Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:31:23.330Z Has data issue: false hasContentIssue false

Part V - Intelligence and Information Processing

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence. Psychological Bulletin, 131, 3060.CrossRefGoogle ScholarPubMed
Anderson, M. (1988), Inspection time, information processing and the development of intelligence. British Journal of Developmental Psychology, 6, 4357. https://doi.org/10.1111/j.2044-835X.1988.tb01079.xCrossRefGoogle Scholar
Anderson, M., Nettelbeck, T., & Barlow, J. (1997). Reaction time measures of speed of processing: Speed of response selection increases with age but speed of stimulus categorization does not. British Journal of Developmental Psychology, 15, 145157.Google Scholar
Anderson, M., Reid, C., & Nelson, J. (2001). Developmental changes in inspection time: What a difference a year makes. Intelligence, 29, 475486.Google Scholar
Baumeister, A. A., & Kellas, G. (1968). Reaction time and mental retardation. In Ellis, N. R. (Ed.), International review of research in mental retardation (vol. 3, pp. 163193). New York: Academic Press.Google Scholar
Biederman, J., Monuteaux, M. C., Doyle, A. E., Seidman, L. J., Wilens, T. E., Ferrero, F., et al. (2004). Impact of executive function deficits and attention-deficit/hyperactivity disorder (ADHD) on academic outcomes in children. Journal of Consulting and Clinical Psychology, 72(5), 757766. https://doi.org/10.1037/0022-006X.72.5.757Google Scholar
Birren, J. E., & Fisher, L. M. (1992). Aging and slowing of behavior: Consequences for cognition and survival. In Sonderegger, T. B. (Ed.), Nebraska Symposium on Motivation 1991 (pp. 137). Lincoln, NE: University of Nebraska Press.Google Scholar
Bonney, K. R., Almeida, O. P., Flicker, L., Davies, S., Clarnette, R., Anderson, M., et al. (2006). Inspection time in non-demented older adults with mild cognitive impairment. Neuropsychologia, 44, 14521456.CrossRefGoogle ScholarPubMed
Bors, D. A., Stokes, T. L., Forrin, B., & Hodder, S. L. (1999). Inspection time and intelligence: Practice, strategies and attention. Intelligence, 27, 111129.Google Scholar
Brand, C. R. (1996). The g factor: General intelligence and its implications. Chichester, UK: Wiley.Google Scholar
Brand, C. R., & Deary, I. J. (1982). Intelligence and “inspection time.” In Eysenck, H. J. (Ed.), A model for intelligence (pp. 133148). New York: Springer-Verlag.CrossRefGoogle Scholar
Brewer, N., & Smith, G. A. (1984). How normal and retarded individuals monitor and regulate speed and accuracy of responding in serial choice tasks. Journal of Experimental Psychology: General, 113, 7193.CrossRefGoogle ScholarPubMed
Buehner, M., Krumm, S., Ziegler, M., & Pluecken, T. (2006). Cognitive abilities and their interplay: Reasoning, crystallized intelligence, working memory components, and sustained attention. Journal of Individual Differences, 27, 5772.Google Scholar
Burns, N. R., & Nettelbeck, T. (2003). Inspection time in the structure of cognitive abilities: Where does IT fit? Intelligence, 31, 237255.CrossRefGoogle Scholar
Burns, N. R., Nettelbeck, T., & Cooper, C. J. (2000). Event-related potential correlates of some human cognitive ability constructs. Personality and Individual Differences, 29, 157168.Google Scholar
Burns, N. R., Nettelbeck, T., McPherson, J., & Stankov, L. (2007). Perceptual learning on inspection time and motion perception. Journal of General Psychology, 134, 83100.Google Scholar
Camfield, D. A., Nolidin, K., Savage, K., Timmer, J., Croft, K., Simpson, T., et al. ( 2019). Higher plasma levels of F2-isoprostanes are associated with slower psychomotor speed in healthy older adultsFree Radical Research53(4), 377386https://doi.org/10.1080/10715762.2018.1513133CrossRefGoogle ScholarPubMed
Carlson, J. S., Jensen, C. M., & Widaman, K. (1983). Reaction time, intelligence and attention. Intelligence, 7, 329344.CrossRefGoogle Scholar
Carroll, J. B. (1987). Jensen’s mental chronometry: Some comments and questions. In Modgil, S. & Modgil, C. (Eds.), Arthur Jensen: Consensus and controversy (pp. 297301, 310311). New York: Falmer.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge, UK: Cambridge University Press.Google Scholar
Cerella, J. (1985). Information processing rates in the elderly. Psychological Bulletin, 98, 6783.CrossRefGoogle ScholarPubMed
Chevalier, N., Kurth, S., Doucette, M. R., Wiseheart, M., Deoni, S. C. L., Dean, D. C., et al. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS One, 10, e0139897.CrossRefGoogle ScholarPubMed
Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41(4), 244262. https://doi.org/10.1016/j.intell.2013.04.003Google Scholar
Chuderski, A. (2015). The broad factor of working memory is virtually isomorphic to fluid intelligence tested under time pressure. Personality and Individual Differences, 85, 98104. https://doi.org/10.1016/j.paid.2015.04.046CrossRefGoogle Scholar
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163183.Google Scholar
Coyle, T. R. (2003). A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence, 31, 567587.CrossRefGoogle Scholar
Crawford, J. R., Deary, I. J., Allan, K. M., & Gustafsson, J. E. (1998). Evaluating competing models of the relationship between inspection time and psychometric intelligence. Intelligence, 26, 2742.Google Scholar
Danthiir, V., Burns, N. R., Nettelbeck, T., Wilson, C., & Wittert, G. (2009). Relationships between age, processing speed, working memory, inhibition and fluid intelligence in older adults. Paper presented at the International Society for the Study of Individual Differences, Chicago, July18–22.Google Scholar
Danthiir, V., Wilhelm, O., & Schacht, A. (2005a). Decision speed in intelligence tasks: Correctly an ability? Psychology Science, 47, 200229.Google Scholar
Danthiir, V., Wilhelm, O., Schulze, R., & Roberts, R. D. (2005b). Factor structure and validity of paper-and-pencil measures of mental speed: Evidence for a higher-order model? Intelligence, 33, 491514.Google Scholar
Deary, I. J. (2000). Looking down on human intelligence: From psychophysics to the brain. Oxford: Oxford University Press.Google Scholar
Deary, I. J. (2003). Reaction time and psychometric intelligence: Jensen’s contributions. In Nyborg, H. (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 5375). Amsterdam: Pergamon.Google Scholar
Deary, I. J., Allerhand, M., & Der, G. (2009). Smarter in middle age, faster in old age: A cross-lagged panel analysis of reaction time and cognitive ability over 13 years in the West of Scotland Twenty-07 study. Psychology and Aging, 24, 4047.Google Scholar
Deary, I. J., Bastin, M. E., Pattie, A., Clayden, J. D., Whalley, L. J., Starr, J. M., et al. (2006). White matter integrity and cognition in childhood and old age. Neurology, 66, 505512.Google Scholar
Deary, I. J., Der, G., & Ford, G. (2001a). Reaction times and intelligence differences: A population-based cohort study. Intelligence, 29, 389399.CrossRefGoogle Scholar
Deary, I. J., Hunter, R., Langan, S. J., & Goodwin, G. M. (1991). Inspection time, psychometric intelligence and clinical estimates of cognitive ability in pre-senile Alzheimer’s disease and Korsakoff’s psychosis. Brain, 114, 25432554.Google Scholar
Deary, I. J., Leaper, S. A., Murray, A. D., Staff, R. T., & Whalley, L. J. (2003). Cerebral white matter abnormalities and lifetime cognitive change: A 67-year follow-up of the Scottish Mental Survey of 1932. Psychology and Aging, 18, 140148.CrossRefGoogle Scholar
Deary, I. J., Simonotto, E., Marshall, A., Marshall, I., Goddard, N., & Wardlaw, J. M. (2001b). The functional anatomy of inspection time: A pilot fMRI study. Intelligence, 29, 497510.Google Scholar
Deary, I. J., & Stough, C. (1996). Intelligence and inspection time: Achievements, prospects and problems. American Psychologist, 51, 599608.Google Scholar
Deary, I. J., & Stough, C. (1997). Looking down on intelligence. American Psychologist, 52, 11481150.Google Scholar
Deluca, J., & Kalmar, J. H. (2007). Information processing speed in clinical populations. New York: Psychology Press.Google Scholar
Demetriou, A., Spanoudis, G., & Shayer, M. (2013a). Developmental intelligence: From empirical to hidden constructs. Intelligence, 41(5), 744749. https://doi.org/10.1016/j.intell.2013.07.014Google Scholar
Demetriou, A., Spanoudis, G., Shayer, M., Mouyi, A., Kazi, S., & Platsidou, M. (2013b). Cycles in speed-working memory-G relations: Towards a developmental–differential theory of the mind. Intelligence, 41(1), 3450. https://doi.org/10.1016/j.intell.2012.10.010Google Scholar
Detterman, D. K. (1982). Does g exist? Intelligence, 6, 99108.CrossRefGoogle Scholar
Detterman, D. K. (1987). What does reaction time tell us about intelligence? In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 177200). Norwood, NJ: Ablex.Google Scholar
Doidge, N. (2007). The brain that changes itself. New York: Viking Press.Google Scholar
Duncan, J., Seitz, R. J., Koldny, J., Bor, D., Herzog, H., Ahmed, A., et al. (2000). A neural basis for general intelligence. Science, 289, 457460.Google Scholar
Edmonds, C. J., Isaacs, E. B., Visscher, P. M., Rogers, M., Lanigan, J., Singhal, A., et al. (2008). Inspection time and cognitive abilities in twins aged 7 to 17 years: Age-related changes, heritability and genetic covariance. Intelligence, 36, 210255.Google Scholar
Egan, V. (1994). Intelligence, inspection time and cognitive strategies. British Journal of Psychology, 85, 305316.Google Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309331.CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1987). Speed of information processing, reaction time, and the theory of intelligence. In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 2167). Norwood, NJ: Ablex.Google Scholar
Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Age changes in processing speed as a leading indicator of cognitive aging. Psychology and Aging, 22, 558568.Google Scholar
Fox, M. C., Roring, R. W., & Mitchum, A. L. (2009). Reversing the speed-IQ correlation: Intra-individual variability and attentional control in the inspection time paradigm. Intelligence, 37, 7680.Google Scholar
Frearson, W., & Eysenck, H. J. (1986). Intelligence, reaction time (RT) and a new “odd-man-out” RT paradigm. Personality and Individual Differences, 7, 807817.Google Scholar
Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological Psychology, 54, 134.Google Scholar
Galloway-Long, H., & Huang-Pollock, C. (2018). Using inspection time and ex-Gaussian parameters of reaction time to predict executive functions in children with ADHD. Intelligence, 69, 186194. https://doi.org/10.1016/j.intell.2018.06.005CrossRefGoogle ScholarPubMed
Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.Google Scholar
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Harper and Row.Google Scholar
Gregory, T., Callaghan, A., Nettelbeck, T., & Wilson, C. (2009). Inspection time predicts individual differences in everyday functioning among elderly adults: Testing discriminant validity. Australasian Journal on Ageing, 28, 8792.Google Scholar
Gregory, T., Nettelbeck, T., Howard, S., & Wilson, C. (2008). Inspection time: A biomarker for cognitive decline. Intelligence, 36, 664671.Google Scholar
Gregory, T., Nettelbeck, T., Howard, S., & Wilson, C. (2009a). A test of the cascade model in the elderly. Personality and Individual Differences, 46, 7173.Google Scholar
Gregory, T., Nettelbeck, T., & Wilson, C. (2009b). Within-person changes in inspection time predict memory. Personality and Individual Differences, 46, 741743.Google Scholar
Grudnik, J. L., & Kranzler, J. H. (2001). Meta-analysis of the relationship between intelligence and inspection time. Intelligence, 29, 523535.Google Scholar
Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14, 224232.Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 165.Google Scholar
Hick, W. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 1126.Google Scholar
Horn, J. L., & Noll, J. (1997). Human cognitive capabilities: Gf-Gc theory. In Flanagan, D. P., Genshaft, J. L., & Harrison, P. L. (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 5391). New York: Guilford Press.Google Scholar
Hunt, E. (1980). Intelligence as an information processing concept. British Journal of Psychology, 71, 449474.Google Scholar
Hutchison, C. W., Nathan, P. J., Mrazek, L., & Stough, C. (2001). Cholinergic modulation of speed of early information processing: The effect of donepezil on inspection time. Psychopharmacology, 44, 440442.Google Scholar
Jensen, A. R. (1982). Reaction time and psychometric g. In Eysenck, H. J. (Ed.), A model for intelligence (pp. 93132). New York: Springer-Verlag.Google Scholar
Jensen, A. R. (1987). Individual differences in the Hick paradigm. In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 101175). Norwood, NJ: Ablex.Google Scholar
Jensen, A. R. (1998). The g factor: the science of mental ability. New York: Praeger.Google Scholar
Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier.Google Scholar
Juhel, J. (1991). Relationships between psychometric intelligence and information-processing speed indexes. European Bulletin of Cognitive Psychology, 11, 73105.Google Scholar
Kail, R. (1991). Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin, 109, 490501.Google Scholar
