Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T01:44:33.242Z Has data issue: false hasContentIssue false

20 - Cardiovascular Measures for Social and Behavioral Research

from Part V - Physiological Measures

Published online by Cambridge University Press:  12 December 2024

John E. Edlund
Affiliation:
Rochester Institute of Technology, New York
Austin Lee Nichols
Affiliation:
Central European University, Vienna
Get access

Summary

Cardiovascular measures for social and behavioral research have been historically popular because they are often non-invasive, inexpensive, and capture the dynamic nature of cardiac physiology. Among adults, many measures are static, like height – they do not change over time – but importantly, cardiovascular measures change moment-to-moment. For example, measuring the heart rate is easy and valuable for documenting different health conditions and can be predictive of overall longevity and disease. Electronic medical records provide access to retrospective high-quality cardiac measures; plus, now that consumer wearable devices are ubiquitous, it is even easier to prospectively collect cardiovascular measures that are continuous and automatically obtained. Thus, cardiovascular measures are important metrics of overall health, and their dynamic nature is important to capture with both established and novel scientific instruments. This chapter will focus on physiological measures that validate psychometric data, describe types of cardiovascular measures of health, and present future directions of cardiovascular measures in research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Hayek, A. A., Al-Saeed, A. H., Alzahrani, W. M., & Al Dawish, M. A. (2021). Assessment of patient satisfaction with on-site point-of-care hemoglobin A1c testing: An observational study. Diabetes Therapy, 12(9), 25312544. https://doi.org/10.1007/s13300-021-01126-7CrossRefGoogle ScholarPubMed
Al-Zaiti, S. S., Fallavollita, J. A., Canty, J. M. Jr., & Carey, M. G. (2014). Electrocardiographic predictors of sudden and non-sudden cardiac death in patients with ischemic cardiomyopathy. Heart and Lung, 43(6), 527533. https://doi.org/10.1016/j.hrtlng.2014.05.008CrossRefGoogle ScholarPubMed
Al-Zaiti, S. S., Pietrasik, G., Carey, M. G., Alhamaydeh, M., Canty, J. M., & Fallavollita, J. A. (2019). The role of heart rate variability, heart rate turbulence, and deceleration capacity in predicting cause-specific mortality in chronic heart failure. Journal of Electrocardiology, 52, 7074. https://doi.org/10.1016/j.jelectrocard.2018.11.006CrossRefGoogle ScholarPubMed
Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E. H., Marvel, F. A., et al. (2021). Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nature Reviews Cardiology, 18(8), 581599. https://doi.org/10.1038/s41569-021-00522-7CrossRefGoogle ScholarPubMed
Bellenger, C. R., Fuller, J. T., Thomson, R. L., Davison, K., Robertson, E. Y., & Buckley, J. D. (2016). Monitoring athletic training status through autonomic heart rate regulation: A systematic review and meta-analysis. Sports Medicine, 46(10), 14611486. https://doi.org/10.1007/s40279-016-0484-2CrossRefGoogle ScholarPubMed
Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. Frontiers in Public Health, 6, 149. https://doi.org/10.3389/fpubh.2018.00149CrossRefGoogle ScholarPubMed
Böhm, M., Reil, J. C., Deedwania, P., Kim, J. B., & Borer, J. S. (2015). Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. American Journal of Medicine, 128(3), 219228. https://doi.org/10.1016/j.amjmed.2014.09.016CrossRefGoogle ScholarPubMed
Borrell, L. N., & Vaughan, R. (2019). An AJPH supplement toward a unified research approach for minority health and health disparities. American Journal of Public Health, 109(S1), S6S7. https://doi.org/10.2105/ajph.2019.304963CrossRefGoogle Scholar
