants of Longevity across the Human Life Span. Proceedings of the National Academy of Sciences, 113, 578583.Google Scholar

References

Anker, M. G., Owen, J., Duncan, B. L., & Sparks, J. A. (2010). The Alliance in Couple Therapy: Partner Influence, Early Change, and Alliance Patterns in a Naturalistic Sample. Journal of Consulting and Clinical Psychology, 78(5), 635645.Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). Retrieved from www.jstatsoft.org/article/view/v067i01Google Scholar
Baucom, B. R., Dickenson, J. A., Atkins, D. C., Baucom, D. H., Fischer, M. S., Weusthoff, S., … Zimmermann, T. (2015a). The Interpersonal Process Model of Demand/Withdraw Behavior. Journal of Family Psychology, 29(1), 8090.Google Scholar
Baucom, B. R., Sheng, E., Christensen, A., Georgiou, P. G., Narayanan, S. S., & Atkins, D. C. (2015b). Behaviorally-Based Couple Therapies Reduce Emotional Arousal during Couple Conflict. Behaviour Research and Therapy, 72, 4955.Google Scholar
Berghuis, J. P., & Stanton, A. L. (2002). Adjustment to a Dyadic Stressor: A Longitudinal Study of Coping and Depressive Symptoms in Infertile Couples over an Insemination Attempt. Journal of Consulting and Clinical Psychology, 70(2), 433438.Google Scholar
Bisgaard, S., & Kulahci, M. (2011). Time Series Analysis and Forecasting by Example. Hoboken, NJ: Wiley.Google Scholar
Bodenmann, G., Hilpert, P., Nussbeck, F. W., & Bradbury, T. N. (2014). Enhancement of Couples’ Communication and Dyadic Coping by a Self-Directed Approach: A Randomized Controlled Trial. Journal of Consulting and Clinical Psychology, 82(4), 580591.Google Scholar
Boker, S. M., & Laurenceau, J.-P. (2006). Dynamical Systems Modeling: An Application to the Regulation of Intimacy and Disclosure in Marriage. In Walls, T. A. & Schafer, J. L. (Eds.), Models for Intensive Longitudinal Data (pp. 195218). New York: Oxford University Press.Google Scholar
Boker, S. M., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., … Bates, T. (2011). OpenMx: An Open Source Extended Structural Equation Modeling Framework. Psychometrika, 76(2), 306317.Google Scholar
Bolger, N., & Laurenceau, J.-P. (2013). Design and Analysis of Intensive Longitudinal Studies of Distinguishable Dyads. In Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research (pp. 143175). New York: Guilford Press.Google Scholar
Bollen, K. A., & Curran, P. J. (2006). Latent Curve Models: A Structural Equation Perspective. Hoboken, N.J: Wiley-Interscience.Google Scholar
Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling. Psychological Methods, 22(3), 409425.Google Scholar
Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., … Kuppens, P. (2016). Assessing Temporal Emotion Dynamics Using Networks. Assessment, 23(4), 425435.Google Scholar
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data. PLOS ONE, 8(4), e60188.Google Scholar
Browne, M. W., & Nesselroade, J. R. (2005). Representing Psychological Processes with Dynamic Factor Models: Some Promising Uses and Extensions of Arma Time Series Models. In Maydeu-Olivares, A & McArdle, J. J (Eds.), Advances in Psychometrics: A Festschrift for Roderick P. McDonald (pp. 415452). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Browne, M. W., & Zhang, G. (2003). DyFA 2.03 User Guide. Retrieved from https://psychology.osu.edu/people/browne.4Google Scholar
Browne, M. W., & Zhang, G. (2007). Developments in the Factor Analysis of Individual Time Series. In Cudeck, R & MacCallum, R. C (Eds.), Factor Analysis at 100: Time Series in Psychology. Historical Developments and Future Directions (pp. 265291). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Butler, E. A. (2017). Emotions Are Temporal Interpersonal Systems. Current Opinion in Psychology, 17(Supplement C), 129134.Google Scholar
