Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T12:50:29.405Z Has data issue: false hasContentIssue false

4 - Brain Development in Infants

Structure and Experience

from Part I - Foundations

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

The development of the brain in humans following birth is one of the most remarkable changes in human growth. The structure, myelination, and connectivity of the brain are relatively primitive at birth. Much of the development of the size, shape, and connectivity occurs after birth and before the end of the second year of life. The brain appears in size and shape similar to the adult brain at 2 years of age. The brain continues to change and develops over the entire life span, although the changes after 2 years appear to be more quantitative and gradual than the changes in the first 2 years. Some of the brain changes are from intrinsic growth factors governed by maturational factors, whereas other brain changes are affected by individual experiences and background setting. The interplay of intrinsic and extrinsic forces shapes the brain through the life span.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 94 - 127
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balas, B., Westerlund, A., Hung, K., & Nelson III, C. A. (2011). Shape, color and the other-race effect in the infant brain. Developmental Science, 14(4), 892900. doi:10.1111/j.1467-7687.2011.01039.xGoogle Scholar
Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344(6182), 424427. doi:10.1126/science.1247003Google Scholar
Barry, R. J., Clarke, A. R., McCarthy, R., Selikowitz, M., Rushby, J. A., & Ploskova, E. (2004). EEG differences in children as a function of resting-state arousal level. Clinical Neurophysiology, 115, 402408.CrossRefGoogle ScholarPubMed
Bhatt, R., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169181.Google Scholar
Bick, J., & Nelson, C. A. (2017). Early experience and brain development. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1387. doi:10.1002/wcs.1387Google Scholar
Bick, J., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2018). Memory and executive functioning in 12-year-old children with a history of institutional rearing. Child Development, 89(2), 495508. doi:10.1111/cdev.12952CrossRefGoogle ScholarPubMed
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatric Supplement, 422, 2733.Google Scholar
Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13(7), 28012820. doi:10.1523/JNEUROSCI.13-07-02801.1993CrossRefGoogle ScholarPubMed
Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebal Cortex, 21(1), 191199. doi:10.1093/cercor/bhq078CrossRefGoogle ScholarPubMed
Cashon, C. H., & Holt, N. A. (2015). Developmental origins of the face inversion effect. In Janette, B. B. (Ed.), Advances in child development and behaviour (Vol. 48, pp. 117150). Philadelphia, PA: Elsevier.Google Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. -A., & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(2), 291307. doi:10.1093/brain/123.2.291Google Scholar
Conel, J. L. (1939–67). Postnatal development of the human cerebral cortex (Vols. 1–8). Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1951). The postnatal development of the human cerebral cortex. Vol. 6: The cortex of the six-month infant. Cambridge, MA: Harvard University Press.Google Scholar
Conel, J. L. (1967). The postnatal development of the human cerebral cortex. Vol. 8: The cortex of the six-year-old child. Cambridge, MA: Harvard University Press.Google Scholar
Conte, S., & Richards, J. E. (2019). The development of face-sensitive cortical processing in early Infancy. Paper presented at the Society for Research in Child Development, Baltimore, MD.Google Scholar
Conte, S., Richards, J. E., Guy, M. W., Zieber, N., Xie, W., & Roberts, J.E. (2020). Face-sensitive brain responses in the first year of life. NeuroImage, 211, 116602. https://doi.org/10.1016/j.neuroimage.2020.116602CrossRefGoogle Scholar
de Haan, M., Pascalis, O., & Johnson, M. H. (2002). Specialization of neural mechanisms underlying face recognition in human infants. Journal of Cognitive Neuroscience, 14(2), 199209. doi:10.1162/089892902317236849Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Travers, B. G., Adluru, N., Alexander, A. L., & Deoni, S. C. L. (2016). Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage, 132, 225237. doi:10.1016/j.neuroimage.2016.02.040CrossRefGoogle ScholarPubMed