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Brown, J., & Mackintosh, N. (2009). Associative learning predicts intelligence above and beyond working memory and processing speed. Intelligence. https://doi.org/10.1016/j.intell.2009.03.004Google Scholar
Krumm, S., Schmidt-Atzert, L., Michalczyk, K., & Danthiir, V. (2008). Speeded paper-pencil sustained attention and mental speed tests. Journal of Individual Differences, 29, 205216.Google Scholar
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity? Intelligence, 14, 389433.CrossRefGoogle Scholar
Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870900. https://doi.org/10.1037/a0030694Google Scholar
Larson, G. E., & Alderton, D. L. (1990). Reaction time variability and intelligence: A “worst performance” analysis of individual differences. Intelligence, 14, 309325.CrossRefGoogle Scholar
Lehrl, S., & Fischer, B. (1990). A basic information psychological parameter (BIP) for the reconstruction of concepts of intelligence. European Journal of Personality, 4, 259286.Google Scholar
Longstreth, L. E. (1984). Jensen’s reaction time investigations of intelligence: A critique. Intelligence, 8, 139160.Google Scholar
Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B., & Martin, N. G. (2001). On the heritability of inspection time and its covariance with IQ: A twin study. Intelligence, 29, 443457.Google Scholar
Luciano, M., Wright, M. J., Geffen, G. M., Geffen, L. B., Smith, G. A., & Martin, N. G. (2004). A genetic investigation of the covariation among inspection time, choice reaction time, and IQ subtest scores. Behavior Genetics, 34, 4150.Google Scholar
Mackintosh, N. J. (1986). The biology of intelligence? British Journal of Psychology, 77, 118.Google Scholar
Mackintosh, N. J. (1998). IQ and human intelligence. Oxford: Oxford University Press.Google Scholar
Mackintosh, N. J., & Bennett, E. S. (2002). IT, IQ and perceptual speed. Personality and Individual Differences, 32(4), 685693.Google Scholar
Madden, D. J. (2001). Speed and timing in behavioral processes. In Birren, J. E. & Schaie, K. W. (Eds.), Handbook of the psychology of aging (5th ed., pp. 288312). San Diego, CA: Academic Press.Google Scholar
Marr, D. B., & Sternberg, R. J. (1987). The role of mental speed in intelligence: A triarchic perspective. In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 271294). Norwood, NJ: Ablex.Google Scholar
Mayer, J. D., & Salovey, P. (1993). The intelligence of emotional intelligence. Intelligence, 17, 433442.Google Scholar
McGrew, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present and future. In Flanagan, D. P. & Harrison, P. L. (Eds.), Contemporary intellectual assessment (2nd ed., pp. 156182). New York: Guilford.Google Scholar
Meiran, N., & Shahar, N. (2018). Working memory involvement in reaction time and its contribution to fluid intelligence: An examination of individual differences in reaction-time distributions. Intelligence, 69, 176185. https://doi.org/10.1016/j.intell.2018.06.004Google Scholar
Nathan, P. J., & Stough, C. (2001). Inspection time: A neuropsychophysiological test for measuring the functional integrity of the cholinergic system. Medical Hypotheses, 57, 759760.Google Scholar
Nathan, P. J., Stough, C., & Siteram, G. (2000). Serotonin and information processing: A pharmacodynamic study on the effects of citalopram on cognitive and psychomotor function. Human Psychopharmacology: Clinical and Experimental, 15, 306307.Google Scholar
Nettelbeck, T. (1985). What reaction times time. Behavioral and Brain Sciences, 8, 193263.Google Scholar
Nettelbeck, T. (1987). Inspection time and intelligence. In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 295346). Norwood, NJ: Ablex.Google Scholar
Nettelbeck, T. (1994). Speediness. In Sternberg, R. J. (Ed.), Encyclopedia of human intelligence. (pp. 10141019). New York: Macmillan.Google Scholar
Nettelbeck, T. (1998). Jensen’s chronometric research: Neither simple nor sufficient but a good place to start. Intelligence, 29, 233241.Google Scholar
Nettelbeck, T. (2001). Correlation between inspection time and psychometric abilities: A personal interpretation. Intelligence, 29, 459474.CrossRefGoogle Scholar
Nettelbeck, T. (2003). Inspection time and g. In Nyborg, H. (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 7791). Amsterdam: Pergamon.Google Scholar
Nettelbeck, T., Gregory, T., Wilson, C., Burns, N., Danthiir, V., & Wittert, G. (2008). Inspection time: A marker for less successful ageing. Paper presented at the Ninth Annual Conference of the International Society for Intelligence Research (ISIR), Decatur, Georgia, December 11–13.Google Scholar
Nettelbeck, T., & Kirby, N. H. (1983). Measures of timed performance and intelligence. Intelligence, 7, 3952.Google Scholar
Nettelbeck, T., & Lally, M. (1976). Inspection time and measured intelligence. British Journal of Psychology, 67, 1722.Google Scholar
Nettelbeck, T., & Vita, P. (1992). Inspection time in two childhood age cohorts: A constant of a developmental function? British Journal of Developmental Psychology, 10, 189198.Google Scholar
Nettelbeck, T., & Wilson, C. (1985). A cross-sequential analysis of developmental differences in speed of visual information processing. Journal of Experimental Child Psychology, 40, 122.Google Scholar
Nettelbeck, T., & Wilson, C. (1997). Speed of information processing and cognition. In Maclean, W. E. J. (Ed.), Ellis’ handbook of mental deficiency, psychological theory and research (3rd ed., pp. 245274). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Nettelbeck, T., & Young, R. (1989). Inspection time and intelligence in 6 year old children. Personality and Individual Differences, 10, 605614.Google Scholar
Neubauer, A. C. (1997). The mental speed account to the assessment of intelligence In Carlson, J. S., Kingma, J., & Tomic, W. (Eds.), Advances in cognition and educational practice: Reflections on the concept of intelligence (vol. 4, pp. 149173). Greenwich, CT: JAI Press.Google Scholar
Neubauer, A. C., & Bucik, V. (1996). The mental speed-IQ relationship: Unitary or modular? Intelligence, 22, 2348.Google Scholar
Oberauer, K., Süβ, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36(6), 641652. https://doi.org/10.1016/j.intell.2008.01.007Google Scholar
Oberauer, K., Wilhelm, O., Schulze, R., & Süß, H.-M. (2005). Working memory and intelligence – their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131(1), 6165. https://doi.org/10.1037/0033-2909.131.1.61Google Scholar
O’Connor, T. A., & Burns, N. R. (2003). Inspection time and general speed of processing. Personality and Individual Differences, 35, 713724.Google Scholar
Olsson, H., Björkman, C., Haag, K., & Juslin, P. (1998). Auditory inspection time: On the importance of selecting the appropriate sensory continuum. Personality and Individual Differences, 25, 627634.Google Scholar
Parker, D. M., Crawford, J. R., & Stephen, E. (1999). Auditory inspection time and intelligence: A new spatial localization task. Intelligence, 27, 131139.Google Scholar
Petrill, S. A., Luo, D., Thompson, L. A., & Detterman, D. K. (2001). Inspection time and the relationship among elementary cognitive tasks, general intelligence, and specific cognitive abilities. Intelligence, 29, 487496.Google Scholar
Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Posthuma, D., de Geus, E. J. C., & Boomsma, D. I. (2001). Perceptual speed and IQ are associated through common genetic factors Behavior Genetics, 31, 593602.Google Scholar
Rabbitt, P., Scott, M., Lunn, M., Thacker, N., Lowe, C., Pedleton, N., et al. (2007). White matter lesions account for all age-related declines in speed but not in intelligence. Neuropsychology, 21, 363370.Google Scholar
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333367.Google Scholar
Reed, T. E., & Jensen, A. R. (1992). Conduction velocity in a brain nerve pathway of normal adults correlates with intelligence level. Intelligence, 16, 259272.CrossRefGoogle Scholar
Reed, T. E., & Jensen, A. R. (1993). Choice reaction time and visual pathway nerve conduction velocity both correlate with intelligence but appear not to correlate with each other: Implications for information processing. Intelligence, 17, 191203.Google Scholar
Reed, T. E., Vernon, P. A., & Johnson, A. M. (2004). Confirmation of correlation between brain nerve conduction velocity and intelligence level in normal adults. Intelligence, 32, 563572.Google Scholar
Ritchie, S. J., Bates, T. C., Der, G., Starr, J. M., & Deary, I. J. (2013). Education is associated with higher later life IQ scores, but not with faster cognitive processing speed. Psychology and Aging, 28(2), 515521. https://doi.org/10.1037/a0030820Google Scholar
Roberts, R. D., & Stankov, L. (1999). Individual differences in speed of mental processing and human cognitive abilities: Toward a taxonomic model. Learning and Individual Differences, 11, 1120.Google Scholar
Rockstroh, S., & Schweizer, K. (2004). The effect of retest practice on the speed-ability relationship. European Psychologist, 9, 2431.Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403428.Google Scholar
Salthouse, T. A. (2006). Mental exercise and mental aging. Perspectives on Psychological Science, 1, 6887.Google Scholar
Schafer, E. P. W. (1985). Neural adaptability: A biological determinant of g factor intelligence. Behavioral and Brain Sciences, 8, 240241.Google Scholar
Schaie, K. W. (2005). Developmental influences on adult intelligence. Oxford: Oxford University Press.Google Scholar
Schmiedek, F., Oberauer, K., Wilhelm, O., ß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136, 414429.Google Scholar
Schweizer, K., Zimmermann, P., & Koch, W. (2000). Sustained attention, intelligence, and the crucial role of perceptual processes. Learning and Individual Differences, 12, 271287.Google Scholar
Sculthorpe, L. D., Stelmack, R. M., & Campbell, K. B. (2009). Mental ability and the effect of pattern violation discrimination on P300 and mismatch negativity. Intelligence, 37, 405411.Google Scholar
Sheppard, L. D., & Vernon, P. A. (2008). Intelligence and speed of information-processing: A review of 50 years of research. Personality and Individual Differences, 44, 535551.Google Scholar
Smith, G. A., & Carew, M. (1987). Decision time unmasked: Individuals adopt different strategies. Australian Journal of Psychology, 39, 339351.Google Scholar
Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning: The componential analysis of human abilities. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Sternberg, R. J. (2003). Wisdom, intelligence and creativity synthesized. Cambridge, UK: Cambridge University Press.Google Scholar
Sternberg, S. (1975). Memory scanning: New findings and current controversies. Quarterly Journal of Experimental Psychology, 27, 132.Google Scholar
Stough, C., Bates, T., Mangan, G. L., & Colrain, I. (2001a). Inspection time and intelligence: Further attempts at reducing the apparent motion strategy. Intelligence, 29, 219230.Google Scholar
Stough, C., Nettelbeck, T., Cooper, C., & Bates, T. (1995). Strategy use in Jensen’s RT Paradigm: Relationships to intelligence? Australian Journal of Psychology, 47, 6165.Google Scholar
Stough, C., Thompson, J. C., Bates, T. C., & Nathan, P. J. (2001b). Examining neurochemical determinants of inspection time: Development of a biological model. Intelligence, 29, 511522.Google Scholar
Strachan, M. W. J., Deary, I. J., Ewing, F. M. E., Ferguson, S. S. C., Young, M. J., & Frier, B. M. (2001). Acute hypoglycemia impairs the functioning of the central but not peripheral nervous system. Physiology and Behavior, 72, 8392.Google Scholar
Stroud, J. M. (1956). The fine structure of psychological time. In Quastler, H. (Ed.), Information theory in psychology. Glencoe, UK: The Free Press.Google Scholar
Thompson, J. C., Stough, C., Nathan, P. J., Ames, D., & Ritchie, C. (2000). Effects of the nicotinic antagonist mecamylamine on inspection time. Psychopharmacology, 150(1), 117119.Google Scholar
Turvey, M. T. (1973). On peripheral and central processes in vision: Inferences from an information-processing analysis of masking with patterned stimuli. Psychological Review, 80, 152.Google Scholar
Unsworth, N. (2010). Interference control, working memory capacity, and cognitive abilities: A latent variable analysis. Intelligence, 38(2), 255267. https://doi.org/10.1016/j.intell.2009.12.003Google Scholar
Verhaeghen, P. (2013). The elements of cognitive aging: Meta-analyses of age-related differences in processing speed and their consequences. Oxford: Oxford University Press.Google Scholar
Vernon, P. A. (1987). New developments in reaction time research. In Vernon, P. A. (Ed.), Speed of information-processing and intelligence (pp. 120). Norwood, NJ: Ablex.Google Scholar
Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16, 273288.Google Scholar
Vernon, P. A., Wickett, J. C., Bazana, P. C., & Stelmack, R. M. (2000). The neuropsychology and psychophysiology of human intelligence. In Sternberg, R. J. (Ed.), Handbook of intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Vickers, D., Nettelbeck, T., & Willson, R. J. (1972). Perceptual indices of performance: The measurement of “inspection time” and “noise” in the visual system. Perception, 1, 263295.Google Scholar