Butner, J., Diamond, L. M., & Hicks, A. M. (2007). Attachment Style and Two Forms of Affect Coregulation between Romantic Partners. Personal Relationships, 14(3), 431455.Google Scholar
Butterfield, R. M., & Lewis, M. A. (2002). Health-Related Social Influence: A Social Ecological Perspective on Tactic Use. Journal of Social and Personal Relationships, 19(4), 505526.Google Scholar
Cabrieto, J., Tuerlinckx, F., Kuppens, P., Grassmann, M., & Ceulemans, E. (2017). Detecting Correlation Changes in Multivariate Time Series: A Comparison of Four Non-Parametric Change Point Detection Methods. Behavior Research Methods, 49(3), 9881005.Google Scholar
Campbell, L., Simpson, J. A., Kashy, D. A., & Rholes, W. S. (2001). Attachment Orientations, Dependence, and Behavior in a Stressful Situation: An Application of the Actor-Partner Interdependence Model. Journal of Social and Personal Relationships, 18(6), 821843.Google Scholar
Castro-Schilo, L., & Ferrer, E. (2013). Comparison of Nomothetic Versus Idiographic-Oriented Methods for Making Predictions about Distal Outcomes from Time Series Data. Multivariate Behavioral Research, 48(2), 175207.Google Scholar
Chow, S.-M., Ferrer, E., & Hsieh, F. (2011a). Statistical Methods for Modeling Human Dynamics: An Interdisciplinary Dialogue. New York: Taylor & Francis.Google Scholar
Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models. Multivariate Behavioral Research, 42(2), 283321.Google Scholar
Chow, S.-M., Mattson, W. I., & Messinger, D. S. (2014). Representing Trends and Moment-to-Moment Variability in Dyadic and Family Processes Using State-Space Modeling Techniques. In Emerging Methods in Family Research (pp. 3955). Cham: Springer.Google Scholar
Chow, S.-M., Nesselroade, J. R., Shifren, K., & McArdle, J. J. (2004). Dynamic Structure of Emotions among Individuals with Parkinson’s Disease. Structural Equation Modeling: A Multidisciplinary Journal, 11(4), 560582.Google Scholar
Chow, S.-M., Ou, O., Cohn, J. F., & Messinger, D. S. (2017). Representing Self-Organization and Non-Stationarities in Dyadic Interaction Processes Using Dynamic Systems Modeling Techniques. In Von Davier, A., Kyllonen, P. C., & Zhu, M. (Eds.), Innovative Assessment of Collaboration. New York: Springer.Google Scholar
Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011b). Dynamic Factor Analysis Models with Time-Varying Parameters. Multivariate Behavioral Research, 46(2), 303339.Google Scholar
Cook, W. L., & Snyder, D. K. (2005). Analyzing Nonindependent Outcomes in Couple Therapy Using the Actor-Partner Interdependence Model. Journal of Family Psychology, 19(1), 133141.Google Scholar
Crowell, S. E., Baucom, B. R., Yaptangco, M., Bride, D., Hsiao, R., McCauley, E., & Beauchaine, T. P. (2014). Emotion Dysregulation and Dyadic Conflict in Depressed and Typical Adolescents: Evaluating Concordance across Psychophysiological and Observational Measures. Biological Psychology, 98(Supplement C), 5058.Google Scholar
Curran, P. J., & Bollen, K. A. (2001). The Best of Both Worlds: Combining Autoregressive and Latent Curve Models. In Collins, L. M. & Sayer, A. G (Eds.), New Methods for the Analysis of Change (pp. 107135). Washington, DC: American Psychological Association.Google Scholar
Driscoll, K. A., Schatschneider, C., McGinnity, K., & Modi, A. C. (2012). Application of Dyadic Data Analysis in Pediatric Psychology: Cystic Fibrosis Health-Related Quality of Life and Anxiety in Child-Caregiver Dyads. Journal of Pediatric Psychology, 37(6), 605611.Google Scholar
Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation Modeling with R Package ctsem. Journal of Statistical Software, 77(5). Retrieved from www.jstatsoft.org/article/view/v077i05Google Scholar
Engle, R., & Watson, M. (1981). A One-Factor Multivariate Time Series Model of Metropolitan Wage Rates. Journal of the American Statistical Association, 76(376), 774781.Google Scholar