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., Walker, L., … Deoni, S. C. L. (2014). Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage, 84, 742752. doi:10.1016/j.neuroimage.2013.09.058Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., Walker, L., (2015). Estimating the age of healthy infants from quantitative myelin water fraction maps. Human Brain Mapping, 36(4), 12331244. doi:10.1002/hbm.22671Google Scholar
Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Walker, L., Doernberg, E., … Deoni, S. C. L. (2015). Characterizing longitudinal white matter development during early childhood. Brain Structure & Function, 220(4), 19211933. doi:10.1007/s00429-014-0763-3CrossRefGoogle ScholarPubMed
Dehaene, S., Le Clec’H, G., Poline, J.-B., Le Bihan, D., & Cohen, L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3), 321325.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Supplemental Info. Science, 330(6009), 13591364. doi:10.1126/science.1194140Google Scholar
Deoni, S. C. L., Dean, D. C., III, O’Muircheartaigh, J., Dirks, H., & Jerskey, B. A. (2012). Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage, 63(3), 10381053. doi:10.1016/j.neuroimage.2012.07.037CrossRefGoogle ScholarPubMed
Deoni, S. C. L., Dean, D. C., III, Remer, J., Dirks, H., & O’Muircheartaigh, J. (2015). Cortical maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 147161. doi:10.1016/j.neuroimage.2015.04.058Google Scholar
Deoni, S. C. L., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., … Murphy, D. G. M. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31(2), 784791. doi:10.1523/JNEUROSCI.2106–10.2011CrossRefGoogle ScholarPubMed
Deoni, S. C. L., Peters, T. M., & Rutt, B. K. (2005). High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magnetic Resonance in Medicine, 53(1), 237241. doi:10.1002/mrm.20314Google Scholar
Deoni, S. C. L., Rutt, B. K., Arun, T., Pierpaoli, C., & Jones, D. K. (2008). Gleaning multicomponent T1 and T2 information from steady-state imaging data. Magnetic Resonance in Medicine, 60(6), 13721387. doi:10.1002/mrm.21704Google Scholar
Deoni, S. C. L., Rutt, B. K., & Peters, T. M. (2003). Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magnetic Resonance in Medicine, 49(3), 515526. doi:10.1002/mrm.10407Google Scholar
Deoni, S. C. L., Rutt, B. K., (2006). Synthetic T1-weighted brain image generation with incorporated coil intensity correction using DESPOT1. Magnetic Resonance Imaging, 24(9), 12411248. doi:10.1016/j.mri.2006.03.015CrossRefGoogle ScholarPubMed
DeSilva, J. M., & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55(6), 10641074. https://doi.org/10.1016/j.jhevol.2008.07.008Google Scholar
Eimer, M., Gosling, A., Nicholas, S., & Kiss, M. (2011). The N170 component and its links to configural face processing: A rapid neural adaptation study. Brain Research, 1376, 7687. doi:10.1016/j.brainres.2010.12.046CrossRefGoogle ScholarPubMed
Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 2840. doi:10.1111/j.1467-8624.2009.01380.xGoogle Scholar
Gao, C., Conte, S., Richards, J.E., Xie, W., & Hanayik, T. (2019). The neural sources of N170: Understanding timing of activation in face-selective areas. Psychophysiology, 56(6), e1336.Google Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539559.CrossRefGoogle ScholarPubMed
Guy, M. W., Richards, J. E., Tonnsen, B. L., & Roberts, J. E. (2017). Neural correlates of face processing in etiologically-distinct 12-month-old infants at high risk of autism spectrum disorder. Developmental Cognitive Neuroscience, 29, 6171. doi:10.1016/j.dcn.2017.03.002Google Scholar
Guy, M. W., Zieber, N., & Richards, J. E. (2016). The cortical development of specialized face processing in infancy. Child Development, 87(5), 15811600. doi:10.1111/cdev.12543Google Scholar
Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 6573. https://doi.org/10.1016/j.tics.2008.11.003Google Scholar
Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9), 822829. doi:10.1001/jamapediatrics.2015.1475CrossRefGoogle ScholarPubMed
Halit, H., de Haan, M., & Johnson, M. H. (2003). Cortical specialisation for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage, 19(3), 11801193. doi:10.1016/S1053-8119(03)00076-4Google Scholar
