Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T19:05:10.774Z Has data issue: false hasContentIssue false

Part IV - Action

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 467 - 576
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adolph, K. E. (1997). Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development, 62(3, Serial No. 251), 1140.CrossRefGoogle ScholarPubMed
Adolph, K. E. (2000). Specificity of learning: Why infants fall over a veritable cliff. Psychological Science, 11, 290295.Google Scholar
Adolph, K. E., & Avolio, A. M. (2000). Walking infants adapt locomotion to changing body dimensions. Journal of Experimental Psychology: Human Perception and Performance, 26, 11481166.Google ScholarPubMed
Adolph, K. E., & Berger, S. E. (2006). Motor development. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology. Vol. 2: Cognition, perception, and language (6th ed., pp. 161213). New York, NY: Wiley.Google Scholar
Adolph, K. E., (2015). Physical and motor development. In Bornstein, M. H. & Lamb, M. E. (Eds.), Development science: An advanced textbook (7th ed., pp. 261333). New York, NY: Psychology Press.Google Scholar
Adolph, K. E., Berger, S. E., & Leo, A. J. (2011). Developmental continuity? Crawling, cruising, and walking. Developmental Science, 14, 306318.Google Scholar
Adolph, K. E., Cole, W. G., Komati, M., Garciaguirre, J. S., Badaly, D., Lingeman, J. M., … Sotsky, R. B. (2012). How do you learn to walk? Thousands of steps and dozens of falls per day. Psychological Science, 23, 13871394.Google Scholar
Adolph, K. E., Cole, W. G., & Vereijken, B. (2015). Intraindividual variability in the development of motor skills in childhood. In Diehl, M., Hooker, K., & Sliwinski, M. (Eds.), Handbook of intraindividual variability across the lifespan (pp. 5983). New York, NY: Routledge.Google Scholar
Adolph, K. E., & Franchak, J. M. (2016). The development of motor behavior. Wiley Interdisciplinary Reviews: Cognitive Science (WIREs), 8(1–2).Google Scholar
Adolph, K. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70, 141164.Google Scholar
Adolph, K. E., Hoch, J. E., & Cole, W. G. (2018). Development (of walking): 15 suggestions. Trends in Cognitive Sciences, 22(699711).CrossRefGoogle ScholarPubMed
Adolph, K. E., Karasik, L. B., & Tamis-LeMonda, C. S. (2010a). Motor skills. In Bornstein, M. H. (Ed.), Handbook of cultural development science. Vol. 1. Domains of development across cultures (pp. 6188). New York, NY: Taylor & Francis.Google Scholar
Adolph, K. E., Karasik, L. B., (2010b). Using social information to guide action: Infants’ locomotion over slippery slopes. Neural Networks, 23, 10331042.Google Scholar
Adolph, K. E., & Robinson, S. R. (2013). The road to walking: What learning to walk tells us about development. In Zelazo, P. (Ed.), Oxford handbook of developmental psychology (pp. 403443). New York, NY: Oxford University Press.Google Scholar
Adolph, K. E., (2015). Motor development. In Liben, L. & Muller, U. (Eds.), Handbook of child psychology and developmental science. Vol. 2: Cognitive processes (7th ed., pp. 113157). New York, NY: Wiley.Google Scholar
Adolph, K. E., Vereijken, B., & Denny, M. A. (1998). Learning to crawl. Child Development, 69, 12991312.Google Scholar
Adolph, K. E., Vereijken, B., & Shrout, P. E. (2003). What changes in infant walking and why. Child Development, 74, 474497.CrossRefGoogle ScholarPubMed
Assaiante, C., & Amblard, B. (1995). An ontogenetic model for the sensorimotor organization of balance control in humans. Human Movement Science, 14, 1343.Google Scholar
Atun-Einy, O., Berger, S. E., & Scher, A. (2012). Pulling to stand: Common trajectories and individual differences. Developmental Psychobiology, 54, 187198.CrossRefGoogle ScholarPubMed
Atun-Einy, O., Berger, S. E., (2013). Assessing motivation to move and its relationship to motor development in infancy. Infant Behavior and Development, 36, 457469.Google Scholar
Atun-Einy, O., Cohen, D., Samuel, M., & Scher, A. (2013). Season of birth, crawling onset, and motor development in 7-month-old infants. Journal of Reproductive and Infant Psychology, 31(4), 342351.Google Scholar
Bailey, D. B., Hebbeler, K., Scarborough, A., Spiker, D., & Mallik, S. (2004). First experiences with early intervention: A national perspective. Pediatrics, 113, 887896.CrossRefGoogle ScholarPubMed
Barrett, T. M., & Needham, A. W. (2008). Developmental differences in infants’ use of an object’s shape to grasp it securely. Developmental Psychobiology, 50(1), 97106.Google Scholar