Felmlee, D. H. (2006). Application of Dynamic Systems Analysis to Dyadic Interactions. In Ong, D & van Dulmen, M (Eds.), Oxford Handbook of Methods in Positive Psychology (pp. 409422). New York: Oxford University Press.Google Scholar
Felmlee, D. H., & Greenberg, D. F. (1999). A Dynamic Systems Model of Dyadic Interaction. Journal of Mathematical Sociology, 23(3), 155180.Google Scholar
Ferrer, E. (2016). Exploratory Approaches for Studying Social Interactions, Dynamics, and Multivariate Processes in Psychological Science. Multivariate Behavioral Research, 51(2–3), 240256.Google Scholar
Ferrer, E., & Helm, J. L. (2013). Dynamical Systems Modeling of Physiological Coregulation in Dyadic Interactions. International Journal of Psychophysiology, 88(3), 296308.Google Scholar
Ferrer, E., & McArdle, J. J. (2003). Alternative Structural Models for Multivariate Longitudinal Data Analysis. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 493524.Google Scholar
Ferrer, E., & McArdle, J. J. (2004). An Experimental Analysis of Dynamic Hypotheses about Cognitive Abilities and Achievement from Childhood to Early Adulthood. Developmental Psychology, 40(6), 935952.Google Scholar
Ferrer, E., & McArdle, J. J. (2010). Longitudinal Modeling of Developmental Changes in Psychological Research. Current Directions in Psychological Science, 19(3), 149154.Google Scholar
Ferrer, E., & Nesselroade, J. R. (2003). Modeling Affective Processes in Dyadic Relations via Dynamic Factor Analysis. Emotion, 3(4), 344360.Google Scholar
Ferrer, E., & Rast, P. (2017). Partitioning the Variability of Daily Emotion Dynamics in Dyadic Interactions with a Mixed-Effects Location Scale Model. Current Opinion in Behavioral Sciences, 15(Supplement C), 1015.Google Scholar
Ferrer, E., & Steele, J. (2013). Differential Equations for Evaluating Theoretical Models of Dyadic Interactions. In Molenaar, P. C. M., Lerner, R. M., & Newell, K. M. (Eds.), Handbook of Developmental Systems Theory and Methodology (pp. 345368). New York: Guilford.Google Scholar
Ferrer, E., & Steele, J. (2014). Differential Equations for Evaluating Theoretical Models of Dyadic Interactions: Handbook of Developmental Systems Theory and Methodology. New York: Guilford.Google Scholar
Ferrer, E., & Steele, J. S. (2012). Dynamic Systems Analysis of Affective Processes in Dyadic Interactions Using Differential Equations. In Hancock, G & Harrings, J (Eds.), Advances in Longitudinal Methods in the Social and Behavioral Sciences (pp. 111134). Charlotte, NC: Information Age Publishing.Google Scholar
Ferrer, E., & Widaman, K. F. (2008). Dynamic Factor Analysis of Dyadic Affective Processes with Inter-Group Differences. In Card, N. A, Selig, J. P., & Little, T. D. (Eds.), Modeling Dyadic and Interdependent Data in the Developmental and Behavioral Sciences (pp. 107137). New York: Routledge.Google Scholar
Ferrer, E., & Zhang, G. (2009). Time Series Models for Examining Psychological Processes: Applications and New Developments. In Millsap, R. E. & Maydeu-Olivares, A. (Eds.), Modeling Dyadic and Interdependent Data in the Developmental and Behavioral Sciences (pp. 107137). London: Sage Publications.Google Scholar
Ferrer, E., Balluerka, N., & Widaman, K. F. (2008). Factorial Invariance and the Specification of Second-Order Latent Growth Models. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 4(1), 2236.Google Scholar
Ferrer, E., Chen, S., Chow, S.-M., & Hsieh, F. (2010). Exploring Intra-Individual, Inter-Individual and Inter-Variable Dynamics in Dyadic Interactions. In Chow, S.-M., Ferrer, E., & Hsieh, F. (Eds.), Statistical Methods for Modeling Human Dynamics: An Interdisciplinary Dialogue (pp. 381411). New York: Taylor and Francis.Google Scholar