Hanson, J. L., Chandra, A., Wolfe, B. L., & Pollak, S. D. (2011). Association between income and the hippocampus. PLoS One, 6(5), e18712. doi:10.1371/journal.pone.0018712Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Rudolph, K. D., Shirtcliff, E. A., Gee, J. C., … Pollak, S. D. (2012). Structural variations in prefrontal cortex mediate the relationship between early childhood stress and spatial working memory. Journal of Neuroscience, 32(23), 79177925. doi:10.1523/JNEUROSCI.0307-12.2012Google Scholar
Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D. (2013). Family poverty affects the rate of human infant brain growth. PLoS One, 8(12), e80954. doi:10.1371/journal.pone.0080954CrossRefGoogle ScholarPubMed
Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97(2), 8598. doi:10.1016/j.jecp.2007.01.004CrossRefGoogle ScholarPubMed
Hoehl, S., & Peykarjou, S. (2012). The early development of face processing: What makes faces special? Neuroscience Bulletin, 28(6), 765788. doi:10.1007/s12264-012-1280-0CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517527.Google Scholar
Huttenlocher, P. R. (1994). Synaptogenesis, synapse elimination, and neural plasticity in human cerebral cortex. In Nelson, C. A. (Ed.), Threats to optimal development, the Minnesota symposia on child psychology (Vol. 27, pp. 3554). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167178. doi:10.1002/(SICI)1096–9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-ZGoogle Scholar
Jensen, S. K. G., Berens, A. E., & Nelson, C. A., III (2017). Effects of poverty on interacting biological systems underlying child development. Lancet Child & Adolescent Health, 1(3), 225239. doi:10.1016/S2352-4642(17)30024-XGoogle Scholar
Johnson, M. H., Griffin, R., Csibra, G., Halit, H., Farroni, T., de Haan, M., … Richards, J. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17(3), 599619. doi:10.1017/S0954579405050297Google Scholar
Johnson, M. H., & Morton, J. (1991). Biology and cognitive development: The case of face recognition. Oxford: Basil Blackwell.Google Scholar
Johnson, M. H., Senju, A., & Tomalski, P. (2014). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience Biobehaviour Review. doi:10.1016/j.neubiorev.2014.10.009Google Scholar
Johnson, S. B., Riis, J. L., & Noble, K. G. (2016). State of the art review: Poverty and the developing brain. Pediatrics, 137(4). doi:10.1542/peds.2015–3075Google Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.CrossRefGoogle ScholarPubMed
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128. doi:10.1098/rstb.2006.1934Google Scholar
Klingberg, T. (2008). White matter maturation and cognitive development during childhood. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 237244). Cambridge, MA: MIT Press.Google Scholar
Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Science, 14(7), 317324. doi:10.1016/j.tics.2010.05.002CrossRefGoogle ScholarPubMed
Kolb, B., & Fantie, B. (1989). Development of the child's brain and behavior. In Reynolds, C. R. & Fletcher-Janzen, E. (Eds.), Handbook of clinical child neuropsychology (pp. 1739). New York, NY: Plenum Press.Google Scholar
Kral, A. (2007). Unimodal and cross-modal plasticity in the “deaf” auditory cortex. International Journal of Audiology, 46(9), 479493.Google Scholar
Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. Neuroimage, 182, 207218. https://doi.org/10.1016/j.neuroimage.2017.12.097CrossRefGoogle ScholarPubMed
Leijser, L. M., Siddiqi, A., & Miller, S. P. (2018). Imaging evidence of the effect of socio-economic status on brain structure and development. Seminars in Pediatric Neurology, 27, 2634. doi: https://doi.org/10.1016/j.spen.2018.03.004Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Bapp, C., … Barch, D. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167(12), 11351142. doi:10.1001/jamapediatrics.2013.3139Google Scholar
Lyall, A. E., Savadjiev, P., Shenton, M. E., & Kubicki, M. (2016). Insights into the brain: Neuroimaging of brain development and maturation. Journal of Neuroimaging in Psychiatry & Neurology, 1(1), 1019. doi:10.17756/jnpn.2016-003Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 11991208.CrossRefGoogle ScholarPubMed