Buxton, A. E., Calkins, H., Callans, D. J., DiMarco, J. P., Fisher, J. D., Greene, H L., et al. (2006). ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: A report of the American College of Cardiology / American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). Journal of the American College of Cardiology, 48(11), 23602396. https://doi.org/10.1016/j.jacc.2006.09.020CrossRefGoogle Scholar
Carey, M., Al-Zaiti, S., Liao, L., Butler, R., & Martin, H. (2010). Characteristics of the standard 12-lead Holter ECG in professional firefighters. Computing in Cardiology, 3, 122138.Google Scholar
Carey, M. G., Al-Zaiti, S. S., Liao, L. M., Martin, H. N., & Butler, R. A. (2011). A low-glycemic nutritional fitness program to reverse metabolic syndrome in professional firefighters: Results of a pilot study. Journal of Cardiovascular Nursing, 26(4), 298304. https://doi.org/10.1097/JCN.0b013e31820344d7CrossRefGoogle ScholarPubMed
Carey, M., & Brunner, W. (2023). Building fruitful collaborations. In Nichols, A. L. & Edlund, J. E. (eds.), Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences (vol. 1, pp. 695713). In Cambridge University Press.CrossRefGoogle Scholar
Carey, M. G., & Thevenin, B. J. (2009). High-resolution 12-lead electrocardiograms of on-duty professional firefighters: A pilot feasibility study. Journal of Cardiovascular Nursing, 24(4), 261267. https://doi.org/10.1097/JCN.0b013e3181a4b250CrossRefGoogle ScholarPubMed
Carnethon, M. R., Pu, J., Howard, G., Albert, M. A., Anderson, C. A. M., Bertoni, A. G., et al. (2017). Cardiovascular health in African Americans: A scientific statement from the American Heart Association. Circulation, 136(21), e393e423. https://doi.org/doi:10.1161/CIR.0000000000000534CrossRefGoogle ScholarPubMed
Cebul, R. D., Love, T. E., Jain, A. K., & Hebert, C. J. (2011). Electronic health records and quality of diabetes care. New England Journal of Medicine, 365(9), 825833. https://doi.org/10.1056/NEJMsa1102519CrossRefGoogle ScholarPubMed
Chandrasekaran, R., Katthula, V., & Moustakas, E. (2021). Too old for technology? Use of wearable healthcare devices by older adults and their willingness to share health data with providers. Health Informatics Journal, 27(4), 14604582211058073. https://doi.org/10.1177/14604582211058073CrossRefGoogle ScholarPubMed
Chang, R. K. (2022). Resting 12‑lead ECG tests performed by patients at home amid the COVID-19 pandemic – results from the first 1000 patients. Journal of Electrocardiology, 73, 108112. https://doi.org/10.1016/j.jelectrocard.2022.06.006CrossRefGoogle ScholarPubMed
Chen, X. (2020). Analysis of athlete’s heart pumping function and echocardiography. Investigacion Clinica, 61(1).Google Scholar
Chida, Y., & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status. Hypertension, 55(4), 10261032. https://doi.org/doi:10.1161/HYPERTENSIONAHA.109.146621CrossRefGoogle ScholarPubMed
Conn, N. J., Schwarz, K. Q., & Borkholder, D. A. (2019). In-home cardiovascular monitoring system for heart failure: Comparative study. JMIR Mhealth and Uhealth, 7(1), e12419. https://doi.org/10.2196/12419CrossRefGoogle ScholarPubMed
Cygankiewicz, I., & Zareba, W. (2013). Heart rate variability. Handbook of Clinical Neurology, 117, 379393. https://doi.org/10.1016/b978-0-444-53491-0.00031-6CrossRefGoogle ScholarPubMed
Denollet, J., Gidron, Y., Vrints, C. J., & Conraads, V. M. (2010). Anger, suppressed anger, and risk of adverse events in patients with coronary artery disease. American Journal of Cardiology, 105(11), 15551560. https://doi.org/10.1016/j.amjcard.2010.01.015CrossRefGoogle ScholarPubMed
El-Osta, A., Woringer, M., Pizzo, E., Verhoef, T., Dickie, C., Ni, M. Z., et al. (2017). Does use of point-of-care testing improve cost-effectiveness of the NHS Health Check programme in the primary care setting? A cost-minimisation analysis. BMJ Open, 7(8), e015494. https://doi.org/10.1136/bmjopen-2016-015494CrossRefGoogle ScholarPubMed
Fihn, S. D., Gardin, J. M., Abrams, J., Berra, K., Blankenship, J. C., Dallas, A. P., et al. (2012). ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation, 126(25), e354471. https://doi.org/10.1161/CIR.0b013e318277d6a0Google ScholarPubMed