Bastien, G. J., Willems, P. A., Schepens, B., & Heglund, N. C. (2016). The mechanics of head-supported load carriage by Nepalese porters. Journal of Experimental Biology, 219, 36263634.Google Scholar
Bayley, N. (1936). The development of motor abilities during the first three years: A study of 61 infants tested repeatedly. Monographs of the Society for Research in Child Development, 1, 126.Google Scholar
Bayley, N. (2006). Bayley scales of infant and toddler development: Bayley-III (3rd ed. Vol. 7). San Antonio, TX: Harcourt Assessment, Psychological Corporation.Google Scholar
Benson, J. B. (1993). Season of birth and onset of locomotion: Theoretical and methodological implications. Infant Behavior and Development, 16, 6981.CrossRefGoogle Scholar
Berger, S. E., Adolph, K. E., & Lobo, S. A. (2005). Out of the toolbox: Toddlers differentiate wobbly and wooden handrails. Child Development, 76, 12941307.Google Scholar
Berger, S. E., Chan, G., & Adolph, K. E. (2014). What cruising infants understand about support for locomotion. Infancy, 19, 117137.CrossRefGoogle ScholarPubMed
Bernstein, N. A. (1996). On dexterity and its development. In Latash, M. L. & Turvey, M. T. (Eds.), Dexterity and its development (pp. 3244). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Bertenthal, B. I., & Bai, D. L. (1989). Infants’ sensitivity to optical flow for controlling posture. Developmental Psychology, 25, 936945.Google Scholar
Berthier, N. E., & Keen, R. E. (2006). Development of reaching in infancy. Experimental Brain Research, 169, 507518.CrossRefGoogle ScholarPubMed
Bhat, A. N., & Galloway, J. C. (2006). Toy-oriented changes during early arm movements: Hand kinematics. Infant Behavior and Development, 29, 358372.Google Scholar
Bisi, M. C., & Stagni, R. (2015). Evaluation of toddler different strategies during the first six-months of independent walking: A longitudinal study. Gait and Posture, 41, 574579.Google Scholar
Bobath, K., & Bobath, B. (1984). The neuro-developmental treatment. In Scrutton, D. (Ed.), Management of the motor disorders of children with cerebral palsy (pp. 618). London: Spastics International Medical Publications.Google Scholar
Bourgeois, K. S., Khawar, A. W., Neal, S. A., & Lockman, J. J. (2005). Infant manual exploration of objects, surfaces, and their interrelations. Infancy, 8, 233252.Google Scholar
Bril, B., & Sabatier, C. (1986). The cultural context of motor development: Postural manipulations in the daily life of Bambara babies (Mali). International Journal of Behavioral Development, 9, 439453.CrossRefGoogle Scholar
Chang, C. L., Kubo, M., Buzzi, U., & Ulrich, B. (2006). Early changes in muscle activation patterns of toddlers during walking. Infant Behavior and Development, 29, 175188.Google Scholar
Chinn, L. K., Noonan, C. F., Hoffman, M., & Lockman, J. J. (2019). Development of infant reaching strategies to tactile targets on the face. Frontiers in Psychology, 10, 9.Google Scholar
Clifton, R. K., Muir, D. W., Ashmead, D. H., & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64, 10991110.Google Scholar
Cole, W. G., Lingeman, J. M., & Adolph, K. E. (2012). Go naked: Diapers affect infant walking. Developmental Science, 15, 783790.Google Scholar
Connolly, K. J., & Dalgleish, M. (1989). The emergence of a tool-using skill in infancy. Developmental Psychology, 25, 894912.Google Scholar
Cunha, A. B., Lobo, M. A., Kokkoni, E., Galloway, J. C., & Tudella, E. (2015). Effect of short-term training on reaching behavior in infants: A randomized controlled clinical trial. Journal of Motor Behavior, 48, 132142.Google Scholar
Davis, B. E., Moon, R. Y., Sachs, H. C., & Ottolini, M. C. (1998). Effects of sleep position on infant motor development. Pediatrics, 102, 11351140.Google Scholar
de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1982). The emergence of fetal behaviour. I: Qualitative aspects. Early Human Development, 7, 301322.Google Scholar
Devine, J. (1985). The versatility of human locomotion. American Anthropologist, 87, 550570.Google Scholar
Dudek-Shriber, L., & Zelazy, S. (2007). The effects of prone positioning on the quality and acquisition of developmental milestones in four-month-old infants. Pediatric Physical Therapy, 19, 4855.Google Scholar
Fagard, J. (2000). Linked proximal and distal changes in the reaching behavior of 5- to 12-month-old human infants grasping objects of different sizes. Infant Behavior and Development, 23, 317329.Google Scholar
Fang, H. S. Y., & Yu, F. Y. K. (1960). Foot binding in Chinese women. Canadian Journal of Surgery, 293, 195202.Google Scholar