Welford, A. T. (1968). Fundamentals of skill. London: Methuen.Google Scholar
Zajac, I. T., & Burns, N. R. (2007). Measuring auditory inspection time in primary school children. Journal of Individual Differences, 28, 4552.Google Scholar

References

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology: General, 117, 288318.Google Scholar
Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131, 567589.Google Scholar
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170177.Google Scholar
Ashby, F. G., Ell, S. W., Valentin, V. V., & Casale, M. B. (2005). FROST: A distributed neurocomputational model of working memory maintenance. Journal of Cognitive Neuroscience, 17, 17281743.Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), The psychology of learning and motivation (vol. 2, pp. 89195). New York: Academic Press.Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 8290.Google Scholar
Awh, E., Fukuda, K., Vogel, E. K., & Mayr, U. (2009). Quantity not quality: The relationship between fluid intelligence and working memory capacity. Paper presented at the fiftieth annual meeting of the Psychonomic Society, Boston, November.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. A. (Ed.), The psychology of learning and motivation (vol. 8, pp. 4789). New York: Academic Press.Google Scholar
Bartholomew, D. J., Deary, I. J., & Lawn, M. (2009). A new lease of life for Thomson’s bonds model of intelligence. Psychological Review, 116(3), 567579. http://doi.org/10.1037/a0016262Google Scholar
Bayliss, D. M., Jarrold, C., Gunn, D. M., & Baddeley, A. D. (2003). The complexities of complex span: Explaining individual differences in working memory in children and adults. Journal of Experimental Psychology: General, 132, 7192.Google Scholar
Binet, A. (1903). Etude expérimentale de l’intelligence (The experimental study of intelligence). Paris: Schlecher.Google Scholar
Botvinick, M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective and Behavioral Neuroscience, 7, 356366.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.Google Scholar
Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. E. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97, 35733578.Google Scholar
Bunting, M. F. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 183196.Google Scholar
Burgess, G. C., Braver, T. S., Conway, A. R. A., & Gray, J. R. (2011). Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. Journal of Experimental Psychology: General, 140, 674692.Google Scholar
Case, R., Kurland, M. D., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386404.Google Scholar
Chein, J. M., Moore, A. B., & Conway, A. R. A. (2011). Domain-general mechanisms of active maintenance and serial recall in complex working memory span. Neuroimage, 54, 550559.Google Scholar
Chuah, Y. M. L., & Maybery, M. T. (1999). Verbal and spatial short-term memory: Common sources of developmental change? Journal of Experimental Child Psychology, 73, 744.Google Scholar
Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277296.Google Scholar
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D., & Minkoff, S. (2002). A latent variable analysis of working memory capacity, short term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163183.Google Scholar
Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin and Review, 12(5), 769786.Google Scholar
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163191.Google Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford: Oxford University Press.Google Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87185.Google Scholar
Cowan, N. (2005). Working memory capacity. Hove, UK: Psychology Press.Google Scholar
Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., et al. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42100.Google Scholar
Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory and Cognition, 34, 17541768.Google Scholar
Crowder, R. G. (1982). The demise of short-term memory. Acta Psychologica, 50, 291323.Google Scholar
Dahlin, E., Bäckman, L., Neely, A. S., & Nyberg, L. (2009). Training of the executive component of working memory: Subcortical areas mediate transfer effects. Restorative Neurology and Neuroscience, 27(5), 405419.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Behavior and Verbal Learning, 19, 450466.Google Scholar
Daneman, M., & Carpenter, P. A. (1983). Individual differences in integrating information between and within sentences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9, 561584.Google Scholar
Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin and Review, 3, 422433.Google Scholar
Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112, 342.Google Scholar
Dempster, F. N., & Corkill, A. J. (1999). Interference and inhibition in cognition and behavior: Unifying themes for educational psychology. Educational Psychology Review, 11, 188.Google Scholar
Drew, T., & Vogel, E. K. (2009). Working memory capacity limitations. In Squire, L. R. (Ed.) Encyclopedia of neuroscience (vol. 10, pp. 523531). Amsterdam: Elsevier.Google Scholar
Dunlosky, J., & Kane, M. J. (2007). The contributions of strategy use to working memory span: A comparison of strategy-assessment methods. Quarterly Journal of Experimental Psychology, 60, 12271245.Google Scholar
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In Ross, B. (Ed.), The psychology of learning and motivation (pp. 145199). New York: Academic Press.Google Scholar
Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309331.Google Scholar
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211245.Google Scholar
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137160.Google Scholar
Garavan, H. (1998). Serial attention within working memory. Memory and Cognition, 26, 263276.Google Scholar
Gignac, G. E. (2014). Fluid intelligence shares closer to 60% of its variance with working memory capacity and is a better indicator of general intelligence. Intelligence, 47, 122133. http://doi.org/10.1016/j.intell.2014.09.004Google Scholar
Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316322.Google Scholar
Hambrick, D. Z. (2003). Why are some people more knowledgeable than others? A longitudinal study of real-world knowledge acquisition. Memory & Cognition, 31, 902917.Google Scholar
Hambrick, D. Z., & Engle, R. W. (2002). Effects of domain knowledge, working memory capacity, and age on cognitive performance: An investigation of the knowledge-is-power hypothesis. Cognitive Psychology, 44, 339387.Google Scholar
Hambrick, D. Z., & Meinz, E. J. (2011). Limits on the predictive power of domain-specific experience and knowledge in skilled performance. Current Directions in Psychological Science, 20(5), 275279. http://doi.org/10.1177/0963721411422061Google Scholar
Hambrick, D. Z., & Oswald, F. L. (2005). Does domain knowledge moderate involvement of working memory capacity in higher-level cognition? A test of three models. Journal of Memory and Language, 52, 377397.Google Scholar
Hebb, D. O. (1949). Organization of behavior. New York: Wiley.Google Scholar
Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193224.Google Scholar
Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007). Working memory, attention control, and the n-back task: A question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 615622.Google Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review, 9, 637671.Google Scholar
Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 6671.Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189217.Google Scholar
Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 976990.Google Scholar
Kondo, H., Morishita, M., Osaka, N., Osaka, M., Fukuyama, H., & Shibasaki, H. (2004). Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage, 21, 214.Google Scholar
Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27(3). http://doi.org/10.1080/1047840X.2016.1153946Google Scholar
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14, 389433.Google Scholar
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279281.Google Scholar
Mackintosh, N. J., & Bennett, E. S. (2003). The fractionation of working memory maps onto different components of intelligence. Intelligence, 31, 519531.Google Scholar
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 110. http://doi.org/10.1016/j.intell.2008.08.004Google Scholar
McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology: Learning, Memory and Cognition, 27, 817835.Google Scholar
McNamara, D. S., & Scott, J. L. (2001). Working memory capacity and strategy use. Memory and Cognition, 29, 1017.Google Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167202.Google Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt.Google Scholar
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent variable analysis. Journal of Experimental Psychology: General, 130, 621640.Google Scholar
Mukunda, K. V., & Hall, V. C. (1992). Does performance on memory for order correlate with performance on standardized measures of ability? A meta-analysis. Intelligence, 16, 8197.Google Scholar
Nee, D. E., & Jonides, J. (2008). Neural correlates of access to short-term memory. Proceedings of the National Academy of Sciences, 105, 1422814233.Google Scholar
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition 2002, 28, 411421.Google Scholar
Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin and Review, 19(5), 779819. http://doi.org/10.3758/s13423-012-0272-4Google Scholar
Oberauer, K., Schulze, R., Wilhelm, O., & Süß, H. M. (2005). Working memory and intelligence – their correlation and their relation: A comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 6165.Google Scholar
Oberauer, K., Süß, H. M., Wilhelm, O., & Wittman, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167193.Google Scholar
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18, 283328.Google Scholar
O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions to memory: Advances in the complementary learning systems framework. Trends in Cognitive Sciences, 6(12), 505510.Google Scholar
Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., et al. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. Neuroimage, 18, 789797.Google Scholar
Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: An fMRI study based on individual differences. Neuroimage, 21, 623631.Google Scholar
Pollack, I., Johnson, I. B., & Knaff, P. R. (1959). Running memory span. Journal of Experimental Psychology, 57, 137146.Google Scholar
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 2338.Google Scholar
Ranganath, C. (2006). Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience, 139(1), 277289.Google Scholar
Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115, 893912.Google Scholar
Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125, 427.Google Scholar
Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261273.Google Scholar
Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: Effects of performance and aging. Proceedings of the National Academy of Sciences, 98, 20952100.Google Scholar
Süß, H. M., Oberauer, K., Wittman, W. W., Wilhelm, O., & Schulze, R. (2002). Working memory capacity explains reasoning ability – and a little bit more. Intelligence, 30, 261288.Google Scholar
Thompson, G. (1916). A hierarchy without a general factor. British Journal of Psychology, 8, 271281.Google Scholar
Thorndike, E. L. (1927). The measurement of intelligence. New York: Teachers College, Columbia University.Google Scholar
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751754.Google Scholar
Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49, 446468.Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127154.Google Scholar
Unsworth, N., & Engle, R. W. (2006a). Simple and complex memory spans and their relation to fluid abilities: Evidence from list-length effects. Journal of Memory and Language, 54, 6880.Google Scholar
Unsworth, N., & Engle, R. W. (2006b). A temporal-contextual retrieval account of complex span: An analysis of errors. Journal of Memory and Language, 54, 346362.Google Scholar
Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104132.Google Scholar
Unsworth, N., Spillers, G. J., & Brewer, A. (2010). The contributions of primary and secondary memory to working memory capacity: An individual differences analysis of immediate free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 240247.Google Scholar
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 784775.Google Scholar
Warrington, E. K., & Shallice, T. (1969). The selective impairment of auditory verbal short-term memory. Brain, 92, 885896.Google Scholar

References

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology: General, 117, 288318.Google Scholar
Ackerman, P. L. (2005). Ability determinants of individual differences in skilled performance. In Sternberg, R. J. & Pretz, J. E. (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 142159). Cambridge, UK: Cambridge University Press.Google Scholar
Ackerman, P. L., Beier, M., & Boyle, M. O. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131, 567589.Google Scholar
Ackerman, P. L., Beier, M., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 3060.Google Scholar
