Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T02:23:22.010Z Has data issue: false hasContentIssue false

22 - Principles Based on Social Cues in Multimedia Learning

Personalization, Voice, Image, and Embodiment Principles

from Part VI - Principles Based on Social and Affective Features of Multimedia Learning

Published online by Cambridge University Press:  19 November 2021

Richard E. Mayer
Affiliation:
University of California, Santa Barbara
Logan Fiorella
Affiliation:
University of Georgia
Get access

Summary

Social cues can create a sense of partnership between learners and the instructor, which then motivates learners to engage in generative processing. The personalization principle is that people learn better when multimedia lessons are presented in a conversational or polite style, rather than a formal or direct style. The voice principle is that people learn better when multimedia lessons are presented in a human voice rather than computer-generated voice. The image principle is that people do not necessarily learn better when the image of the instructor or a virtual agent is visible on the screen. Finally, the embodiment principle is that people learn better when onscreen pedagogical agents engage in human-like behaviors, such as gesture, eye-contact, or facial expressions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical agents. Journal of Educational Psychology, 94, 416427.CrossRefGoogle Scholar
Atkinson, R. K., Mayer, R. E., & Merrill, M. M. (2005). Fostering social agency in multimedia learning: Examining the impact of an animated agent’s voice. Contemporary Educational Psychology, 30, 117139.CrossRefGoogle Scholar
Baylor, A. L., & Kim, S. (2009). Designing nonverbal communication for pedagogical agents: When less is more. Computers in Human Behavior, 25, 450457.CrossRefGoogle Scholar
Brom, C., Bromová, E., Děchtěrenko, F., Buchtová, M., & Pergel, M. (2014). Personalized messages in a brewery educational simulation: Is the personalization principle less robust than previously thought? Computers & Education, 72, 339366.Google Scholar
Brom, C., Hannemann, T., Stárková, T., Bromová, E., & Děchtěrenko, F. (2017). The role of cultural background in the personalization principle: Five experiments with Czech learners. Computers & Education, 112, 3768.Google Scholar
Brown, P., & Levinson, S. C. (1987). Politeness: Some Universals in Language Usage. New York: Cambridge University Press.Google Scholar
Chan, K. Y., Lyons, C., Kon, L. L., Stine, K., Manley, M., & Crossley, A. (2020). Effect of on-screen text on multimedia learning with native and foreign-accented narration. Learning and Instruction, 67, 101305.Google Scholar
Colliot, T., & Jamet, E. (2018). Understanding the effects of a teacher video on learning from a multimedia document: An eye-tracking study. Educational Technology Research and Development, 66(6), 14151433.CrossRefGoogle Scholar
Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agent in multimedia educational environments: Effects of agent properties, picture features, and redundancy. Journal of Educational Psychology, 94, 428434.Google Scholar
Craig, S. D., & Schroeder, N. L. (2017). Reconsidering the voice effect when learning from a virtual human. Computers & Education, 114, 193205.Google Scholar
Domagk, S. (2010). Do pedagogical agents facilitate learner motivation and learning outcomes? The role of the appeal of agent’s appearance and voice. Journal of Media Psychology, 22, 8497.Google Scholar
Dunsworth, Q., & Atkinson, R. K. (2010). Fostering multimedia learning of science: Explaining the role of an animated agent’s image. Computers & Education, 49, 677690.Google Scholar
Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2019). Instructor presence in video lectures: The role of dynamic drawings, eye contact, and instructor visibility. Journal of Educational Psychology, 111(7), 11621171.CrossRefGoogle Scholar
Frechette, C., & Moreno, R. (2010). The roles of animated pedagogical agents’ presence and nonverbal communication in multimedia learning environments. Journal of Media Psychology, 22, 6172.Google Scholar
Ginns, P., & Fraser, J. (2010). Personalization enhances learning anatomy terms. Medical Teacher, 32(9), 776778.Google Scholar
Ginns, P., Marin, A. J., & Marsh, H. M. (2013). Designing instructional text for conversational style: A meta-analysis. Educational Psychology Review, 25(4), 445472.Google Scholar
Grice, H. P. (1975). Logic and conversation. In Cole, P., & Morgan, J. (eds.), Syntax and Semantics (Vol. 3, pp. 4158). New York: Academic Press.Google Scholar
Guo, Y. R., & Goh, D. H. L. (2015). Affect in embodied pedagogical agents: Meta-analytic review. Journal of Educational Computing Research, 53(1), 124149.Google Scholar
Johnson, A. M., Ozogul, G., & Reisslein, M. (2015). Supporting multimedia learning with visual signalling and animated pedagogical agent: Moderating effects of prior knowledge. Journal of Computer Assisted Learning, 31(2), 97115.Google Scholar
Kartal, G. (2010). Does language matter in multimedia learning? Personalization principle revisited. Journal of Educational Psychology, 102, 615624.Google Scholar
Kizilcec, R. F., Bailenson, J. N., & Gomez, C. J. (2015). The instructor’s face in video instruction: Evidence from two large-scale field studies. Journal of Educational Psychology, 107(3), 724739.Google Scholar
Kühl, T., & Zander, S. (2017). An inverted personalization effect when learning with multimedia: The case of aversive content. Computers & Education, 108, 7184.Google Scholar
Li, J., Kizilcec, R., Bailenson, J., & Ju, W. (2016). Social robots and virtual agents as lecturers for video instruction. Computers in Human Behavior, 55, 12221230.Google Scholar