Ferrer, E., McArdle, J. J., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2007). Longitudinal Models of Developmental Dynamics between Reading and Cognition from Childhood to Adolescence. Developmental Psychology, 43(6), 14601473.Google Scholar
Ferrer, E., Steele, J. S., & Hsieh, F. (2012). Analyzing the Dynamics of Affective Dyadic Interactions Using Patterns of Intra- and Interindividual Variability. Multivariate Behavioral Research, 47(1), 136171.Google Scholar
Fisher, A. J., Newman, M. G., & Molenaar, P. C. M. (2011). A Quantitative Method for the Analysis of Nomothetic Relationships between Idiographic Structures: Dynamic Patterns Create Attractor States for Sustained Posttreatment Change. Journal of Consulting and Clinical Psychology, 79(4), 552563.Google Scholar
Franks, M. M., Wendorf, C. A., Gonzalez, R., & Ketterer, M. (2004). Aid and Influence: Health-Promoting Exchanges of Older Married Partners. Journal of Social and Personal Relationships, 21(4), 431445.Google Scholar
Garcia-Lopez, L. J., Díaz-Castela, M. del M., Muela-Martinez, J. A., & Espinosa-Fernandez, L. (2014). Can Parent Training for Parents with High Levels of Expressed Emotion Have a Positive Effect on Their Child’s Social Anxiety Improvement? Journal of Anxiety Disorders, 28(8), 812822.Google Scholar
Girard, J., Wright, A., Beeney, J., Lazarus, S., Scott, L., Stepp, S., & Pilkonis, P. (2017). Interpersonal Problems across Levels of the Psychopathology Hierarchy. Comprehensive Psychiatry, 79, 5369.Google Scholar
Goldfried, M. R., Greenberg, L. S., & Marmar, C. (1990). Individual Psychotherapy: Process and Outcome. Annual Review of Psychology, 41(1), 659688.Google Scholar
Gonzalez, R., & Griffin, D. (1997). On the Statistics of Interdependence: Treating Dyadic Data with Respect. In Duck, S. (Ed.), Handbook of Personal Relationships: Theory, Research and Interventions (pp. 271302). Hoboken, NJ: John Wiley.Google Scholar
Gottman, J. M., & Notarius, C. I. (2000). Decade Review: Observing Marital Interaction. Journal of Marriage and Family, 62(4), 927947.Google Scholar
Gottman, J. M., Murray, J. D., Swanson, C. C., Tyson, R., & Swanson, K. R. (2002). The Mathematics of Marriage: Dynamic Nonlinear Models. Cambridge, MA: MIT Press.Google Scholar
Gottman, J. M., Swanson, C., & Murray, J. (1999). The Mathematics of Marital Conflict: Dynamic Mathematical Nonlinear Modeling of Newlywed Marital Interaction. Journal of Family Psychology, 13(1), 319.Google Scholar
Granic, I., & Patterson, G. R. (2006). Toward a Comprehensive Model of Antisocial Development: A Dynamic Systems Approach. Psychological Review, 113(1), 101131.Google Scholar
Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software, 33(2). Retrieved from www.jstatsoft.org/article/view/v033i02Google Scholar
Hagedoorn, M., Kuijer, R. G., Buunk, B. P., DeJong, G. M., Wobbes, T., & Sanderman, R. (2000). Marital Satisfaction in Patients with Cancer: Does Support from Intimate Partners Benefit Those Who Need It Most? Health Psychology, 19(3), 274282.Google Scholar
Hamaker, E. L., Zhang, Z., & van der Maas, H. L. J. (2009). Using Threshold Autoregressive Models to Study Dyadic Interactions. Psychometrika, 74(4), 727745.Google Scholar
Hawrilenko, M., Gray, T. D., & Córdova, J. V. (2016). The Heart of Change: Acceptance and Intimacy Mediate Treatment Response in a Brief Couples Intervention. Journal of Family Psychology, 30(1), 93103.Google Scholar
Hayes, A. M., & Strauss, J. L. (1998). Dynamic Systems Theory as a Paradigm for the Study of Change in Psychotherapy: An Application to Cognitive Therapy for Depression. Journal of Consulting and Clinical Psychology, 66(6), 939947.Google Scholar
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data. Biometrics, 64(2), 627634.Google Scholar
Helm, J. L., Sbarra, D., & Ferrer, E. (2012). Assessing Cross-Partner Associations in Physiological Responses via Coupled Oscillator Models. Emotion, 12(4), 748762.Google Scholar