Fetters, L. (2010). Perspective on variability in the development of human action. Physical Therapy, 90, 18601867.Google Scholar
Fontenelle, S. A., Kahrs, B. A., Neal, S. A., Newton, A. T., & Lockman, J. J. (2007). Infant manual exploration of composite substrates. Journal of Experimental Child Psychology, 98, 153167.Google Scholar
Geber, M. (1961). Longitudinal study and psycho-motor development among Baganda children. In Nielson, G. (Ed.), Proceedings of the XIV International Congress of Applied Psychology (Vol. 3, pp. 5060). Oxford: Munksgaard.Google Scholar
Gesell, A. (1929). Infancy and human growth. New York, NY: Macmillan.Google Scholar
Gesell, A. (1946). The ontogenesis of infant behavior. In Carmichael, L. (Ed.), Manual of child psychology (pp. 295331). New York, NY: John Wiley.Google Scholar
Gesell, A., & Armatruda, C. S. (1945). The embryology of behavior: The beginnings of the human mind. New York, NY: Harper & Brothers.Google Scholar
Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39, 141.Google Scholar
Gibson, E. J., & Schmuckler, M. A. (1989). Going somewhere: An ecological and experimental approach to development of mobility. Ecological Psychology, 1, 325.Google Scholar
Gill, S. V., Adolph, K. E., & Vereijken, B. (2009). Change in action: How infants learn to walk down slopes. Developmental Science, 12, 888902.Google Scholar
Hallemans, A., de Clercq, D., Otten, B., & Aerts, P. (2005). 3D joint dynamics of walking in toddlers: A cross-sectional study spanning the first rapid development phase of walking. Gait and Posture, 22, 107118.Google Scholar
Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley.Google Scholar
Hebbeler, K., Spiker, D., Bailey, D. B., Scarborough, A., Mallik, S., Simeonsson, R., … Nelson, L. (2007). Early intervention for infants and toddlers with disabilities and their families: participants, services, and outcomes: Final report of the National Early Intervention Longitudinal Study (NEILS). Retrieved from www.sri.com/publication/national-early-intervention-longitudinal-study-neils-final-report.Google Scholar
Hedberg, A., Carlberg, E. B., Forssberg, H., & Hadders-Algra, M. (2005). Development of postural adjustments in sitting position during the first half year of life. Developmental Medicine and Child Neurology, 47, 312320.Google Scholar
Hewes, G. W. (1955). World distribution of certain postural habits. American Anthropologist, 57, 234244.Google Scholar
Hoch, J. E., O’Grady, S. M., & Adolph, K. E. (2018). It’s the journey, not the destination: Locomotor exploration in infants. Developmental Science, 22(2), e12740.Google Scholar
Hopkins, B., & Westra, T. (1988). Maternal handling and motor development: An intracultural study. Genetic, Social and General Psychology Monographs, 114, 379408.Google ScholarPubMed
Hopkins, B., (1990). Motor development, maternal expectations, and the role of handling. Infant Behavior and Development, 13, 117122.Google Scholar
Huang, H., Ellis, T. D., Wagenaar, R. C., & Fetters, L. (2013). The impact of body-scaled information on reaching. Physical Therapy, 93, 4149.Google Scholar
Ivanenko, Y. P., Dominici, N., Cappellini, G., Dan, B., Cheron, G., & Lacquaniti, F. (2004). Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers. Journal of Experimental Biology, 207, 37973810.CrossRefGoogle ScholarPubMed
Jacquet, A. Y., Esseily, R., Rider, D., & Fagard, J. (2012). Handedness for grasping objects and declarative pointing: A longitudinal study. Developmental Psychobiology, 54, 3646.Google Scholar
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53, 3849.Google Scholar
Karasik, L. B., Adolph, K. E., Tamis-LeMonda, C. S., & Zuckerman, A. (2012). Carry on: Spontaneous object carrying in 13-month-old crawling and walking infants. Developmental Psychology, 48, 389397.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., & Adolph, K. E. (2011). Transition from crawling to walking and infants’ actions with objects and people. Child Development, 82, 11991209.CrossRefGoogle ScholarPubMed
Karasik, L. B., Tamis-LeMonda, C. S., Adolph, K. E., & Bornstein, M. H. (2015). Places and postures: A cross-cultural comparison of sitting in 5-month-olds. Journal of Cross-Cultural Psychology, 46, 10231038.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLoS ONE, 13, e0204428.Google Scholar
Kattwinkel, J., Hauck, F. R., Keenan, M. E., Malloy, M., & Moon, R. Y. (2005). The changing concept of sudden infant death syndrome: Diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk. Pediatrics, 116, 12451255.Google Scholar