Marshall, P. J., Fox, N. A., & CoreGroup, T. B. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16(8), 13271338. doi:10.1162/0898929042304723Google Scholar
Marshall, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A., III, & Zeanah, C. H. (2008). Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Development and Psychopathology, 20(3), 861880. doi:10.1017/S0954579408000412Google Scholar
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(5), 6.CrossRefGoogle ScholarPubMed
McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186(1), 190222. doi:10.1111/j.1749-6632.2009.05331.xGoogle Scholar
McLaughlin, K. A., Sheridan, M. A., & Nelson, C. A. (2017). Neglect as a violation of species-expectant experience: Neurodevelopmental consequences. Biological Psychiatry, 82(7), 462471. doi:10.1016/j.biopsych.2017.02.1096Google Scholar
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 63, 17431753.Google Scholar
Moulson, M. C., Westerlund, A., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). The effects of early experience on face recognition: An event-related potential study of institutionalized children in Romania. Child Development, 80(4), 10391056.Google Scholar
Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 12271233. doi:10.1162/0898929041920441Google Scholar
O’Hare, E. D., & Sowell, E. R. (2008). Imaging developmental changes in gray and white matter in the human brain. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 2338). Cambridge, MA: MIT Press.Google Scholar
O’Muircheartaigh, J., Dean, D. C., III, Ginestet, C. E., Walker, L., Waskiewicz, N., Lehman, K., … Deoni, S. C. L. (2014). White matter development and early cognition in babies and toddlers. Human Brain Mapping, 35(9), 44754487. doi:10.1002/hbm.22488Google Scholar
Parker, S. W., Nelson, C. A., & Group, T. B. E. I. P. C. (2005a). An event-related potential study of the impact of institutional rearing on face recognition. Development and Psychopathology, 17, 621639.Google Scholar
Parker, S. W., Nelson, C. A., (2005b). The impact of early institutional rearing on the ability to discriminate facial expressions of emotion: An event-related potential study. Child Development, 76(1), 5472. doi:10.1111/j.1467-8624.2005.00829.xGoogle Scholar
Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: Is there a role in poverty and education outcome research? Pediatric Neurology, 52(4), 383388. https://doi.org/10.1016/j.pediatrneurol.2014.11.005Google Scholar
Pollak, S. D., Nelson, C. A., Schlaak, M. F., Roeber, B. J., Wewerka, S. S., Wiik, K. L., … Gunnar, M. R. (2010). Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Development, 81(1), 224236. doi:10.1111/j.1467-8624.2009.01391.xGoogle Scholar
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66(3), 339343. doi:https://doi.org/10.1212/01.wnl.0000201049.66073.8dCrossRefGoogle ScholarPubMed
Reinholz, J., & Pollmann, S. (2005). Differential activation of object-selective visual areas by passive viewing of pictures and words. Brain Research: Cognitive Brain Research, 24(3), 702714. doi:10.1016/j.cogbrainres.2005.04.009Google ScholarPubMed
Remer, J., Croteau-Chonka, E., Dean, D. C., III, D’Arpino, S., Dirks, H., Whiley, D., & Deoni, S. C. L. (2017). Quantifying cortical development in typically developing toddlers and young children, 1–6 years of age. Neuroimage, 153, 246261. https://doi.org/10.1016/j.neuroimage.2017.04.010Google Scholar
Richards, J. E., Guy, M., Zieber, N., Xie, W., & Roberts, J. E. (2016). Brain changes in response to faces in the first year. Poster presented at the International Conference on Infant Studies, New Orleans, LA.Google Scholar
Richards, J. E., Guy, M., Zieber, N., Xie, W., (2017). Brain changes in response to faces in the first year. Paper presented at the Society for Research in Child Development, Austin, TX.Google Scholar
Richards, J. E., Sanchez, C., Phillips-Meek, M., & Xie, W. (2016). A database of age-appropriate average MRI templates. Neuroimage, 124(Pt. B), 12541259. doi:10.1016/j.neuroimage.2015.04.055Google Scholar
Richards, J. E., & Xie, W. (2015). Brains for all the ages: Structural neurodevelopment in infants and children from a life-span perspective. In Benson, J. (Ed.), Advances in Child Development and Behaviour (Vol. 48, pp. 152). Philadelphia, PA: Elsevier.Google Scholar