Helm, J. L., Sbarra, D. A., & Ferrer, E. (2014). Coregulation of Respiratory Sinus Arrhythmia in Adult Romantic Partners. Emotion, 14(3), 522531.Google Scholar
Hollon, S. D., Muñoz, R. F., Barlow, D. H., Beardslee, W. R., Bell, C. C., Bernal, G., … Sommers, D. (2002). Psychosocial Intervention Development for the Prevention and Treatment of Depression: Promoting Innovation and Increasing Access. Biological Psychiatry, 52(6), 610630.Google Scholar
Hsieh, F., Ferrer, E., Chen, S.-C., & Chow, S.-M. (2010). Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation. Psychometrika, 75(2), 351372.Google Scholar
Kenny, D. A. (1996). Models of Non-Independence in Dyadic Research. Journal of Social and Personal Relationships, 13(2), 279294.Google Scholar
Kenny, D. A., & Judd, C. M. (1986). Consequences of Violating the Independence Assumption in Analysis of Variance. Psychological Bulletin, 99(3), 422431.Google Scholar
Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data Analysis in Social Psychology. In Gilbert, D., Fiske, S., & Lindzey, G. (Eds.), Handbook of Social Psychology (4th edn., Vol. 1, pp. 233265). Boston: McGraw-Hill.Google Scholar
Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic Data Analysis. New York: Guilford Press.Google Scholar
Kivlighan, D. M., Clements, L., Blake, C., Arnzen, A., & Brady, L. (1993). Counselor Sex Role Orientation, Flexibility, and Working Alliance Formation. Journal of Counseling & Development, 72(1), 95100.Google Scholar
Kivlighan, D. M., Marmarosh, C. L., & Hilsenroth, M. J. (2014). Client and Therapist Therapeutic Alliance, Session Evaluation, and Client Reliable Change: A Moderated Actor-Partner Interdependence Model. Journal of Counseling Psychology, 61(1), 1523.Google Scholar
Kline, R. B. (2016). Computer Tools. In Principles and Practice of Structural Equation Modeling (4th edn., pp. 97113). New York: Guilford Press.Google Scholar
Kopta, S. M., Lueger, R. J., Saunders, S. M., & Howard, K. I. (1999). Individual Psychotherapy Outcome and Process Research: Challenges Leading to Greater Turmoil or a Positive Transition? Annual Review of Psychology, 50(1), 441469.Google Scholar
Kouros, C. D., & Cummings, E. M. (2010). Longitudinal Associations Between Husbands’ and Wives’ Depressive Symptoms. Journal of Marriage and Family, 72(1), 135147.Google Scholar
Laurenceau, J.-P., & Bolger, N. (2005). Using Diary Methods to Study Marital and Family Processes. Journal of Family Psychology, 19(1), 8697.Google Scholar
Laurenceau, J.-P., Hayes, A. M., & Feldman, G. C. (2007). Some Methodological and Statistical Issues in the Study of Change Processes in Psychotherapy. Clinical Psychology Review, 27(6), 682695.Google Scholar
Lawrence, E., Yoon, J., Langer, A., & Ro, E. (2009). Is Psychological Aggression as Detrimental as Physical Aggression? The Independent Effects of Psychological Aggression on Depression and Anxiety Symptoms. Violence and Victims, 24(1), 2035.Google Scholar
Ledermann, T., & Kenny, D. A. (2012). The Common Fate Model for Dyadic Data: Variations of a Theoretically Important but Underutilized Model. Journal of Family Psychology, 26(1), 140148.Google Scholar
Ledermann, T., & Macho, S. (2014). Analyzing Change at the Dyadic Level: The Common Fate Growth Model. Journal of Family Psychology, 28(2), 204213.Google Scholar
Ledermann, T., Macho, S., & Kenny, D. A. (2011). Assessing Mediation in Dyadic Data Using the Actor-Partner Interdependence Model. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 595612.Google Scholar
Levenson, R. W., & Gottman, J. M. (1983). Marital Interaction: Physiological Linkage and Affective Exchange. Journal of Personality and Social Psychology, 45(3), 587597.Google Scholar