Keen, R. (2011). The development of problem solving in young children: A critical cognitive skill. Annual Review of Psychology, 62, 121.Google Scholar
Kokkoni, E., Haworth, J. L., Harbourne, R. T., Stergiou, N., & Kyvelidou, A. (2017). Infant sitting postural control appears robust across changes in surface context. Somatosensory and Motor Research, 34, 265272.Google Scholar
Konczak, J., Borutta, M., Topka, H., & Dichgans, J. (1995). The development of goal-directed reaching in infants: Hand trajectory formation and joint torque control. Experimental Brain Research, 106, 156168.Google Scholar
Konner, M. J. (1972). Aspects of the developmental ethology of a foraging people. In Blurton-Jones, N. (Ed.), Ethological studies of child behavior (pp. 285304). Cambridge, UK: Cambridge University Press.Google Scholar
Kretch, K. S., & Adolph, K. E. (2013a). Cliff or step? Posture-specific learning at the edge of a drop-off. Child Development, 84, 226240.Google Scholar
Kretch, K. S., (2013b). No bridge too high: Infants decide whether to cross based on the probability of falling not the severity of the potential fall. Developmental Science, 16, 336351.Google Scholar
Kretch, K. S., (2015). Active vision in passive locomotion: Real-world free viewing in infants and adults. Developmental Science, 18, 736750.Google Scholar
Lagerspetz, K., Nygard, M., & Strandvik, C. (1971). The effects of training in crawling on the motor and mental development of infants. Scandinavian Journal of Psychology, 12, 192197.Google Scholar
Lampl, M., Veldhuis, J. D., & Johnson, M. L. (1992). Saltation and stasis: A model of human growth. Science, 258, 801803.Google Scholar
Lee, D. K., Cole, W. G., Golenia, L., & Adolph, K. E. (2018). The cost of simplifying complex developmental phenomena: A new perspective on learning to walk. Developmental Science, 21, e12615.Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19, 10581066.Google Scholar
Libertus, K., & Needham, A. W. (2010). Teach to reach: The effects of active vs. passive reaching experiences on action and perception. Vision Research, 50, 27502757.Google Scholar
Liebenberg, L. (2006). Persistence hunting by modern hunter-gatherers. Current Anthropology, 47, 10171025.Google Scholar
Lobo, M. A., & Galloway, J. C. (2012). Enhanced handling and positioning in early infancy advances development throughout the first year. Child Development, 83, 12901302.Google Scholar
Lockman, J. J., Ashmead, D. H., & Bushnell, E. W. (1984). The development of anticipatory hand orientation during infancy. Journal of Experimental Child Psychology, 37, 176186.Google Scholar
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26, 330334.Google Scholar
Logan, S. W., Schreiber, M. A., Lobo, M. A., Pritchard, B., George, L., & Galloway, J. C. (2015). Real-world performance: Physical activity, play, and object-related behaviors of toddlers with and without disabilities. Pediatric Physical Therapy, 27, 433441.Google Scholar
Martorell, R., Onis, M., Martines, J., Black, M., Onyango, A., & Dewey, K. G. (2006). WHO motor development study: Windows of achievement for six gross motor development milestones. Acta Paediatrica, 95 (S450), 8695.Google Scholar
McCarty, M. E., Clifton, R. K., & Collard, R. R. (2001). The beginnings of tool use by infants and toddlers. Infancy, 2, 233256.Google Scholar
McGraw, M. B. (1932). From reflex to muscular control in the assumption of an erect posture and ambulation in the human infant. Child Development, 3, 291297.Google Scholar
McGraw, M. B. (1940). Neuromuscular development of the human infant as exemplified in the achievement of erect locomotion. Journal of Pediatrics, 17, 747771.Google Scholar
McGraw, M. B. (1941a). Development of neuro-muscular mechanisms as reflected in the crawling and creeping behavior of the human infant. Journal of Genetic Psychology, 58, 83111.Google Scholar
McGraw, M. B. (1941b). Neuro-motor maturation of anti-gravity functions as reflected in the development of a sitting posture. Journal of Genetic Psychology, 59, 155175.Google Scholar
McGraw, M. B. (1945). The neuromuscular maturation of the human infant. New York, NY: Columbia University Press.Google Scholar
McGraw, M. B., & Breeze, K. W. (1941). Quantitative studies in the development of erect locomotion. Child Development, 12, 267303.Google Scholar
Mei, J. (1994). The Northern Chinese custom of rearing babies in sandbags: Implications for motor and intellectual development. In van Rossum, J. H. A. & Laszlo, J. I. (Eds.), Motor development: Aspects of normal and delayed development (pp. 4148). Amsterdam, the Netherlands: VU Uitgeverij.Google Scholar