Galderisi, M., Cosyns, B., Edvardsen, T., Cardim, N., Delgado, V., Di Salvo, G., et al. (2017). Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging, 18(12), 13011310. https://doi.org/10.1093/ehjci/jex244CrossRefGoogle ScholarPubMed
Isakadze, N., & Martin, S. S. (2020). How useful is the smartwatch ECG? Trends in Cardiovascular Medicine, 30(7), 442448. https://doi.org/10.1016/j.tcm.2019.10.010CrossRefGoogle ScholarPubMed
Jilani, M. H., Javed, Z., Yahya, T., Valero-Elizondo, J., Khan, S. U., Kash, B., et al. (2021). Social determinants of health and cardiovascular disease: Current state and future directions towards healthcare equity. Current Atherosclerosis Reports, 23(9). https://doi.org/10.1007/s11883-021-00949-wCrossRefGoogle ScholarPubMed
Kales, S. N., Soteriades, E. S., Christophi, C. A., & Christiani, D. C. (2007). Emergency duties and deaths from heart disease among firefighters in the United States. New England Journal of Medicine, 356(12), 12071215.CrossRefGoogle ScholarPubMed
Khurshid, S., Friedman, S., Reeder, C., Di Achille, P., Diamant, N., Singh, P., et al. (2022). ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation, 145(2), 122133. https://doi.org/10.1161/circulationaha.121.057480CrossRefGoogle ScholarPubMed
Kim, C. A., Rasania, S. P., Afilalo, J., Popma, J. J., Lipsitz, L. A., & Kim, D. H. (2014). Functional status and quality of life after transcatheter aortic valve replacement: A systematic review. Annals of Intern Medicine, 160(4), 243254. https://doi.org/10.7326/M13-1316CrossRefGoogle ScholarPubMed
Kleiman, R., Litwin, J., & Morganroth, J. (2016). Benefits of centralized ECG reading in clinical oncology studies. Therapeutic Innovation and Regulatory Science, 50(1), 123129. https://doi.org/10.1177/2168479015597729CrossRefGoogle ScholarPubMed
Kubiak, R. (2014). The right to information. Anaesthesiology Intensive Therapy, 46(3), 180194. https://doi.org/10.5603/ait.2014.0033CrossRefGoogle ScholarPubMed
Kusunose, K. (2021). Steps to use artificial intelligence in echocardiography. Journal of Echocardiography, 19(1), 2127. https://doi.org/10.1007/s12574-020-00496-4CrossRefGoogle ScholarPubMed
Lakatta, E. G., & Levy, D. (2003). Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation, 107(1), 139146. https://doi.org/10.1161/01.cir.0000048892.83521.58CrossRefGoogle ScholarPubMed
Li, X., Zhu, W., Sui, X., Zhang, A., Chi, L., & Lv, L. (2021). Assessing workplace stress among nurses using heart rate variability analysis with wearable ECG device – a pilot study. Frontiers in Public Health, 9, 810577. https://doi.org/10.3389/fpubh.2021.810577CrossRefGoogle ScholarPubMed
Lim, Y. H., Choi, S. Y., Oh, K. W., Kim, Y., Cho, E. S., Choi, B. Y., et al. (2014). Comparison between an automated device and a manual mercury sphygmomanometer in an epidemiological survey of hypertension prevalence. American Journal of Hypertension, 27(4), 537545. https://doi.org/10.1093/ajh/hpt100CrossRefGoogle Scholar
Muresan, L., Cismaru, G., Martins, R. P., Bataglia, A., Rosu, R., Puiu, M., et al. (2019). Recommendations for the use of electrophysiological study: Update 2018. Hellenic Journal of Cardiology, 60(2), 82100. https://doi.org/10.1016/j.hjc.2018.09.002CrossRefGoogle ScholarPubMed
Nelson, B. W., & Allen, N. B. (2019). Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period: Intraindividual validation study. JMIR Mhealth and Uhealth, 7(3), e10828. https://doi.org/10.2196/10828CrossRefGoogle ScholarPubMed
Nelson, B. W., Low, C. A., Jacobson, N., Areán, P., Torous, J., & Allen, N. B. (2020). Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. npj Digital Medicine, 3(1), 90. https://doi.org/10.1038/s41746-020-0297-4CrossRefGoogle ScholarPubMed
North, B. J., & Sinclair, D. A. (2012). The intersection between aging and cardiovascular disease. Circulation Research, 110(8), 10971108. https://doi.org/10.1161/circresaha.111.246876CrossRefGoogle ScholarPubMed