Madhyastha, T. M., Hamaker, E. L., & Gottman, J. M. (2011). Investigating Spousal Influence Using Moment-to-Moment Affect Data from Marital Conflict. Journal of Family Psychology, 25(2), 292300.Google Scholar
Marmarosh, C. L., Kivlighan, D. M., Bieri, K., LaFauci Schutt, J. M., Barone, C., & Choi, J. (2014). The Insecure Psychotherapy Base: Using Client and Therapist Attachment Styles to Understand the Early Alliance. Psychotherapy, 51(3), 404412.Google Scholar
McArdle, J. J. (1982). Structural Equation Modeling of an Individual System: Preliminary Results from “A Case Study in Episodic Alcoholism.” Unpublished Manuscript, Department of Psychology, University of Denver.Google Scholar
McArdle, J. J. (1988). Dynamic but Structural Equation Modeling of Repeated Measures Data. In Nesselroade, J. R. & Cattell, R. B. (Eds.), Handbook of Multivariate Experimental Psychology (pp. 561614). Boston, MA: Springer.Google Scholar
McArdle, J. J. (2001). A Latent Difference Score Approach to Longitudinal Dynamic Structural Analysis. In Cudeck, R., du Toit, S., & Sörbom, D. (Eds.), Structural Equation Modeling, Present and Future: A Festschrift in Honor of Karl Jöreskog (pp. 746). Lincolnwood, IL: Scientific Software International.Google Scholar
McArdle, J. J. (2009). Latent Variable Modeling of Differences and Changes with Longitudinal Data. Annual Review of Psychology, 60(1), 577605.Google Scholar
McArdle, J. J., & Epstein, D. (1987). Latent Growth Curves within Developmental Structural Equation Models. Child Development, 58(1), 110133.Google Scholar
McArdle, J. J., & Hamagami, F. (2001). Latent Difference Score Structural Models for Linear Dynamic Analyses with Incomplete Longitudinal Data. In Collins, L. M. & Sayer, A. G. (Eds.), New Methods for the Analysis of Change (pp. 139175). Washington, DC: American Psychological Association.Google Scholar
McArdle, J. J., Hamagami, F., Meredith, W., & Bradway, K. P. (2000). Modeling the Dynamic Hypotheses of Gf–Gc Theory Using Longitudinal Life-Span Data. Learning and Individual Differences, 12(1), 5379.Google Scholar
Medina-Pradas, C., Navarro, J. B., López, S. R., Grau, A., & Obiols, J. E. (2011). Dyadic View of Expressed Emotion, Stress, and Eating Disorder Psychopathology. Appetite, 57(3), 743748.Google Scholar
Meredith, W. (1993). Measurement Invariance, Factor Analysis And Factorial Invariance. Psychometrika, 58(4), 525543.Google Scholar
Meredith, W., & Tisak, J. (1990). Latent Curve Analysis. Psychometrika, 55(1), 107122.Google Scholar
Molenaar, P. C. M. (1985). A Dynamic Factor Model for the Analysis of Multivariate Time Series. Psychometrika, 50(2), 181202.Google Scholar
Molenaar, P. C. M., & Nesselroade, J. R. (2001). Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series. Psychometrika, 66(1), 99107.Google Scholar
Molenaar, P. C. M., Gooijer, J. G. D., & Schmitz, B. (1992). Dynamic Factor Analysis of Nonstationary Multivariate Time Series. Psychometrika, 57(3), 333349.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998). Mplus User’s Guide (6th edn.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., … Boker, S. M. (2016). OpenMx 2.0: Extended Structural Equation and Statistical Modeling. Psychometrika, 81(2), 535549.Google Scholar
Nesselroade, J. R., & Boker, S. M. (1994). Assessing Constancy and Change. In Heatherton, T. & Weinberg, J. (Eds.), Can Personality Change? (pp. 121147). Washington, DC: American Psychological Association.Google Scholar
Nestler, S., Grimm, K. J., & Schönbrodt, F. D. (2015). The Social Consequences and Mechanisms of Personality: How to Analyse Longitudinal Data from Individual, Dyadic, Round-Robin and Network Designs. European Journal of Personality, 29(2), 272295.Google Scholar
Ou, L., Hunter, M. D., & Chow, S.-M. (2017). What’s for dynr. A Package for Linear and Nonlinear DYNamic Modeling in R. Retrieved from https://quantdev.ssri.psu.edu/sites/qdev/files/OuHunterChow_Dynr.pdfGoogle Scholar