Minetti, A. E., Formenti, F., & Ardigo, L. P. (2006). Himalayan porter’s specialization: Metabolic power, economy, efficiency, and skill. Proceedings of the Royal Society of London B: Biological Sciences, 273, 27912797.Google Scholar
Morgan, C., Darrah, J., Gordon, A. M., Harbourne, R. T., Spittle, A., Johnson, R., & Fetters, L. (2016). Effectiveness of motor interventions in infants with cerebral palsy: A systematic review. Developmental Medicine and Child Neurology, 58, 900909.CrossRefGoogle ScholarPubMed
Mutlu, A., Krosschell, K., & Gaebler-Spira, D. (2009). Treadmill training with partial body-weight support in children with cerebral palsy. Developmental Medicine and Child Neurology, 51, 268275.Google Scholar
Needham, A. W., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky” mittens enhances young infants’ object exploration skills. Infant Behavior and Development, 25, 279295.Google Scholar
Ossmy, O., Hoch, J. E., MacAlpine, P., Hasan, S., Stone, P., & Adolph, K. E. (2018). Variety wins: Soccer-playing robots and infant walking. Frontiers in Neurorobotics, 12, 19.Google Scholar
Patrick, S. K., Noah, J. A., & Yang, J. F. (2012). Developmental constraints of quadrupedal coordination across crawling styles in human infants. Journal of Neurophysiology, 107, 30503061.Google Scholar
Piek, J. P., & Carman, R. (1994). Developmental profiles of spontaneous movements in infants. Early Human Development, 39, 109126.Google Scholar
Pin, T., Eldridge, B., & Galea, M. P. (2007). A review of the effects of sleep position, play position, and equipment use on motor development in infants. Developmental Medicine and Child Neurology, 49, 858867.Google Scholar
Piper, M. C., & Darrah, J. (1994). Motor assessment of the developing infant. Philadelphia, PA: WB Saunders.Google Scholar
Rachwani, J., Golenia, L., Herzberg, O., & Adolph, K. E. (2019). Postural, visual, and manual coordination in the development of prehension. Child Development, 90, 1559–1568.Google Scholar
Rachwani, J., Santamaria, V., Saavedra, S., & Woollacott, M. H. (2015). The development of trunk control and its relation to reaching in infancy: A longitudinal study. Frontiers in Human Neuroscience, 9, 112.Google Scholar
Rachwani, J., Soska, K. C., & Adolph, K. E. (2017). Behavioral flexibility in learning to sit. Developmental Psychobiology, 59, 937948.Google Scholar
Reissland, N., Francis, B., Aydin, E., Mason, J., & Schaal, B. (2014). The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology, 56, 955963.Google Scholar
Robson, P. (1984). Prewalking locomotor movements and their use in predicting standing and walking. Child Care, Health, and Development, 10, 317330.Google Scholar
Rochat, P. (1989). Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology, 25, 871884.Google Scholar
Saavedra, S. L., van Donkelaar, P., & Woollacott, M. H. (2012). Learning about gravity: Segmental assessment of upright control as infants develop independent sitting. Journal of Neurophysiology, 108, 22152229.Google Scholar
Santrock, J. (2006). Life-span development (10th ed.). New York, NY: McGraw Hill.Google Scholar
Schum, N., Jovanovic, B., & Schwarzer, G. (2011). Ten- and twelve-month-olds’ visual anticipation of orientation and size during grasping. Journal of Experimental Child Psychology, 109, 218231.Google Scholar
Shirley, M. M. (1931). The first two years: A study of twenty-five babies. Postural and locomotor development (Vol. 1). Minneapolis: University of Minnesota Press.Google Scholar
Siegler, R., Deloache, J., Eisenberg, N. (2006). How children develop (2nd ed.). New York, NY: Worth.Google Scholar
Sigmundsson, H., Loras, H. W., & Haga, M. (2017). Exploring task-specific independent standing in 3- to 5-month-old infants. Frontiers in Psychology, 8, 657.Google Scholar
Snapp-Childs, W., & Corbetta, D. (2009). Evidence of early strategies in learning to walk. Infancy, 14, 101116.Google Scholar
Soska, K. C., & Adolph, K. E. (2014). Postural position constrains multimodal object exploration in infants. Infancy, 19, 138161.Google Scholar
Sparling, J. W., van Tol, J., & Chescheir, N. C. (1999). Fetal and neonatal hand movement. Physical Therapy, 79, 2439.Google Scholar
Super, C. M. (1976). Environmental effects on motor development: The case of “African infant precocity”. Developmental Medicine and Child Neurology, 18, 561567.Google Scholar
Thelen, E. (1979). Rhythmical stereotypies in normal human infants. Animal Behavior, 27, 699715.Google Scholar