Arteche, A., Chamorro-Premuzic, T., Furnham, A., & Crump, J. (2008). The relationship of trait EI with personality, IQ and sex in a UK sample of employees. International Journal of Selection and Assessment, 16, 421426.Google Scholar
Bara, B. G., Bucciarelli, M., & Johnson-Laird, P. N. (1995). Development of syllogistic reasoning. American Journal of Psychology, 108, 157193.Google Scholar
Beauducel, A., Brocke, B., & Liepmann, D. (2001). Perspectives on fluid and crystallized intelligence: Facets for verbal, numerical, and figural intelligence. Personality and Individual Differences, 30(6), 977994.Google Scholar
Beauducel, A., & Kersting, M. (2002). Fluid and crystallized intelligence and the Berlin Model of Intelligence Structure (BIS). European Journal of Psychological Assessment, 18(2), 97112.Google Scholar
Bilalic, M., & Campitelli, G. (2018). Studies of the activation and structural changes of the brain associated with expertise. In Ericsson, K. A., Hoffman, R. R., Kozbelt, A., & Williams, A. M. (Eds.), The Cambridge handbook of expertise and expert performance (pp. 233256). Cambridge, UK: Cambridge University Press.Google Scholar
Bruner, J. S. (1957). Going beyond the information given. New York: Norton.Google Scholar
Burt, C. (1909). Experimental tests of higher mental processes and their relation to general intelligence. Journal of Experimental Psychology, 2, 94177.Google Scholar
Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of Management Review, 13, 4052.Google Scholar
Carlstedt, B., Gustafsson, J.-E., & Ullstadius, E. (2000). Item sequencing effects on the measurement of fluid intelligence. Intelligence, 28, 145160.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.Google Scholar
Cattell, R. B. (1943). The measurement of adult intelligence. Psychological Bulletin40(3), 153193.Google Scholar
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 122.Google Scholar
Chastain, R. L. (1992). Adaptive processing in complex learning and cognitive performance. Unpublished doctoral dissertation, Stanford University, Stanford.Google Scholar
Chernyshenko, O. S., Stark, S., & Drasgow, F. (2011). Individual differences: Their measurement and validity. In Zedeck, S. (Ed.), APA handbook of industrial and organizational psychology (vol. 2, pp. 117151). Washington: American Psychological Association.Google Scholar
Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163183.Google Scholar
Crawford, J. (1988). Intelligence, task complexity and tests of sustained attention. Unpublished doctoral dissertation, University of New South Wales, Sydney, Australia.Google Scholar
Deary, I. J., & Stough, C. (1996). Intelligence and inspection time: Achievements, prospects, and problems. American Psychologist, 51, 599608.Google Scholar
Detterman, D. K. (1986). Human intelligence is a complex system of separate processes. In Sternberg, R. J. & Detterman, D. K. (Eds.), What is intelligence? Contemporary viewpoints on its nature and definition (pp. 5761). Norwood, NJ: Ablex.Google Scholar
Douven, I. (2017). Stanford Encyclopedia of Philosophy, s.v. Abduction. https://stanford.library.sydney.edu.au/archives/spr2017/entries/abductionGoogle Scholar
Elson, S. B., Hartman, R., Beatty, A., Trippe, M., Buckley, K., Bornmann, J., et al. (2018). Critical analytic thinking skills: Do they predict job-related task performance above and beyond general intelligence? Personnel Assessment and Decisions, 4(1), 929.Google Scholar
Embretson, S. E. (1983). Construct validity: Construct representation versus nomothetic span. Psychological Bulletin, 93, 179197.Google Scholar
Embretson, S. E. (2016). Understanding examinees’ responses to items: Implications for measurement. Educational Measurement: Issues and Practice, 35, 622.Google Scholar
Evans, J. S. B. T., & Feeney, A. (2004). The role of prior belief in reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 78102). New York: Cambridge University Press.Google Scholar
Evans, J. S. B. T., & Over, D. E. (1996). Rationality and reasoning. Hove, UK: Psychology Press.Google Scholar
Farrell, J. N., & McDaniel, M. A. (2001). The stability of validity coefficients over time: Ackerman’s (1988) model and the General Aptitude Test Battery. Journal of Applied Psychology, 86, 6079.Google Scholar
Feltovich, P. J., Prietula, M. J., & Ericsson, K. A. (2006). Studies of expertise from psychological perspectives. In Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.), The Cambridge handbook of expertise and expert performance (pp. 4168). New York: Cambridge University Press.Google Scholar
Fry, A. F., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7, 237241.Google Scholar
Furnham, A., Crump, J., & Chamorro-Premuzic, T. (2007). Managerial level, personality and intelligence. Journal of Managerial Psychology, 22, 805818.Google Scholar
Galotti, K. M., Baron, J., & Sabini, J. P. (1986). Individual differences in syllogistic reasoning: Deduction rules or mental models? Journal of Experimental Psychology: General, 115, 1625.Google Scholar
Gambrell, J. L. (2013). Effects of age and schooling on 22 ability and achievement tests. Unpublished doctoral dissertation, University of Iowa, Iowa City, IA.Google Scholar
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 4556.Google Scholar
Gilhooly, K. J. (2004). Working memory and reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 4977). New York: Cambridge University Press.Google Scholar
Gobet, F., & Waters, A. J. (2003). The role of constraints in expert memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 10821094.Google Scholar
Gustafsson, J.-E. (1988). Hierarchical models of individual differences in cognitive abilities. In Sternberg, R. J. (Ed.), Advances in the psychology of human intelligence (vol. 4, pp. 3571). Hillsdale, NJ: Erlbaum.Google Scholar
Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods, 10, 371388.Google Scholar
Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25(1), 320327.Google Scholar
Halpern, D. F., & Butler, H. A. (2018). Is critical thinking a better model of intelligence? In Sternberg, R. J. (Ed.), The nature of human intelligence (pp. 183196). New York: Cambridge University Press.Google Scholar
Horn, J. L. (1998). A basis for research on age differences in cognitive capabilities. In McArdle, J. J. & Woodcock, R. W. (Eds.), Human cognitive abilities in theory and practice (pp. 5791). Mahwah, NJ: Erlbaum.Google Scholar
Horn, J. L., & Blankson, N. (2005). Foundations for better understanding of cognitive abilities. In Flanagan, D. P. & Harrison, P. L. (Eds.), Contemporary intellectual assessment: Theories, test, and issues (vol. 2, pp. 4168). New York: Guilford Press.Google Scholar
Horn, J. L., & Masunaga, H. (2006). A merging theory of expertise and intelligence. In Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.), The Cambridge handbook of expertise and expert performance (pp. 587612). New York: Cambridge University Press.Google Scholar
Huber, C. R., & Kuncel, N. R. (2016). Does college teach critical thinking? A meta-analysis. Review of Educational Research, 86, 431468.Google Scholar
Hunt, E. B. (2010). Human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Hunt, E. B., Frost, N., & Lunneborg, C. (1973). Individual differences in cognition: A new approach to intelligence. In Bower, G. (Ed.), The psychology of learning and motivation (vol. 7, pp. 87122). New York: Academic Press.Google Scholar
Jensen, A. R. (1982). The chronometry of intelligence. In Sternberg, R. J. (Ed.), Advances in the psychology of human intelligence (vol. 1, pp. 255310). Hillsdale, NJ: Erlbaum.Google Scholar
Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Johnson, W., & Bouchard, T. J. Jr. (2005a). Constructive replication of the visual-perceptual-image rotation model in Thurstone’s (1941) battery of 60 tests of mental ability. Intelligence, 33, 417430.Google Scholar
Johnson, W., & Bouchard, T. J. Jr. (2005b). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393416.Google Scholar
Johnson, W., & Deary, I. J. (2011). Placing inspection time, reaction time, and perceptual speed in the broader context of cognitive ability: The VPR model in the Lothian Birth Cohort 1936. Intelligence, 39, 405417.Google Scholar
Johnson, W., & Gottesman, I. I. (2006). Clarifying process versus structure in human intelligence: Stop talking about fluid and crystallized. Behavioral and Brain Sciences, 29, 136137.Google Scholar
Johnson, W., te Nijenhuis, J., & Bouchard, T. J. Jr. (2007). Replication of the hierarchical visual-perceptual-image rotation model in de Wolff and Buiten’s (1963) battery of 46 tests of mental ability. Intelligence, 35, 6981.Google Scholar
Johnson-Laird, P. N. (2004). Mental models and reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 169204). New York: Cambridge University Press.Google Scholar
Johnson-Laird, P. N., & Byrne, R. M. (1991). Deduction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Johnson-Laird, P. N., & Khemlani, S. S. (2013). Toward a unified theory of reasoning. Psychology of learning and motivation, 59, 142.Google Scholar
Kahneman, D. (2011). Thinking, fast and slow, vol. 1. New York: Farrar, Straus and Giroux.Google Scholar
Kanfer, R., & Ackerman, P. L. (2004). Aging, adult development, and work motivation. Academy of Management Review, 29, 440458.Google Scholar
Kuncel, N. R. (2011). Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). Washington: National Research Council.Google Scholar
Kvist, A. V., & Gustafsson, J.-E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: A test of Cattell’s investment theory. Intelligence, 36, 422436.Google Scholar
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14, 389433.Google Scholar
Larson, G. E., Merritt, C. R., & Williams, S. E. (1988). Information processing and intelligence: Some implications of task complexity. Intelligence, 12(2), 131147.Google Scholar
Leighton, J. P. (2004). The assessment of logical reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 291312). New York: Cambridge University Press.Google Scholar
Liu, O. L., Frankel, L., & Roohr, K. C. (2014). Assessing critical thinking in higher education: Current state and directions for next-generation assessment. Research Report ETS RR-14-10. Princeton: Educational Testing Service.Google Scholar
Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In Sternberg, R. J. (Ed.), Advances in the psychology of human intelligence (vol. 4, pp. 181248). Hillsdale, NJ: Erlbaum.Google Scholar
Lohman, D. F., & Hagen, E. (2001). Cognitive Abilities Test (Form 6). Itasca, IL: Riverside.Google Scholar
Lohman, D. F., Korb, K., & Lakin, J. M. (2008). Identifying academically gifted English language learners using nonverbal tests: A comparison of the Raven, NNAT, and CogAT. Gifted Child Quarterly, 52, 275296.Google Scholar
Lohman, D. F., & Lakin, J. M. (2017). Cognitive Abilities Test (Forms 7 & 8): Research handbook. Itasca, IL: Houghton Mifflin Harcourt.Google Scholar
Major, J. T., Johnson, W., & Deary, I. J. (2012). Comparing models of intelligence in Project TALENT: The VPR model fits better than the CHC and extended Gf–Gc models. Intelligence, 40, 543559.Google Scholar
Markman, A. B., & Gentner, D. (2001). Thinking. Annual Review of Psychology, 52, 223247.Google Scholar
Marshalek, B. (1981). Trait and process aspects of vocabulary knowledge and verbal ability. Technical Report No. 15. Aptitude Research Project, School of Education, Stanford University, Stanford.Google Scholar
Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7(2), 107127.Google Scholar
Martinez, M. E. (2000). Education as the cultivation of intelligence. Mahwah, NJ: Erlbaum.Google Scholar
Naglieri, J. A. (1996). Naglieri Nonverbal Ability Test. San Antonio, TX: Harcourt Brace Educational Measurement.Google Scholar
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Ng, T. W., Eby, L. T., Sorensen, K. L., & Feldman, D. C. (2005). Predictors of objective and subjective career success: A meta‐analysis. Personnel Psychology, 58(2), 367408.Google Scholar
Nickerson, R. S. (2004). Teaching reasoning. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 410442). New York: Cambridge University Press.Google Scholar
Ones, D. S., Dilchert, S., & Viswesvaran, C. (2012). Cognitive abilities. In Schmitt, N. (Ed.), Oxford library of psychology (pp. 179224). New York: Oxford University Press.Google Scholar
Ones, D. S., Dilchert, S., Viswesvaran, C., & Salgado, J. F. (2010). Cognitive abilities. In Farr, J. & Tippins, N. (Eds.), Handbook of employee selection (pp. 235275). Clifton, NJ: Psychology Press.Google Scholar
Pellegrino, J. W., & Hilton, M. L. (2015). Education for life and work: Developing transferrable knowledge and skills in the 21st century. Washington: National Academies Press.Google Scholar
Postlethwaite, B. E. (2011). Fluid ability, crystallized ability, and performance across multiple domains: A meta-analysis. Unpublished doctoral dissertation, University of Iowa, Iowa City.Google Scholar
Primi, R. (2001). Complexity of geometric inductive reasoning tasks contribution to the understanding of fluid intelligence. Intelligence, 30, 4170.Google Scholar
Proctor, R. W., & Vu, K. L. (2006). Laboratory studies of training, skill acquisition, and retention of performance. In Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.), The Cambridge handbook of expertise and expert performance (pp. 265286). New York: Cambridge University Press.Google Scholar