Perry, N. S., Baucom, K. J. W., Bourne, S., Butner, J., Crenshaw, A. O., Hogan, J. N., … Baucom, B. R. W. (2017). Graphic Methods for Interpreting Longitudinal Dyadic Patterns from Repeated-Measures Actor-Partner Interdependence models. Journal of Family Psychology, 31(5), 592603.Google Scholar
Proulx, C. M., & Snyder-Rivas, L. A. (2013). The Longitudinal Associations between Marital Happiness, Problems, and Self-Rated Health. Journal of Family Psychology, 27(2), 194202.Google Scholar
Przeworski, A., Zoellner, L. A., Franklin, M. E., Garcia, A., Freeman, J., March, J. S., & Foa, E. B. (2012). Maternal and Child Expressed Emotion as Predictors of Treatment Response in Pediatric Obsessive-Compulsive Disorder. Child Psychiatry & Human Development, 43(3), 337353.Google Scholar
Core Team, R. (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ram, N., Shiyko, M., Lunkenheimer, E. S., Doerksen, S., & Conroy, D. (2014). Families as Coordinated Symbiotic Systems: Making Use of Nonlinear Dynamic Models. In Emerging Methods in Family Research (pp. 1937). Cham: Springer.Google Scholar
Rao, C. R. (1958). Some Statistical Methods for Comparison of Growth Curves. Biometrics, 14(1), 117.Google Scholar
Rast, P., Hofer, S. M., & Sparks, C. (2012). Modeling Individual Differences in Within-Person Variation of Negative and Positive Affect in a Mixed Effects Location Scale Model Using BUGS/JAGS. Multivariate Behavioral Research, 47(2), 177200.Google Scholar
Reed, R. G., Barnard, K., & Butler, E. A. (2015). Distinguishing Emotional Coregulation from Codysregulation: An Investigation of Emotional Dynamics and Body Weight in Romantic Couples. Emotion, 15(1), 4560.Google Scholar
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2). Retrieved from www.jstatsoft.org/article/view/v048i02Google Scholar
Sbarra, D. A., & Ferrer, E. (2006). The Structure and Process of Emotional Experience following Nonmarital Relationship Dissolution: Dynamic Factor Analyses of Love, Anger, and Sadness. Emotion, 6(2), 224238.Google Scholar
Sbarra, D. A., & Wishman, M. A. (2013). Marital and Relational Discord. In Castonguay, L. & Oltmans, T. C. (Eds.), Psychopathology: Bridging the Gap between Basic Empirical Findings and Clinical Practice (pp. 393418). New York: Guilford Press.Google Scholar
Shifren, K., Hooker, K., Wood, P., & Nesselroade, J. R. (1997). Structure and Variation of Mood in Individuals with Parkinson’s Disease: A Dynamic Factor Analysis. Psychology and Aging, 12(2), 328339.Google Scholar
Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications: With R Examples (3rd edn.). New York: Springer.Google Scholar
Steele, J. S., & Ferrer, E. (2011). Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes. Multivariate Behavioral Research, 46(6), 956984.Google Scholar
Steele, J. S., Gonzales, J. E., & Ferrer, E. (2018). Uses and Limitations of Continuous Time Models to Examine Dyadic Interactions. In van Montfort, K., Oud, J., & Voelkle, M. C. (Eds.), Continuous Time Modeling in the Behavioral and Related Sciences (pp. 135162). Cham: Springer International.Google Scholar
Thompson, A., & Bolger, N. (1999). Emotional Transmission in Couples under Stress. Journal of Marriage and the Family, 61(1), 3848.Google Scholar
Thorson, K., West, T., & Mendes, W. (2017). Measuring Physiological Influence in Dyads: A Guide to Designing, Implementing, and Analyzing Dyadic Physiological Studies. PsyArXiv. Retrieved from https://doi.org/10.17605/OSF.IO/9NDKFGoogle Scholar
Zhang, G., & Browne, M. W. (2008). DyFA Bootstrap: Dynamic Factor Analysis of Lagged Correlation Matrices with Bootstrap Standard Errors and Goodness of Fit Test. Version: Beta 1. Retrieved from https://psychology.osu.edu/people/browne.4Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×