Thelen, E., Corbetta, D., Kamm, K., Spencer, J. P., Schneider, K., & Zernicke, R. F. (1993). The transition to reaching: Mapping intention and intrinsic dynamics. Child Development, 64, 10581098.Google Scholar
Thelen, E., Corbetta, D., & Spencer, J. P. (1996). Development of reaching during the first year: Role of movement speed. Journal of Experimental Psychology: Human Perception and Performance, 22, 10591076. doi:10.1037/0096-1523.22.5.1059Google Scholar
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
Theveniau, N., Boisgontier, M. P., Verieras, S., & Olivier, I. (2014). The effects of clothes on independent walking in toddlers. Gait and Posture, 39, 659661.Google Scholar
Trettien, A. W. (1900). Creeping and walking. American Journal of Psychology, 12, 157.Google Scholar
Ulrich, B. D. (2010). Opportunities for early intervention based on theory, basic neuroscience, and clinical science. Physical Therapy, 90, 18681880.Google Scholar
van Wermeskerken, M., van der Kamp, J., & Savelsbergh, G. J. P. (2011). On the relation between action selection and movement control in 5- to 8-month-old infants. Experimental Brain Research, 211, 5162.Google Scholar
Vereijken, B. (2010). The complexity of childhood development: Variability in perspective. Physical Therapy, 90, 18501859.Google Scholar
von Hofsten, C. (1991). Structuring of early reaching movements: A longitudinal study. Journal of Motor Behavior, 23, 280292.Google Scholar
von Hofsten, C., Vishton, P. M., Spelke, E. S., Feng, Q., & Rosander, K. (1998). Predictive action in infancy: Tracking and reaching for moving objects. Cognition, 67, 255285.Google Scholar
Wijnhoven, T. M. A., de Onis, M., Onyango, A. W., Wang, T., Bjoerneboe, G. A., Bhandari, N., … Rashidi, B. (2004). Assessment of gross motor development in the WHO Multicentre Growth Reference Study. Food and Nutrition Bulletin, 25, S37S45.Google Scholar
Witherington, D. C. (2005). The development of prospective grasping control between 5 and 7 months: A longitudinal study. Infancy, 7, 143161.Google Scholar
Zelazo, P. R., Zelazo, N. A., & Kolb, S. (1972). “Walking” in the newborn. Science, 176, 314315.Google Scholar

References

Arbib, M. A., & Mundhenk, T. N. (2005). Schizophrenia and the mirror system: An essay. Neuropsychologia, 43(2), 268280. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2004.11.013Google Scholar
Avenanti, A., Paracampo, R., Annella, L., Tidoni, E., & Aglioti, S. M. (2018). Boosting and decreasing action prediction abilities through excitatory and inhibitory tDCS of inferior frontal cortex. Cerebral Cortex, 28(4), 12821296. https://doi.org/10.1093/cercor/bhx041Google Scholar
Bernier, R., Aaronson, B., & McPartland, J. (2013). The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain and Cognition, 82(1), 6975. https://doi.org/10.1016/J.BANDC.2013.02.008Google Scholar
Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64(3), 228237. https://doi.org/10.1016/J.BANDC.2007.03.004Google Scholar
Bhat, A. N., Galloway, J. C., & Landa, R. J. (2012). Relation between early motor delay and later communication delay in infants at risk for Autism. Infant Behavior and Development, 35(4), 838846. https://doi.org/10.1016/J.INFBEH.2012.07.019Google Scholar
Biondi, M., Boas, D. A., & Wilcox, T. (2016). On the other hand: Increased cortical activation to human versus mechanical hands in infants. NeuroImage, 141, 143153. https://doi.org/10.1016/J.NEUROIMAGE.2016.07.021Google Scholar
Blakemore, S., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561567. https://doi.org/10.1038/35086023CrossRefGoogle Scholar
Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433456. https://doi.org/10.1177/1362361308094500Google Scholar
Bridgeman, B. (2005). Action planning supplements mirror systems in language evolution. Behavioral and Brain Sciences, 28(2), 129130. https://doi.org/10.1017/S0140525X0526003XGoogle Scholar
Brooks, R., & Meltzoff, A. N. (2008). Infant gaze following and pointing predict accelerated vocabulary growth through two years of age: A longitudinal, growth curve modeling study. Journal of Child Language, 35, 207220. https://doi.org/10.1017/S030500090700829XGoogle Scholar
Brooks, R., (2015). Connecting the dots from infancy to childhood: A longitudinal study connecting gaze following, language, and explicit theory of mind. Journal of Experimental Child Psychology, 130, 6778. https://doi.org/10.1016/j.jecp.2014.09.010Google Scholar