Rosenberg, K., & Trevathan, W. (2002). Birth, obstetrics and human evolution. BJOG: An International Journal of Obstetrics and Gynaecology, 109(11), 11991206. https://doi.org/10.1016/S1470-0328(02)00410-XGoogle Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20(6), 676680. doi:10.1111/j.1467-9280.2009.02348.xGoogle Scholar
Scott, L. S., (2010). Experience-dependent neural specialization during infancy. Neuropsychologia, 48(6), 18571861. doi:10.1016/j.neuropsychologia.2010.02.008Google Scholar
Scott, L. S., & Nelson, C. A. (2006). Featural and configural face processing in adults and infants: A behavioral and electrophysiological investigation. Perception, 35(8), 11071128. doi:10.1068/p5493CrossRefGoogle ScholarPubMed
Shankle, W. R., Romney, A. K., Landing, B. H., & Hara, J. (1998). Developmental patterns in the cytoarchitecture of the human cerebral cortex from birth to 6 years examined by correspondence analysis. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 40234028.Google Scholar
Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences of the United States of America, 109(32), 1292712932. doi:10.1073/pnas.1200041109Google Scholar
Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. doi:10.3389/fpsyg.2015.00969Google Scholar
Simion, F., Leo, I., Turati, C., Valenza, E., & Dalla Barba, B. (2007). How face specialization emerges in the first months of life. Progressive Brain Research, 164, 169185. doi:10.1016/S0079-6123(07)64009-6Google Scholar
Smyke, A. T., Zeanah, C. H., Fox, N. A., Nelson, C. A., & Guthrie, D. (2010). Placement in foster care enhances quality of attachment among young institutionalized children. Child Development, 81(1), 212223. doi:10.1111/j.1467-8624.2009.01390.xGoogle Scholar
Sowell, E. R., Thompson, P. M., & Toga, A. W. (2004). Mapping changes in the human cortex throughout the span of life. Neuroscientist, 10(4), 372392. doi:10.1177/1073858404263960Google Scholar
Spader, H. S., Ellermeier, A., O’Muircheartaigh, J., Dean, D. C., III, Dirks, H., Boxerman, J. L., … Deoni, S. C. L. (2013). Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurgical Focus, 34(4), e9. doi:10.3171/2013.1.FOCUS12426Google Scholar
Stiles, J. (2017). Principles of brain development. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2). doi:10.1002/wcs.1402Google Scholar
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327348. doi:10.1007/s11065-010-9148-4Google Scholar
Symms, M., Jager, H. R., Schmierer, K., & Yousry, T. A. (2004). A review of structural magnetic resonance neuroimaging. Journal of Neurology, Neurosurgery, and Psychiatry, 75(9), 12351244. doi:10.1136/jnnp.2003.032714Google Scholar
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148159. doi:10.1016/j.tins.2006.01.007Google Scholar
Uda, S., Matsui, M., Tanaka, C., Uematsu, A., Miura, K., Kawana, I., & Noguchi, K. (2015). Normal development of human brain white matter from infancy to early adulthood: A diffusion tensor imaging study. Journal of Developmental Neuroscience, 37(2), 182194. doi:10.1159/000373885Google Scholar
Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(Pt. 4), 471491.Google Scholar
Vanderwert, R. E., Marshall, P. J., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2010). Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS One, 5(7), e11415. doi:10.1371/journal.pone.0011415CrossRefGoogle ScholarPubMed
Vanderwert, R. E., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2016). Normalization of EEG activity among previously institutionalized children placed into foster care: A 12-year follow-up of the Bucharest Early Intervention Project. Developmental Cognitive Neuroscience, 17, 6875. https://doi.org/10.1016/j.dcn.2015.12.004Google Scholar
Vogel, M., Monesson, A., & Scott, L. S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372. doi:10.1111/j.1467-7687.2012.01138.xGoogle Scholar
Xie, W., & Richards, J. E. (2016). Effects of interstimulus intervals on behavioral, heart rate, and event-related potential indices of infant engagement and sustained attention. Psychophysiology, 53(8), 11281142. doi:10.1111/psyp.12670Google Scholar
Zeanah, C. H., Nelson, C. A., Fox, N. A., Smyke, A. T., Marshall, P., Parker, S. W., & Koga, S. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15(4), 885907.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×