Pevnick, J. M., Birkeland, K., Zimmer, R., Elad, Y., & Kedan, I. (2018). Wearable technology for cardiology: An update and framework for the future. Trends in Cardiovascular Medicine, 28(2), 144150. https://doi.org/10.1016/j.tcm.2017.08.003CrossRefGoogle ScholarPubMed
Pham, T., Lau, Z. J., Chen, S. H. A., & Makowski, D. (2021). Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors, 21(12). https://doi.org/10.3390/s21123998CrossRefGoogle Scholar
Poppelaars, E. S., Klackl, J., Pletzer, B., Wilhelm, F. H., & Jonas, E. (2019). Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 109, 104378. https://doi.org/10.1016/j.psyneuen.2019.104378CrossRefGoogle ScholarPubMed
Powell-Wiley, T. M., Baumer, Y., Baah, F. O., Baez, A. S., Farmer, N., Mahlobo, C. T., et al. (2022). Social determinants of cardiovascular disease. Circulation Research, 130(5), 782799. https://doi.org/10.1161/CIRCRESAHA.121.319811CrossRefGoogle ScholarPubMed
Reisman, M., Buchbinder, M., Warth, D., Sundling, N., Harms, V., & Whitlow, P. L. (1997). Comparison of patients with either < 70% diameter narrowing or > or = 70% narrowing of the right coronary artery when performing rotational atherectomy on > or = 1 narrowing in the left coronary arteries. American Journal of Cardiology, 79(3), 305308. https://doi.org/10.1016/s0002-9149(96)00752-7CrossRefGoogle ScholarPubMed
Roerecke, M., Kaczorowski, J., & Myers, M. G. (2019). Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: A systematic review and meta-analysis. JAMA Internal Medicine, 179(3), 351362. https://doi.org/10.1001/jamainternmed.2018.6551CrossRefGoogle ScholarPubMed
Rust, J., & Golombok, S. (2009). Modern Psychometrics: The Science of Psychological Assessment, 3rd ed. Routledge.Google Scholar
Rutjes, A. W., Reitsma, J. B., Coomarasamy, A., Khan, K. S., & Bossuyt, P. M. (2007). Evaluation of diagnostic tests when there is no gold standard: A review of methods. Health Technology Assessment, 11(50). https://doi.org/10.3310/hta11500CrossRefGoogle Scholar
Steinhubl, S. R., Waalen, J., Edwards, A. M., Ariniello, L. M., Mehta, R. R., Ebner, G. S., et al. (2018). Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA, 320(2), 146155. https://doi.org/10.1001/jama.2018.8102CrossRefGoogle ScholarPubMed
Tell, D., Burr, R. L., Mathews, H. L., & Janusek, L. W. (2021). Heart rate variability and inflammatory stress response in young African American Men: Implications for cardiovascular risk. Frontiers in Cardiovascular Medicine, 8, 745864. https://doi.org/10.3389/fcvm.2021.745864CrossRefGoogle ScholarPubMed
Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). The non-invasive assessment of autonomic influences on the heart using impedance cardiography and heart rate variability. In Steptoe, A. (ed.), Handbook of Behavioral Medicine: Methods and Applications (pp. 723740). Springer. https://doi.org/10.1007/978-0-387-09488-5_47CrossRefGoogle Scholar
US Department of Health and Human Services. (1985). Report of the Secretary’s Task Force on Black and Minority Health. US Department of Health and Human Services.Google Scholar
Wang, R., Blackburn, G., Desai, M., Phelan, D., Gillinov, L., Houghtaling, P., & Gillinov, M. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104106. https://doi.org/10.1001/jamacardio.2016.3340CrossRefGoogle ScholarPubMed
Woloshin, S., Dewitt, B., Krishnamurti, T., & Fischhoff, B. (2022). Assessing how consumers interpret and act on results from at-home COVID-19 self-test kits: A randomized clinical trial. JAMA Internal Medicine, 182(3), 332341. https://doi.org/10.1001/jamainternmed.2021.8075CrossRefGoogle ScholarPubMed
Yamazaki, E. M., Rosendahl-Garcia, K. M., Casale, C. E., MacMullen, L. E., Ecker, A. J., Kirkpatrick, J. N., & Goel, N. (2021). Left ventricular ejection time measured by echocardiography differentiates neurobehavioral resilience and vulnerability to sleep loss and stress. Frontiers in Physiology, 12, 795321. https://doi.org/10.3389/fphys.2021.795321CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×