Cannon, E. N., Simpson, E. A., Fox, N. A., Vanderwert, R. E., Woodward, A. L., & Ferrari, P. F. (2016). Relations between infants’ emerging reach-grasp competence and event-related desynchronization in EEG. Developmental Science, 19(1), 5062. https://doi.org/10.1111/desc.12295Google Scholar
Cannon, E. N., Yoo, K. H., Vanderwert, R. E., Ferrari, P. F., Woodward, A. L., & Fox, N. A. (2014). Action experience, more than observation, influences mu rhythm desynchronization. PloS ONE, 9(3), e92002. https://doi.org/10.1371/journal.pone.0092002CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 11481167. https://doi.org/10.1016/j.neuroimage.2009.12.112Google Scholar
Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20(9), 22522258. https://doi.org/10.1093/cercor/bhp291CrossRefGoogle ScholarPubMed
Cavallo, A., Lungu, O., Becchio, C., Ansuini, C., Rustichini, A., & Fadiga, L. (2015). When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage, 119, 6369. https://doi.org/10.1016/j.neuroimage.2015.06.025Google Scholar
Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15(4), 481498. https://doi.org/10.1016/S0885-2014(01)00037-5Google Scholar
Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird, G., & Drew, A. (1997). Infants with autism: An investigation of empathy, pretend play, joint attention, and imitation. Developmental Psychology, 33(5), 781789. https://doi.org/10.1037/0012-1649.33.5.781Google Scholar
Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience, 11(5), 18391842. https://doi.org/10.1046/j.1460-9568.1999.00598.xGoogle Scholar
Cossu, G., Boria, S., Copioli, C., Bracceschi, R., Giuberti, V., Santelli, E., & Gallese, V. (2012). Motor representation of actions in children with autism. PLoS ONE, 7(9), e44779. https://doi.org/10.1371/journal.pone.0044779Google Scholar
Cuevas, K., Cannon, E. N., Yoo, K. H., & Fox, N. A. (2014). The infant EEG mu rhythm: Methodological considerations and best practices. Developmental Review, 34(1), 2643. https://doi.org/10.1016/j.dr.2013.12.001Google Scholar
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 2830. https://doi.org/10.1038/nn1611Google Scholar
de Klerk, C. C. J. M., Johnson, M. H., Heyes, C. M., & Southgate, V. (2015). Baby steps: Investigating the development of perceptual-motor couplings in infancy. Developmental Science, 18(2), 270280. https://doi.org/10.1111/desc.12226Google Scholar
de Klerk, C. C. J. M., Southgate, V., & Csibra, G. (2016). Predictive action tracking without motor experience in 8-month-old infants. Brain and Cognition, 109, 131139. https://doi.org/10.1016/j.bandc.2016.09.010Google Scholar
Debnath, R., Salo, V. C., Buzzell, G. A., Yoo, K. H., & Fox, N. A. (2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496507. https://doi.org/10.1016/j.neuroimage.2018.09.053Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180. https://doi.org/10.1007/BF00230027Google Scholar
Dumas, G., Soussignan, R., Hugueville, L., Martinerie, J., & Nadel, J. (2014). Revisiting mu suppression in autism spectrum disorder. Brain Research, 1585, 108119. https://doi.org/10.1016/J.BRAINRES.2014.08.035Google Scholar
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202209. https://doi.org/10.1016/j.tics.2013.03.006Google Scholar
Fan, Y. -T., Decety, J., Yang, C. -Y., Liu, J. -L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981988. https://doi.org/10.1111/j.1469-7610.2010.02269.xCrossRefGoogle ScholarPubMed
Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S. (2017). Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience, 358(45), 300315. https://doi.org/10.1016/j.neuroscience.2017.06.052Google Scholar
Ferrari, P. F., Tramacere, A., Simpson, E. A., & Iriki, A. (2013). Mirror neurons through the lens of epigenetics. Trends in Cognitive Sciences, 17(9), 450457. https://doi.org/10.1016/j.tics.2013.07.003Google Scholar
Filippi, C. A., Cannon, E. N., Fox, N. A., Thorpe, S. G., Ferrari, P. F., & Woodward, A. L. (2016). Motor system activation predicts goal imitation in 7-month-old infants. Psychological Science, 27(5), 675684. https://doi.org/10.1177/0956797616632231Google Scholar
Foglia, L., & Wilson, R. A. (2013). Embodied cognition. WIREs Cognitive Science, 4(3), 319325. https://doi.org/10.1002/wcs.1226Google Scholar
Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., … van IJzendoorn, M. H. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291313. https://doi.org/10.1037/bul0000031Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609. https://doi.org/10.1093/brain/119.2.593Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501. https://doi.org/10.1016/S1364-6613(98)01262-5Google Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396403. https://doi.org/10.1016/j.tics.2004.07.002Google Scholar