Li, W., Wang, F., Mayer, R. E., & Liu, H. (2019). Getting the point: Which kinds of gestures by pedagogical agents improve multimedia learning? Journal of Educational Psychology, 111(8), 13821395.Google Scholar
Lusk, M. M., & Atkinson, R. K. (2007). Animated pedagogical agents: Does their degree of embodiment impact learning from static or animated worked examples? Applied Cognitive Psychology, 21, 747764.CrossRefGoogle Scholar
Mayer, R. E., & DaPra, C. S. (2012). An embodiment effect in computer-based learning with animated pedagogical agent. Journal of Experimental Psychology: Applied, 18, 239252.Google Scholar
Mayer, R. E., Dow, G., & Mayer, R. E. (2003). Multimedia learning in an interactive self-explaining environment: What works in the design of agent-based microworlds? Journal of Educational Psychology, 95, 806813.Google Scholar
Mayer, R. E., Fennell, S., Farmer, L., & Campbell, J. (2004). A personalization effect in multimedia learning: Students learn better when words are in conversational style rather than formal style. Journal of Educational Psychology, 96, 389395.Google Scholar
Mayer, R. E., Sobko, K., & Mautone, P. D. (2003). Social cues in multimedia learning: Role of speaker’s voice. Journal of Educational Psychology, 95, 419425.Google Scholar
McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011a). Polite web-based intelligent tutors: Can they improve learning in classrooms? Computers & Education, 56, 574584.Google Scholar
McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011b). A politeness effect in learning with web-based intelligent tutors. International Journal of Human–Computer Studies, 69, 7079.Google Scholar
McLaren, B. M., Lim, S., Yaron, D., & Koedinger, K. (2007). Can a polite intelligent tutoring system lead to improved learning outside the lab? In Proceedings of the 13th International Conference on Artificial Intelligence in Education (pp. 433440). Amsterdam: IOS Press.Google Scholar
Moreno, R., & Mayer, R. E. (2000). Engaging students in active learning: The case for personalized multimedia messages. Journal of Educational Psychology, 92, 724733.Google Scholar
Moreno, R., & Mayer, R. E. (2004). Personalized messages that promote science learning invirtual environments. Journal of Educational Psychology, 96, 165173.Google Scholar
Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19, 177213.Google Scholar
Moreno, R., Reislein, M., & Ozogul, G. (2010). Using virtual peers to guide visual attention during learning: A test of the persona hypothesis. Journal of Media Psychology, 22, 5260.Google Scholar
Nass, C., & Brave, S. (2005). Wired for Speech. Cambridge, MA: MIT Press.Google Scholar
Reeves, B., and Nass, C. (1996). The Media Equation. New York: Cambridge University Press.Google Scholar
Reichelt, M., Kämmerer, F., Niegemann, H. M., & Zander, S. (2014). Talk to me personally: Personalization of language style in computer-based learning. Computers in Human Behavior, 35, 199210.Google Scholar
Schneider, S., Nebel, S., Pradel, S., & Rey, G. D. (2015a). Mind your Ps and Qs! How polite instructions affect learning with multimedia. Computers in Human Behavior, 51, 546555.CrossRefGoogle Scholar
Schneider, S., Nebel, S., Pradel, S., & Rey, G. D. (2015b). Introducing the familiarity mechanism: A unified explanatory approach for the personalization effect and the examination of youth slang in multimedia learning. Computers in Human Behavior, 43, 129138.Google Scholar
Schrader, C., Reichelt, M., & Zander, S. (2018). The effect of the personalization principle on multimedia learning: The role of student individual interests as a predictor. Educational Technology Research and Development, 66(6), 13871397.Google Scholar
van Gog, T., Verveer, I., & Verveer, L. (2014). Learning from video modeling examples: Effects of seeing the human model’s face. Computers & Education, 72, 323327.CrossRefGoogle Scholar
van Wermeskerken, M., Grimmius, B., & van Gog, T. (2018). Attention to the model’s face when learning from video modeling examples in adolescents with and without autism spectrum disorder. Journal of Computer Assisted Learning, 34(1), 3241.Google Scholar
van Wermeskerken, M., Ravensbergen, S., & van Gog, T. (2018). Effects of instructor presence in video modeling examples on attention and learning. Computers in Human Behavior, 89, 430438.Google Scholar
Wang, F., Li, W., Mayer, R. E., & Liu, H. (2018). Animated pedagogical agents as aids in multimedia learning: Effects on eye-fixations during learning and learning outcomes. Journal of Educational Psychology, 110(2), 250268.CrossRefGoogle Scholar
Wang, J., & Antonenko, P. D. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning. Computers in Human Behavior, 71, 7989.CrossRefGoogle Scholar
Wang, N., Johnson, W. L., Mayer, R. E., Rizzo, P., Shaw, E., & Collins, H. (2008). The politeness effect: Pedagogical agents and learning outcomes. International Journal of Human–Computer Studies, 66, 98112.Google Scholar
Wilson, K. E., Martinez, M., Mills, C., D’Mello, S., Smilek, D., & Risko, E. F. (2018). Instructor presence effect: Liking does not always lead to learning. Computers & Education, 122, 205220.Google Scholar
Yung, H. I., & Paas, F. (2015). Effects of cueing by a pedagogical agent in an instructional animation: A cognitive load approach. Journal of Educational Technology & Society, 18(3), 153160.Google Scholar
Zander, S., Wetzel, S., Kühl, T., & Bertel, S. (2017). Underlying processes of an inverted personalization effect in multimedia learning – An eye-tracking study. Frontiers in Psychology, 8, 2202.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×