Raaheim, K. (1988). Intelligence and task novelty. In Sternberg, R. J. (Ed.), Advances in the psychology of human intelligence (vol. 4, pp. 7397). Hillsdale, NJ: Erlbaum.Google Scholar
Raven, J. C., Court, J. H., & Raven, J. (1977). Raven’s Progressive Matrices and Vocabulary Scales. New York: Psychological Corporation.Google Scholar
Rips, L. J. (1994). The psychology of proof. Cambridge, MA: MIT Press.Google Scholar
Roberts, M. J. (1993). Human reasoning: Deductive rules or mental models, or both? Quarterly Journal of Experimental Psychology, 46A, 569589.Google Scholar
Roberts, R. D., & Stankov, L. (1999). Individual differences in speed of mental processing and human cognitive abilities: Toward a taxonomic model. Learning and Individual Differences, 11, 1120.Google Scholar
Robinson, C. S., & Hayes, J. R. (1978). Making inferences about relevance in understanding problems. In Revlin, R. & Mayer, R. E. (Eds.), Human reasoning (pp. 195206). Washington: Halsted Press.Google Scholar
Rozeboom, W. W. (1997). Good science is abductive, not hypothetico-deductive. In Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.), What if there were no significance tests? (pp. 335391). Hillsdale, NJ: Erlbaum.Google Scholar
Ryans, D. G. (1938). A study of the observed relationship between persistence test results, intelligence indices, and academic success. Journal of Educational Psychology, 29, 573580.Google Scholar
Salgado, J. F. (2017). Using ability tests in selection. In The Wiley Blackwell handbook of the psychology of recruitment, selection and employee retention (pp. 113150). Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Salthouse, T. A., Babcock, R. L., Mitchell, D. R. D., Palmon, R., & Skovronek, E. (1990). Sources of individual differences in spatial visualization ability. Intelligence, 14, 187230.Google Scholar
Schmidt, F. L., & Hunter, J. (2004). General mental ability in the world of work: occupational attainment and job performance. Journal of Personality and Social Psychology, 86, 162173.Google Scholar
Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In Flanagan, D. P. & Harrison, P. L. (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 99144). New York: Guilford Press.Google Scholar
Sechrest, L. (1963). Incremental validity: A recommendation. Educational and Psychological Measurement, 23, 153158.Google Scholar
Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of learning and ability correlationsAdvances in the Psychology of Human Intelligence2, 47103.Google Scholar
Snow, R. E., & Lohman, D. F. (1989). Implications of cognitive psychology for educational measurement. In Linn, R. (Ed.), Educational measurement (vol. 3, pp. 263331). New York: Macmillan.Google Scholar
Spearman, C. (1923). The nature of “intelligence” and the principles of cognition. London: Macmillan.Google Scholar
Spilsbury, G. (1992). Complexity as a reflection of the dimensionality of a task. Intelligence, 16, 3145.Google Scholar
Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Erlbaum.Google Scholar
Stanovich, K. E., , W. C., & West, R. F. (2004). Individual differences in thinking, reasoning, and decision making. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 375409). New York: Cambridge University Press.Google Scholar
Stanovich, K. E., & Stanovich, P. J. (2010). A framework for critical thinking, rational thinking and intelligence. In Preiss, D. D. & Sternberg, R. J. (Eds.), Educational psychology: Perspectives on learning, teaching and human development (pp. 195237). New York: Springer Publishing Company.Google Scholar
Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, 94, 672695.Google Scholar
Stanovich, K. E., West, R. F., & Toplak, M. E. (2013). Myside bias, rational thinking, and intelligence. Current Directions in Psychological Science, 22, 259264.Google Scholar
Stenning, K., & Monaghan, P. (2004). Strategies and knowledge representation. In Leighton, J. P. & Sternberg, R. J. (Eds.), The nature of reasoning (pp. 129168). New York: Cambridge University Press.Google Scholar
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Sternberg, R. J. (1986). Toward a unified theory of human reasoning. Intelligence, 10, 281314.Google Scholar
Strenze, T. (2015). Intelligence and success. In Goldstein, S., Princiotta, D., & Naglieri, J. A. (Eds.), Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts (pp. 405413). New York: Springer.Google Scholar
Süß, H.-M., & Beauducel, A. (2005). Faceted models of intelligence. In Wilhelm, O. & Engle, R. W. (Eds.), Handbook of measuring and understanding intelligence (pp. 313332). Thousand Oaks, CA: Sage.Google Scholar
Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working memory capacity explains reasoning ability – and a little bit more. Intelligence, 30, 261288.Google Scholar
Swiney, J. F. (1985). A study of executive processes in intelligence. Unpublished doctoral dissertation, Stanford University, Stanford.Google Scholar
Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
Toulmin, S., Rieke, R., & Janik, A. (1984). An introduction to reasoning (2nd ed.). New York: Macmillan.Google Scholar
US Department of Labor, Employment and Training Administration (2018). Standard occupational classification manual. www.bls.gov/soc/2018/soc_2018_manual.pdfGoogle Scholar
Vernon, P. E. (1950). The structure of human abilities. London: Methuen.Google Scholar
Vernon, P. E. (1965). Ability factors and environmental influences. American Psychologist, 20, 723733.Google Scholar
West, R. F., Toplak, M. E., & Stanovich, K. E. (2008). Heuristics and biases as measures of critical thinking: Associations with cognitive ability and thinking dispositions. Journal of Educational Psychology, 100(4), 930941.Google Scholar
Wilhelm, O. (2005). Measuring reasoning ability. In Wilhelm, O. & Engle, R. W. (Eds.), Handbook of measuring and understanding intelligence (pp. 373392). Thousand Oaks, CA: Sage.Google Scholar
Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37, 6082.Google Scholar

References

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processingJournal of Experimental Psychology: General117, 288318.Google Scholar
Ackerman, P. L. (1996). A theory of adult intellectual development: Process, personality, interests, and knowledgeIntelligence22, 227257.Google Scholar
Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131, 567589.Google Scholar
Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin131, 3060.Google Scholar
Anderson, J. R. (1985). Cognitive psychology and its implications. New York: W H Freeman/Times Books/ Henry Holt & Co.Google Scholar
Arthur, W., Barret, G. V., & Alexander, R. A. (1991). Prediction of vehicular accident involvement: A meta-analysisHuman Performance4, 89105.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (vol. 8, pp. 4789). New York: Academic Press.Google Scholar
Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and declineDevelopmental Psychology23, 611626.Google Scholar
Binet, A. (1909/1975). Modern ideas about children (trans. S. Heisler). California: University of California.Google Scholar
Bingham, W. V. (1937). Aptitudes and aptitude testing. Oxford: Harpers.Google Scholar
Brown, R. E. (2016). Hebb and Cattell: The genesis of the theory of fluid and crystallized intelligenceFrontiers in Human Neuroscience10(606). https://doi.org/10.3389/fnhum.2016.00606Google Scholar
Burgoyne, A. P., Hambrick, D. Z., & Altmann, E. M. (in press). Placekeeping ability as a component of fluid intelligence: Not just working memory capacity. American Journal of Psychology.Google Scholar
Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N., Campitelli, G., & Hambrick, D. Z. (2016). The relationship between cognitive ability and chess skill: A comprehensive meta-analysisIntelligence59, 7283.Google Scholar
Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M., & Ramey, C. T. (2001). The development of cognitive and academic abilities: Growth curves from an early childhood educational experiment. Developmental Psychology, 37, 231242.Google Scholar
Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices TestPsychological Review97, 404431.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.Google Scholar
Cattell, R. B. (1943). The measurement of adult intelligencePsychological Bulletin40, 153193.Google Scholar
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology54, 122.Google Scholar
Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531542.Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Cognitive Training Data (2014). Cognitive training data response letter. www.cognitivetrainingdata.org/the-controversy-does-brain-training-work/response-letterGoogle Scholar
Conway, A. R. A., & Kovacs, K. (2013). Individual differences in intelligence and working memory: A review of latent variable models. Psychology of Learning and Motivation, 58, 233270.Google Scholar
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and readingJournal of Verbal Learning and Verbal Behavior19, 450466.Google Scholar
Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., et al. (2011). Measuring performance in dynamic decision making. Journal of Individual Differences32, 225233.Google Scholar
Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford: Oxford University Press.Google Scholar
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievementIntelligence35, 1321.Google Scholar
Deary, I. J., & Whalley, L. J. (2001). Longitudinal cohort study of childhood IQ and survival up to age 76. British Medical Journal, 322, 819822.Google Scholar
Duncker, K. (1945). On problem-solving (trans. L. Lees). Psychological Monographs, 58, i113.Google Scholar
Engle, R. W. (2002). Working memory capacity as executive attentionCurrent Directions in Psychological Science11, 1923.Google Scholar
Engle, R. W. (2018). Working memory and executive attention: A revisitPerspectives on Psychological Science13, 190193.Google Scholar
Ericsson, K. A. (2013). My exploration of Gagné’s “evidence” for innate talent. It is Gagné who is omitting troublesome information so as to present more convincing accusations. In Kaufman, S. B. (Ed.), The complexity of greatness: Beyond talent or practice (pp. 223256). New York: Oxford University Press.Google Scholar
Ericsson, K. A. (2014). Why expert performance is special and cannot be extrapolated from studies of performance in the general population: A response to criticismsIntelligence45, 81103.Google Scholar
Ericsson, K. A. (2018a). Superior working memory in experts. In Ericsson, K. A., Hoffman, R. R., Kozbelt, A., & Williams, A. M. (Eds.), The Cambridge handbook of expertise and expert performance (pp. 696713). New York: Cambridge University Press.Google Scholar
Ericsson, K. A. (2018b). Intelligence as domain-specific reproducible performance: The role of acquired domain-specific mechanisms in expert performance. In Sternberg, R. J. (Ed.), The nature of human intelligence (pp. 85100). New York: Cambridge University Press.Google Scholar
Ericsson, K. A., & Moxley, J. (2013). Working memory that mediates experts’ performance: Why it is qualitatively different from traditional working memory. In Alloway, T. P. & Alloway, R. (Eds.), Working memory: The connected intelligence (pp. 109136). New York: Psychology Press.Google Scholar
Ericsson, A., & Pool, R. (2016). Peak: Secrets from the new science of expertise. Boston: Houghton Mifflin Harcourt.Google Scholar
Farrell, J. N., & McDaniel, M. A. (2001). The stability of validity coefficients over time: Ackerman’s (1988) model and the General Aptitude Test Battery. Journal of Applied Psychology86, 6079.Google Scholar
Federal Trade Commission (2016). Lumosity to pay $2 million to settle FTC deceptive advertising charges for its “brain training” program. www.ftc.gov/news-events/press-releases/2016/01/lumosity-pay-2-million-settle-ftc-deceptive-advertising-chargesGoogle Scholar
Ferriman Robertson, K., Smeets, S., Lubinski, D., & Benbow, C. P. (2010). Beyond the threshold hypothesis: Even among the gifted and top math/science graduate students, cognitive abilities, vocational interests, and lifestyle preferences matter for career choice, performance, and persistence. Current Directions in Psychological Science, 19, 346351.Google Scholar
Frensch, P. A., & Funke, J. (1995). Definitions, traditions, and a general framework for understanding complex problem solving. In Frensch, P. A. & Funke, J. (Eds.), Complex problem solving: The European perspective (pp. 326). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Gallagher, A. G., Cowie, R., Crothers, I., Jordan-Black, J. A., & Satava, R. M. (2003). PicSOr: an objective test of perceptual skill that predicts laparoscopic technical skill in three initial studies of laparoscopic performanceSurgical Endoscopy and Other Interventional Techniques17, 14681471.Google Scholar
Gardner, H. (1999). Who owns intelligence? The Atlantic Monthly283, 6776.Google Scholar
Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24, 1323.Google Scholar
Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science13, 14.Google Scholar
Greiff, S., Fischer, A., Wüstenberg, S., Sonnleitner, P., Brunner, M., & Martin, R. (2013a). A multitrait-multimethod study of assessment instruments for complex problem solving. Intelligence, 41, 579596.Google Scholar
Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic problem solving: A new assessment perspectiveApplied Psychological Measurement36, 189213.Google Scholar
Greiff, S., Wüstenberg, S., Molnár, G., Fischer, A., Funke, J., & Csapó, B. (2013b). Complex problem solving in educational contexts – Something beyond g: Concept, assessment, measurement invariance, and construct validityJournal of Educational Psychology105, 364379.Google Scholar
Hambrick, D. Z., & Altmann, E. M. (2015). The role of placekeeping ability in fluid intelligencePsychonomic Bulletin and Review22, 11041110.Google Scholar
Hambrick, D. Z., Altmann, E. M., & Burgoyne, A. P. (2018). A knowledge activation approach to testing the circumvention-of-limits hypothesisAmerican Journal of Psychology131, 307321.Google Scholar
Hambrick, D. Z., Altmann, E. M., Oswald, F. L., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Accounting for expert performance: The devil is in the detailsIntelligence45, 112114.Google Scholar
Hambrick, D. Z.Burgoyne, A. P., & Oswald, F. L. (in press). Domain-general models of expertise: The role of cognitive ability. In Ward, P., Schraagen, J. M., Gore, J., & Roth, E. (Eds.), Oxford handbook of expertise: Research and application. Oxford: Oxford University Press.Google Scholar
Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligencePsychological Science24, 24092419.Google Scholar
Hart, C. L., Taylor, M. D., Smith, G. D., Whalley, L. J., Starr, J. M., Hole, D. J., et al. (2003). Childhood IQ, social class, deprivation, and their relationships with mortality and morbidity risk in later life: Prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studiesPsychosomatic Medicine65, 877883.Google Scholar
Hays, W. L. (1988). Statistics (4th ed.). Fort Worth, TX: Holt, Rinehart & Winston Inc.Google Scholar
Hebb, D. O. (1942). The effect of early and late brain injury upon test scores, and the nature of normal adult intelligenceProceedings of the American Philosophical Society, 85, 275292.Google Scholar
Henry, R. A., & Hulin, C. L. (1987). Stability of skilled performance across time: Some generalizations and limitations on utilities. Journal of Applied Psychology, 72, 457462.Google Scholar
Hunter, J. E., & Schmidt, F. L. (1996). Intelligence and job performance: Economic and social implicationsPsychology, Public Policy, and Law2, 447472.Google Scholar
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memoryProceedings of the National Academy of Sciences105, 68296833.Google Scholar
Jensen, A. (1999). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Johnson, J., & Bouchard, T. J. (2005). The structure of human intelligence: It is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393416.Google Scholar
Kane, M. J., Hambrick, D. Z., & Conway, A. R. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005)Psychological Bulletin131, 6671.Google Scholar
Koenig, K. A., Frey, M. C., & Detterman, D. K. (2008). ACT and general cognitive ability. Intelligence, 36, 153160.Google Scholar
Kopiez, R., & Lee, J. (2006). Towards a dynamic model of skills involved in sight reading musicMusic Education Research8, 97120.Google Scholar
Kopiez, R., & Lee, J. (2008). Towards a general model of skills involved in sight reading musicMusic Education Research10, 4162.Google Scholar
Kretzschmar, A., Neubert, J. C., Wüstenberg, S., & Greiff, S. (2016). Construct validity of complex problem solving: A comprehensive view on different facets of intelligence and school gradesIntelligence54, 5569.Google Scholar
Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology86, 148161.Google Scholar
Kuncel, N., & Sackett, P. (2018). The truth about the SAT and ACT. Wall Street Journal, March 8. www.wsj.com/articles/the-truth-about-the-sat-and-act-1520521861Google Scholar
Kunda, M., Soulières, I., Rozga, A., & Goel, A. K. (2016). Error patterns on the Raven’s Standard Progressive Matrices TestIntelligence59, 181198.Google Scholar
Kyllonen, P. C. (2002). g: Knowledge, speed, strategies, or working-memory capacity? A systems perspective. In Sternberg, R. J. & Gigorenko, E. L. (Eds.), The general factor of intelligence: How general is it? (pp. 415445). Mahwah, NJ: Erlbaum.Google Scholar
Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence14, 389433.Google Scholar
Lubinski, D. (2009). Exceptional cognitive ability: The phenotype. Behavioral Genetics, 39, 350358.Google Scholar
Macnamara, B. N., Hambrick, D. Z., & Moreau, D. (2016). How important is deliberate practice? Reply to Ericsson (2016)Perspectives on Psychological Science11, 355358.Google Scholar
Mayer, R. E. (2013). Problem solving. In Reisberg, D. (Ed.), The Oxford handbook of cognitive psychology (pp. 769778). New York: Oxford University Press.Google Scholar
McCabe, D. P., Roediger, H. L., McDaniel, M. A., Balota, D. A., & Hambrick, D. Z. (2010). The relationship between working memory capacity, frontal lobe functioning, and general fluid intelligence: An adult lifespan study. Neuropsychology, 22, 638644.Google Scholar
McGrew, K. S. (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present, and future. New York: Guilford Press.Google Scholar
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence researchIntelligence37, 110.Google Scholar
Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic reviewDevelopmental Psychology49, 270291.Google Scholar
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11, 512534.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysisCognitive Psychology41, 49100.Google Scholar
NBC Nightly News (2016). Lumosity to pay $2M over allegations that its ads deceived customers. January 5. www.youtube.com/watch?v=uw67Vf_EwAw&gl=UG&hl=en-GBGoogle Scholar
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Park, G., Lubinski, D., & Benbow, C. P. (2008). Ability differences among people who have commensurate degrees matter for scientific creativityPsychological Science19(10), 957961.Google Scholar
Postlethwaite, B., Robbins, S., Rickerson, J., & McKinniss, T. (2009). The moderation of conscientiousness by cognitive ability when predicting workplace safety behaviorPersonality and Individual Differences47, 711716.Google Scholar
Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled studyJournal of Experimental Psychology: General142, 359379.Google Scholar
Reeve, C. L., & Bonaccio, S. (2011). On the myth and the reality of the temporal validity degradation of general mental ability test scoresIntelligence39, 255272.Google Scholar
Rosen, V. M., & Engle, R. W. (1998). Working memory capacity and suppressionJournal of Memory and Language39, 418436.Google Scholar
Ruthsatz, J., Detterman, D., Griscom, W. S., & Cirullo, B. A. (2008). Becoming an expert in the musical domain: It takes more than just practiceIntelligence36, 330338.Google Scholar
Salthouse, T. A. (2000). Pressing issues in cognitive aging. In Park, D. & Swartz, N. (Eds.), Cognitive aging: A primer (pp. 4354). New York: Psychology Press.Google Scholar
Salthouse, T. A., & Pink, J. E. (2008). Why is working memory related to fluid intelligence? Psychonomic Bulletin and Review15, 364371.Google Scholar
Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findingsPsychological Bulletin124, 262274.Google Scholar
Schmidt, F. L., & Hunter, J. E. (2004). General mental ability in the world of work: Occupational attainment and job performanceJournal of Personality and Social Psychology86, 162173.Google Scholar
Schmidt, F. L., Hunter, J. E., Outerbridge, A. N., & Goff, S. (1988). Joint relation of experience and ability with job performance: Test of three hypothesesJournal of Applied Psychology73, 4657.Google Scholar
Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid intelligence: Maintenance and disengagementPerspectives on Psychological Science11, 771799.Google Scholar
Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., et al. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest17, 103186.Google Scholar
Sonnleitner, P., Keller, U., Martin, R., & Brunner, M. (2013). Students’ complex problem-solving abilities: Their structure and relations to reasoning ability and educational success. Intelligence, 41, 289305.Google Scholar
Spearman, C. (1904). “General Intelligence,” objectively determined and measuredAmerican Journal of Psychology15, 201292.Google Scholar
Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem solving and intelligence: A meta-analysis. Intelligence, 53, 92101.Google Scholar
Stanford Center on Longevity (2014). A consensus on the brain training industry from the scientific community. http://longevity.stanford.edu/a-consensus-on-the-brain-training-industry-from-the-scientific-community-2Google Scholar
Stern, W. (1914). The psychological methods of testing intelligenceBaltimore, MD: Warwick & York.Google Scholar
Sternberg, R. J. (1985a). Implicit theories of intelligence, creativity, and wisdom. Journal of Personality and Social Psychology, 49, 607627.Google Scholar
Sternberg, R. J. (1985b). Beyond IQ: A triarchic theory of human intelligence. Cambridge, UK: Cambridge University Press.Google Scholar
Sternberg, R. J. (2008). Increasing fluid intelligence is possible after allProceedings of the National Academy of Sciences105, 67916792.Google Scholar
Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People’s conceptions of intelligenceJournal of Personality and Social Psychology41, 3755.Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactionsJournal of Experimental Psychology18, 643662.Google Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language28, 127154.Google Scholar
Unsworth, N., & Engle, R. W. (2005). Working memory capacity and fluid abilities: Examining the correlation between operation span and Raven. Intelligence, 33, 6781.Google Scholar
Vernon, P. E. (1965). Ability factors and environmental influences. American Psychologist, 20, 723733.Google Scholar
Walshe, E. A., McIntosh, C. W., Romer, R., & Winston, F. K. (2017). Executive function capacities, negative driving behavior and crashes in young adults. International Journal of Environmental Research and Public Health, 14, E1314.Google Scholar
Wigdor, A., & Green, B. F. Jr. (1991). Performance assessment for the workplace, 2 vols. Washington: National Academy Press.Google Scholar
Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving – More than reasoning? Intelligence, 40, 114.Google Scholar

References

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulates et axiomes de l’ecole américaine [Rational man’s behavior: Critique of the American School’s postulates and axioms]. Econometrica 21, 503546.Google Scholar
Arkes, H. R., Gigerenzer, G., & Hertwig, R. (2016). How bad is incoherence? Decision, 3, 2039. https://doi.org/10.1037/dec0000043Google Scholar
Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.Google Scholar
Berg, N. (2014). Success from satisficing and imitation: Entrepreneurs’ location choice and implications of heuristics for local economic development. Journal of Business Research, 67, 17001709. https://doi.org/10.1016/j.jbusres.2014.02.016Google Scholar
Berg, N., Biele, G., & Gigerenzer, G. (2016). Consistent Bayesians are no more accurate than non-Bayesians: Economists surveyed about PSA. Review of Behavioral Economics, 3, 189219. https://doi.org/10.1561/105.00000034Google Scholar
Bernoulli, D. (1738/1954). Exposition of a new theory on the measurement of risk. Econometrica, 22, 2336. https://doi.org/10.2307/1909829Google Scholar
Boyd, R., & Richardson, P. J. (2005). The origin and evolution of cultures. New York: Oxford University Press.Google Scholar
Bröder, A. (2012). The quest for take-the-best. In Todd, P. M., Gigerenzer, G., & ABC Research Group, Ecological rationality: Intelligence in the world (pp. 216240). New York: Oxford University Press.Google Scholar
Clark, G. (2002). Embracing fatality through life insurance. In Baker, T. & Simon, J. (Eds.), Embracing risk: The changing culture of insurance and responsibility (pp. 8096). Chicago: University of Chicago Press.Google Scholar
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671684.Google Scholar
Daston, L. (1987). The domestication of risk: Mathematical probability and insurance 1650–1830. In Krüger, L., Daston, L., & Heidelberger, M. (Eds.), The probabilistic revolution, vol. 1, Ideas in history. Cambridge, MA: MIT Press.Google Scholar
Daston, L. (1988). Classical probability in the Enlightenment. Princeton: Princeton University Press.Google Scholar
Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American Psychologist, 34, 571582. https://doi.org/10.1037/0003-066X.34.7.571Google Scholar
DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naïve diversification: How inefficient is the 1/N portfolio strategy? Review of Financial Studies, 22, 1915 1953. https://doi.org/10.1093/rfs/hhm075Google Scholar
Dhami, M. K. (2003). Psychological models of professional decision making. Psychological Science, 14, 175180. https://doi.org/10.1111/1467-9280.01438Google Scholar
Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics, 75, 643669. https://doi.org/10.2307/1884324Google Scholar
Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky (1996). Psychological Review, 103, 592596. https://doi.org/10.1037/0033-295X.103.3.592Google Scholar
Gigerenzer, G. (2014). Risk savvy: How to make good decisions. New York: Viking.Google Scholar
Gigerenzer, G. (2015). On the supposed evidence for libertarian paternalism. Review of Philosophy and Psychology, 6, 363383. https://doi.org/10.1007/s13164-015-0248-1Google Scholar
Gigerenzer, G. (2016). Towards a rational theory of heuristics. In Frantz, R. & Marsh, L. (Eds.), Minds, models, and milieux: Commemorating the centennial of the birth of Herbert Simon (pp. 3459). New York: Palgrave Macmillan.Google Scholar
Gigerenzer, G. (2018). The bias bias in behavioral economics. Review of Behavioral Economics, 5, 303336. http://dx.doi.org/10.1561/105.00000092Google Scholar
Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review of Psychology, 62, 451482. https://doi.org/10.1146/annurev-psych-120709-145346Google Scholar
Gigerenzer, G., & Garcia-Retamero, R. (2017). Cassandra’s regret. The psychology of not wanting to know. Psychological Review, 124, 179196. https://doi.org/10.1037/rev0000055Google Scholar
Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 104, 650669. https://doi.org/10.1037/0033-295X.103.4.650Google Scholar
Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making, 6, 100121.Google Scholar
Gigerenzer, G., Hertwig, R., & Pachur, T. (Eds.) (2011). Heuristics: The foundations of adaptive behavior. New York: Oxford University Press.Google Scholar
Gigerenzer, G., Todd, P. M., & ABC Research Group (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 7590. https://doi.org/10.1037/0033-295X.109.1.75Google Scholar
Green, L, & Mehr, D. R. (1997). What alters physicians’ decisions to admit to the coronary care unit? Journal of Family Practice, 45, 219226.Google Scholar
Hamlin, R. P. (2017). “The gaze heuristic”: Biography of an adaptively rational decision process. Topics in Cognitive Science, 9, 264288. https://doi.org/10.1111/tops.12253Google Scholar
Hertwig, R., & Hoffrage, U. (2013). Simple heuristics: The foundations of adaptive social behavior. In Hertwig, R. & Hoffrage, U. (Eds.), Simple heuristics in a social world (pp. 336). New York: Oxford University Press.Google Scholar
Hutchinson, J. M. C., & Gigerenzer, G. (2005). Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet. Behavioural Processes, 69, 97124. https://doi.org/10.1016/j.beproc.2005.02.019Google Scholar
Johnson, E. J., & Goldstein, D. G. (2003). Do defaults save lives? Science, 302, 13381339.Google Scholar
Kahneman, D. (2011). Thinking fast and slow. London: Allen Lane.Google Scholar
Kahneman, D., & Tversky, A. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 11241131. https://doi.org/10.1126/science.185.4157.1124Google Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263291. https://doi.org/10.2307/1914185Google Scholar
Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103, 582591. https://doi.org/10.1037/0033-295X.103.3.582Google Scholar
Knight, F. (1921). Risk, uncertainty and profit, vol. 31. Boston: Houghton Mifflin.Google Scholar
Luan, S., Schooler, L., & Gigerenzer, G. (2011). A signal detection analysis of fast-and-frugal trees. Psychological Review, 118, 316338. https://doi.org/10.1037/a0022684Google Scholar
Martignon, L., Vitouch, O., Takezawa, M., & Forster, M. R. (2003). Naive and yet enlightened: From natural frequencies to fast and frugal decision trees. In Hardman, D. & Macchi, L. (Eds.), Thinking: Psychological perspectives on reasoning, judgment and decision making (pp. 189211). Chichester, UK: Wiley.Google Scholar
McBeath, M. K., Shafer, D. M., & Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569573. https://doi.org/10.1126/science.7725104Google Scholar
Mischel, W. (2008). The toothbrush problem. Observer, 21(11). www.psychologicalscience.org/observer/the-toothbrush-problemGoogle Scholar
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New York: Cambridge University Press.Google Scholar
Pohl, R. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 251271. https://doi.org/10.1002/bdm.522Google Scholar
Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, 112, 610628. https://doi.org/10.1037/0033-295X.112.3.610Google Scholar
Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002). Maximizing versus satisficing: Happiness is a matter of choice. Journal of Personality and Social Psychology, 83, 11781197. https://doi.org/10.1037/0022-3514.83.5.1178Google Scholar
Simon, H. A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69, 99118. https://doi.org/10.2307/1884852Google Scholar
Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.Google Scholar
Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41, 119. https://doi.org/10.1146/annurev.ps.41.020190.000245Google Scholar
Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, 94, 672695.Google Scholar
Taleb, N. N. (2007). The black swan: The impact of the highly improbable. New York: Random House.Google Scholar
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth, and happiness. New Haven, CT: Yale University Press.Google Scholar
Todd, P. M., Gigerenzer, G., & ABC Research Group (2012). Ecological rationality: Intelligence in the world. New York: Oxford University Press.Google Scholar
Todd, P. M., & Miller, G. F. (1999). From pride and prejudice to persuasion: Realistic heuristics for mate search. In Gigerenzer, G., Todd, P. M., & ABC Research Group, Simple heuristics that make us smart (pp. 287308). New York: Oxford University Press.Google Scholar
Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76, 105110. https://doi.org/10.1037/h0031322Google Scholar

References

Albus, J. S. (1991). Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 473509.Google Scholar
Ali, K., & Goel, A. (1996). Combining navigational planning and reactive control. Proceedings of the AAAI-96 Workshop on Reasoning About Actions, Planning and Control: Bridging the Gap (pp. 17). Portland: AAAI Press.Google Scholar
Anderson, J. R. (2013). The adaptive character of thought. New York: Psychology Press.Google Scholar
Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.Google Scholar
Arkin, R. (1999). Behavior-based robotics. Cambridge, MA: MIT Press.Google Scholar
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). Semantic web. Scientific American, 284(5), pp. 3543.Google Scholar
Besold, T., Schlorlemmer, M., & Smaill, A. (Eds.) (2015) Computational creativity research: Towards creative machines. New York: Atlantis Press.Google Scholar
Boström, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.Google Scholar
Bringsjord, S., & Schimanski, B. (2003). What is artificial intelligence? Psychometric AI as an answer. Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03) (pp. 887893). San Francisco: Morgan Kaufmann.Google Scholar
Buchanan, B., & Shortliffe, E. (1984). Rule based expert systems: The Mycin experiments of the Stanford Heuristic Programming Project. Boston: Addison-Wesley.Google Scholar
Cox, M., & Raja, A. (2011), Metareasoning: Thinking about thinking, Cambridge, MA: MIT Press.Google Scholar
Craik, K. (1943). The nature of explanation. Cambridge, UK: Cambridge University Press.Google Scholar
Davies, J., & Francis, A. G. (2013). The role of artificial intelligence research methods in cognitive science. In West, R. & Stewart, T. (Eds.), Proceedings of the 12th International Conference on Cognitive Modeling (pp. 439444). Ottawa: Carleton University.Google Scholar
Evans, T. G. (1968). A program for the solution of a class of geometric-analogy intelligence-test questions. In Minsky, M. (Ed.), Semantic information processing (pp. 271353). Cambridge, MA: MIT Press.Google Scholar
Ford, K., Hayes, P., Glymour, C., & Allen, J. (2015). Cognitive orthoses: Toward human-centered AI. AI Magazine, 36(4), 58.Google Scholar
Glasgow, J., Narayanan, N. H., & Chandrasekaran, B. (Eds.) (1995). Diagrammatic reasoning: Cognitive and computational perspectives. Cambridge, MA: MIT Press.Google Scholar
Goel, A., Ali, K., Donnellan, M., Gomez, A., & Callantine, T. (1994). Multistrategy adaptive navigational path planning. IEEE Expert, 9(6), 5765.Google Scholar
Goel, A., Stroulia, E., Chen, Z., & Rowland, P. (1997). Model-based reconfiguration of schema-based reactive control architectures. In Proceedings of the AAAI Fall Symposium on Model-Directed Autonomous Systems (pp. 16). Cambridge, MA: AAAI.Google Scholar
Harnad, S. (1992). The Turing test is not a trick: Turing indistinguishability is a scientific criterion. SIGART Bulletin, 3(4), 910.Google Scholar
Hsu, F., Campbell, M., & Hoane, A. (1995). Deep Blue system overview. In Wolfe, M. (Ed.), Procs. the 1995 International Conference on Supercomputing (pp. 240244).New York: ACM Press.Google Scholar
Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
Kolodner, J. (1993). Case-based reasoning. San Francisco: Morgan Kaufmann.Google Scholar
Kotseruba, I., Gonzalez, O., & Tsotsos, J. (2016). A review of 40 years of cognitive architecture research: Focus on perception, attention, learning and applications. The Computing Research Repository (CoRR). arXiv preprint arXiv:1610.08602, 1–74.Google Scholar
Kunda, M., McGreggor, K., & Goel, A. (2013). A computational model for solving problems from the Raven’s Progressive Matrices intelligence test using iconic visual representations. Cognitive Systems Research, 22, 4766.Google Scholar
Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Viking Adult.Google Scholar
Laird, J. E. (2012). The Soar cognitive architecture. Cambridge, MA: MIT press.Google Scholar
Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and roboticsAI Magazine38(4). https://doi.org/10.1609/aimag.v38i4.2744Google Scholar
Laird, J., Newell, A., & Rosenbloom, P. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33, 164.Google Scholar
Langley, P. (2012). The cognitive systems paradigm. Advances in Cognitive Systems, 1, 313.Google Scholar
Langley, P., Laird, J., & Rogers, S. (2009). Cognitive architectures: Research issues and challengesCognitive Systems Research10(2), 141160.Google Scholar
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learningNature521(7553), 436444.Google Scholar
Lenat, D., & Guha, R. (1990). Building large knowledge based systems: Representation and inference in the Cyc project. Boston: Addison-Wesley Longman.Google Scholar
Lindsay, R., Buchanan, B., Feigenbaum, E., & Lederberg, J. (1980). Applications of artificial intelligence for chemical inference: The Dendral project. New York: McGraw-Hill.Google Scholar
Marcus, G., Rossi, F., & Veloso, M. (2016). Beyond the Turing test. Special issue, AI Magazine, 37(1), 3101.Google Scholar
Marr, D. (1982). Vision. New York: Henry Holt.Google Scholar
McCarthy, J. (1988). Mathematical logic in AI. Daedalus, 117(1), 297311.Google Scholar
McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955/2006). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27(4), 1214.Google Scholar
McClelland, J. L., Rumelhart, D. E., & PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, Psychological and biological models. Cambridge, MA: MIT Press.Google Scholar
Minsky, M. L. (1975). A framework for representing knowledge. In Winston, P. H. (Ed.), The psychology of computer vision (pp. 182). New York: McGraw-Hill.Google Scholar
Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge, MA: MIT Press.Google Scholar
Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of problem solving. Psychological Review, 63(3), 151166.Google Scholar
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco: Morgan Kauffman.Google Scholar
Pearl, J. (2000). Causality: Models, reasoning and inference. New York: Cambridge University Press.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press.Google Scholar
Pinker, S. (2018). Enlightenment now: The case for reason. Science, humanism, and progress. New York: Viking.Google Scholar
Quillian, M. (1968). Semantic Memory. In Minsky, M. (Ed.), Semantic information processing (pp. 227270). Cambridge, MA: MIT Press.Google Scholar
Rabiner, L., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE ASSP Magazine, January, 416.Google Scholar
Raphael, B. (1976). The thinking computer. New York: W. H. Freeman.Google Scholar
Raven, J. C. (1962). Advanced Progressive Matrices Set II. London: H. K. Lewis.Google Scholar
Rumelhart, D. E., McClelland, J. L., & PDP Research Group (1986). Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, Foundations. Cambridge, MA: MIT Press.Google Scholar
Samsonovich, A. V. (2010). Toward a unified catalog of implemented cognitive architectures. In Samsonovich, A. V., Jóhannsdóttir, K. R., Chella, A., & Goertzel, B. (Eds.), Proceeding of the Conference on Biologically Inspired Cognitive Architectures (pp. 195244). New York: IOS Press.Google Scholar
Schank, R. C. (1975). Conceptual information processing. New York: Elsevier.Google Scholar
Schank, R. C. (1982). Dynamic memory (2nd ed.). New York: Cambridge University Press.Google Scholar
Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding. Hillsdale, NJ: Erlbaum.Google Scholar
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484489.Google Scholar
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354359.Google Scholar
Simon, H. A. (1996). Sciences of the artificial (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
Singh, P., Lin, T., Mueller, E. T., Lim, G., Perkins, T., & Zhu, W. L. (2002). Open mind common sense: Knowledge acquisition from the general public. In Meersman, R. & Tari, Z. (Eds.), On the Move to Meaningful Internet Systems: OTM Confederated International Conferences (pp. 12231237). Berlin: Springer.Google Scholar
Sowa, J. (1987). Semantic networks. In Shapiro, S. (Ed.), Encylopedia of AI (pp. 10111024). New York: Wiley.Google Scholar
Stanovich, K. E. (2004). The robot’s rebellion. Chicago: University of Chicago Press.Google Scholar
Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate. Behavioral and Brain Sciences, 23, 645726.Google Scholar
Stroulia, E., & Goel, A. K. (1999). Evaluating problem-solving methods in evolutionary design: The autognostic experiments. International Journal of Human-Computer Studies, 51, 825847.Google Scholar
Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433460.Google Scholar
Veale, T., & Cardoso, A. (2018). Computational creativity: The philosophy and engineering of autonomously creative systems. Berlin: Springer.Google Scholar
Von Anh, L., Liu, R., & Blum, M. (2006). Peekaboom: A game for locating objects in images. In Grinter, R., Rodden, T., Aoki, P., Cutrell, E., Jeffries, R., & Olson, G. (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Montreal, April 22–27) (pp. 5564). New York: ACM Press.Google Scholar
Wechsler, D. (1939). The measurement of adult intelligence. Baltimore, MD: Williams & Wilkins.Google Scholar
Weiner, N. (1961). Cybernetics (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Weizenbaum, J. (1966). ELIZA – a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 3645.Google Scholar
Winograd, T. (1972). Understanding natural language. San Diego, CA: Academic Press.Google Scholar

References

Ackerman, P. J. (1988). Individual differences and skill acquisition. In Ackerman, P. L., Sternberg, R. J., & Glaser, R. (Eds.), Learning and individual differences: Advances in theory and practice (pp. 165217). New York: W. H. Freeman and Company.Google Scholar
Adams, D., & Mayer, R. (2012). Examining the connection between dynamic and static spatial skills and video game performance. Proceedings of the Annual Meeting of the Cognitive Science Society, 34. https://escholarship.org/uc/item/8vc391r3Google Scholar
Baniqued, P. L., Lee, H., Voss, M. W., Basak, C., Cosman, J. D., DeSouza, S., et al. (2013). Selling points: What cognitive abilities are tapped by casual video games? Acta Psychologica, 142, 7486. http://dx.doi.org/10.1016/j.actpsy.2012.11.009Google Scholar
Bavelier, D., Achtman, R. L., Mani, M., & Föcker, J. (2012). Neural bases of selective attention in action video game players. Vision Research, 61, 132143. https://doi.org/10.1016/j.visres.2011.08.007Google Scholar
Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77110. http://dx.doi.org/10.1037/bul0000130Google Scholar
Bonny, J. W., Castaneda, L. M., & Swanson, T. (2016). Using an international gaming tournament to study individual differences in MOBA expertise and cognitive skills. In Proceedings of the SIGCHI conference on human factors in computing systems (34733484). San José, CA. http://dx.doi.org/10.1145/2858036.2858190Google Scholar
Buford, C. C., & O’Leary, B. J. (2015). Assessment of fluid intelligence utilizing a computer simulated game. International Journal of Gaming and Computer-Mediated Simulations, 7, 117. http://dx.doi.org/10.4018/IJGCMS.2015100101Google Scholar
Colom, R., Quiroga, M. A., Solana, A. B., Burgaleta, M., Román, F. J., Privado, J., et al. (2012). Structural changes after videogame practice related to a brain network associated with intelligence. Intelligence, 40, 479489.Google Scholar
Colom, R., & Román, F. J. (2018). Enhancing intelligence. From the group to the individual. Journal of Intelligence, 6(1), 11. https://doi.org/10.3390/jintelligence6010011Google Scholar
Dobrowolsky, P., Hanusz, K., Sobczyk, B., Skorko, M., & Wiatrow, A. (2015). Cognitive enhancement in video game players: The role of video game genre. Computers in Human Behavior, 44, 5963. http://dx.doi.org/10.1016/j.chb.2014.11.051Google Scholar
Drummond, A., & Sauer, J. D. (2014). Video-games do not negatively impact adolescent academic performance in science, mathematics or reading. PLoS One, 9(4), e87943.Google Scholar
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Manual for kit of Factor-Referenced Cognitive Tests. Princeton: Educational Testing Service.Google Scholar
Eysenck, H. J. (1993). Meta-analysis and its problems. British Medical Journal, 309, 789792.Google Scholar
Foroughi, C. K., Serraino, C., Parasuraman, R., & Boehm-Davis, A. (2016). Can we create a measure of fluid intelligence using Puzzle Creator within Portal 2? Intelligence, 56, 5864. http://dx.doi.org/10.1016/j.intell.2016.02.011Google Scholar
Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real time strategy game training: Emergence of a cognitive flexibility trait. PLoS One, 8(8), e70350. http://dx.doi.org/10.1371/journal.pone.0070350Google Scholar
Gnambs, T., & Appel, M. (2017). Is computer gaming associated with cognitive abilities? A population study among German adolescents. Intelligence, 61, 1928. http://dx.doi.org/10.1016/j.intell.2016.12.004Google Scholar
Gottfredson, L. (1997a). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24(1), 1323.Google Scholar
Gottfredson, L. (1997b). Why g matters: The complexity of everyday life. Intelligence, 24, 79132.Google Scholar
Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534537.Google Scholar
Green, C. S., Kattner, F., Eichenbaum, A., Bediou, B., Adams, D. M., et al. (2017). Playing some video games but no others is related to cognitive abilities: A critique of Unsworth et al. (2015). Psychological Science, 28(5), 679682. http://dx.doi.org/10.1177/09566797616644837Google Scholar
Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20, 15731579. http://dx.doi.org/10.1016/j.cub.2010.07.040Google Scholar
Heim, A. W. (1968). AH4 Test. Windsor, UK: Nfer-Nelson.Google Scholar
Hunt, E. B. (2011). Where are we? Where are we going?: Reflections on the current and future state of research on intelligence. In Sternberg, R. J. & Kauffman, S. B. (Eds.), Cambridge handbook of intelligence (pp. 864885). New York: Cambridge University Press.Google Scholar
Hunt, E., Pellegrino, J. W., Frick, R. W., Farr, S. A., & Alderton, D. (1988). The ability to reason about movement in the visual field. Intelligence, 12, 77100.Google Scholar
Jensen, A. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.Google Scholar
Jones, M. B., Dunlap, W. P., & Bilodeau, I. M. (1986). Comparison of video game and conventional test performance. Simulation and Games, 17(4), 435446.Google Scholar
Kirkegaard, E. O. W. (2018). Is national mental sport ability a sign of intelligence? An analysis of the top players of 12 mental sports. https://psyarxiv.com/9qnwyGoogle Scholar
Kokkinakis, A. V., Cowling, P. I., Drachen, A., & Wade, A. R. (2017). Exploring the relationship between video game expertise and fluid intelligence. PLoS One, 12(11), e0186621. https://doi.org/10.1371/journal.pone.0186621Google Scholar
Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry, 27, 151177. https://doi.org/10.1080/1047840X.2016.1153946Google Scholar
Kranz, M. B., Baniqued, P. L., Voss, M. W., Lee, H., & Kramer, A. F. (2017). Examining the roles of reasoning and working memory in predicting casual game performance across extended gameplay. Frontiers in Psychology, 8 (203), 113. http://dx.doi.org/10.3389/fpsyg.2017.00203Google Scholar
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2013). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a comercial video game. Molecular Psychiatry. https://doi.org/10.1038/mp.2013.120Google Scholar
Kühn, S., Lorenz, R., Banaschewski, T., Barker, G. J., Büchel, C., Conrod, P. J., et al. (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS One, 9(3), e91506.Google Scholar
Lim, J., & Furnham, A. (2018). Can commercial games function as intelligence tests? A pilot study. Computer Games Journal, 7(1), 2737. https://doi.org/10.1007/s40869-018–0053-zGoogle Scholar
Macnamara, B., Hambrick, D., & Oswald, F. (2014). Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychological Science, 25(8), 16081618. http://dx.doi.org/10.1177/0956797614535810Google Scholar
Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Alvarez-Linera, J., Román, F. J., et al. (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34, 31433157. http://dx.doi.org/10.1002/hbm.22129Google Scholar
Martinovic, D., Ezeife, C. I., Whent, R., Reed, J., Burgess, G. H., Pomerleau, C. M., et al. (2014). “Critic-proofing” of the cognitive aspects of simple games. Computers and Education, 72, 132144. http://dx.doi.org/10.1016/j.compedu.2013.10.017Google Scholar
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 110. http://dx.doi.org/10.1016/j.intell.2008.08.004Google Scholar
McPherson, J., & Burns, N. R. (2007). Gs invaders: Assessing a computer game-like test of processing speed. Behavior Research Methods, 39, 876883. http://dx.doi.org/10.3758/BF03192982Google Scholar
McPherson, J., & Burns, N. R. (2008). Assessing the validity of computer-game-like tests of processing speed and working memory. Behavior Research Methods, 40, 969981. http://dx.doi.org/10.3758/BRM.40.4.969Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.Google Scholar
Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11(248), 140. http://dx.doi.org/10.3389/fnhum.2017.00248Google Scholar
Parong, J., Mayer, R. E., Fiorella, L., MacNamara, A., Homer, B. D., & Plass, J. L. (2017). Learning executive function skills by playing focused video games. Contemporary Educational Psychology, 51, 141151. http://dx.doi.org/10.1016/j.cedpsych.2017.07.002Google Scholar
Posso, A. (2016). Internet usage and educational outcomes among 15-year-old Australian students. International Journal of Communication, 10, 38513876.Google Scholar
Primi, R. (2014). Developing a fluid intelligence scale through a combination of Rasch modeling and cognitive psychology. Psychological Assessment, 26(3), 774788. http://dx.doi.org/10.1037/a0036712Google Scholar
Quiroga, M. A., Aranda, A., Román, F. J., Privado, J., & Colom, R. (2019). Intelligence can be measured with video games other than “brain-games.” Intelligence, 75, 8594.Google Scholar
Quiroga, M. A., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J. et al. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 17. http://dx.doi.org/10.1016/j.intell.2015.08.004Google Scholar
Quiroga, M. A., Herranz, M., Gómez-Abad, M., Kebir, M., Ruiz, J., & Colom, R. (2009). Video-games: Do they require general intelligence? Computers and Education, 53, 414418. http://dx.doi.org/10.1016/j.compedu.2009.02.017Google Scholar
Quiroga, M. A., Román, F. J., Catalán, A., Rodríguez, H., Ruiz, J., Herranz, M., et al. (2011). Videogame performance (not always) requires intelligence. International Journal of Online Pedagogy and Course Design, 1, 1832. http://dx.doi.org/10.4018/ijopcd.2011070102Google Scholar
Quiroga, M. A., Román, F. J., De la Fuente, J., Privado, J., & Colom, R. (2016). The measurement of intelligence in the XXI century using video games. Spanish Journal of Psychology, 19, 113.Google Scholar
Rabbitt, P., Banerji, N., & Szymanski, A. (1989). Space Fortress as an IQ test? Predictions of learning and of practiced performance in a complex interactive video game. Acta Psychologica, 71, 243257.Google Scholar
Sajjadi, P., Vlieghe, J., & De Troyer, O. (2017). Exploring the relation between the theory of multiple intelligences and games for the purpose of player-centered game design. Electronic Journal of e-Learning, 15(4), 320334. www.ejel.org/main.homeGoogle Scholar
Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 111139. http://dx.doi.org/10.1037/bul0000139Google Scholar
Sedig, K., Haworth, R., & Corridore, M. (2015). Investigating variations in gameplay: Cognitive implications. International Journal of Computer Games Technology, Article ID 208247. http://dx.doi.org/10.1155/2015/208247Google Scholar
Shute, V. J., Ventura, M., & Ke, F. (2015). The power of play: The effects of Portal 2 and Lumosity on cognitive and noncognitive skills. Computers and Education, 80, 5867. http://dx.doi.org/10.1016/j.compedu.2014.08.013Google Scholar
Spearman, C. (1904). “General intelligence,” objectively determined and measured. American Journal of Psychology, 15(2), 201292.Google Scholar
Torre-Tresols, J. J. (2017). Clasificación de géneros de videojuegos [Classification of video games genres]. Laboratory of Intelligence (Faculty of Psychology), Universidad Complutense de Madrid: Laboratorio de Inteligencia y videojuegos. www.quirogas.netGoogle Scholar
Unsworth, N., Redick, T. S., McMillan, B. D., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2015). Is playing video games related to cognitive abilities? Psychological Science, 26, 759774. http://dx.doi.org/10.1177/0956797615570367Google Scholar
Ventura, M., Shute, V. J., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 852. http://dx.doi.org/10.3389/fpsyg.2013.00852Google Scholar
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., et al. (2017). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23, 15661574. http://dx.doi.org/10.1038/mp.2017.155Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×