Gernsbacher, M. A., Sauer, E. A., Geye, H. M., Schweigert, E. K., & Goldsmith, H. H. (2008). Infant and toddler oral- and manual-motor skills predict later speech fluency in Autism. Journal of Child Psychology and Psychiatry, 49(1), 4350. https://doi.org/10.1111/j.1469-7610.2007.01820.xGoogle Scholar
Green, D., Li, Q., Lockman, J. J., & Gredebäck, G. (2016). Culture influences action understanding in infancy: Prediction of actions performed with chopsticks and spoons in Chinese and Swedish infants. Child Development, 87(3), 736746. https://doi.org/10.1111/cdev.12500Google Scholar
Grossmann, T., Johnson, M. H., Lloyd-Fox, S., Blasi, A., Deligianni, F., Elwell, C., & Csibra, G. (2008). Early cortical specialization for face-to-face communication in human infants. Proceedings. Biological Sciences, 275(1653), 28032811. https://doi.org/10.1098/rspb.2008.0986Google Scholar
Hamilton, A. F. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91105. https://doi.org/10.1016/J.DCN.2012.09.008Google Scholar
Hari, R. (2006). Action–perception connection and the cortical mu rhythm. Progress in Brain Research, 159, 253260. https://doi.org/10.1016/S0079-6123(06)59017-XGoogle Scholar
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34(4), 575583. https://doi.org/10.1016/j.neubiorev.2009.11.007Google Scholar
Heyes, C. (2013). A new approach to mirror neurons: Developmental history, system-level theory and intervention experiments. Cortex, 49(10), 29462948. https://doi.org/10.1016/j.cortex.2013.07.002Google Scholar
Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 12291243. https://doi.org/10.1162/jocn.2009.21189Google Scholar
Hobson, H. M., & Bishop, D. V. M. (2016). Mu suppression: A good measure of the human mirror neuron system? Cortex, 82, 290310. https://doi.org/10.1016/j.cortex.2016.03.019Google Scholar
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653670. https://doi.org/10.1146/annurev.psych.60.110707.163604Google Scholar
Ichikawa, H., Kanazawa, S., Yamaguchi, M. K., & Kakigi, R. (2010). Infant brain activity while viewing facial movement of point-light displays as measured by near-infrared spectroscopy (NIRS). Neuroscience Letters, 482(2), 9094. https://doi.org/10.1016/J.NEULET.2010.06.086Google Scholar
Iverson, J. M., & Wozniak, R. H. (2007). Variation in vocal-motor development in infant siblings of children with Autism. Journal of Autism and Developmental Disorders, 37(1), 158170. https://doi.org/10.1007/s10803-006-0339-zGoogle Scholar
Lepage, J. -F., & Théoret, H. (2006). EEG evidence for the presence of an action observation-execution matching system in children. European Journal of Neuroscience, 23(9), 25052510. https://doi.org/10.1111/j.1460-9568.2006.04769.xGoogle Scholar
Li, G., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. Journal of Neuroscience, 35(24), 91509162. https://doi.org/10.1523/JNEUROSCI.4107–14.2015Google Scholar
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23(11), 27242733. https://doi.org/10.1093/cercor/bhs265Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066. https://doi.org/10.1111/desc.12370Google Scholar
Libertus, K., Sheperd, K. A., Ross, S. W., & Landa, R. J. (2014). Limited fine motor and grasping skills in 6-month-old infants at high risk for Autism. Child Development, 85(6), 22182231. https://doi.org/10.1111/cdev.12262Google Scholar
Lloyd-Fox, S., Blasi, A., Volein, A., Everdell, N., Elwell, C. E., & Johnson, M. H. (2009). Social perception in infancy: A near infrared spectroscopy study. Child Development, 80(4), 986999. https://doi.org/10.1111/j.1467-8624.2009.01312.xGoogle Scholar
Lloyd-Fox, S., Wu, R., Richards, J. E., Elwell, C. E., & Johnson, M. H. (2015). Cortical activation to action perception is associated with action production abilities in young infants. Cerebral Cortex, 25(2), 289297. https://doi.org/10.1093/cercor/bht207Google Scholar
MacDonald, M., Lord, C., & Ulrich, D. (2013). The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(11), 13831390. https://doi.org/10.1016/J.RASD.2013.07.020Google Scholar
Manshanden, I., de Munck, J. C., Simon, N. R., & Lopes da Silva, F. H. (2002). Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clinical Neurophysiology, 113(12), 19371947. https://doi.org/10.1016/S1388-2457(02)00304-8Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 11991208. https://doi.org/10.1016/j.cogpsych.2012.08.001Google Scholar
Marshall, P. J., & Meltzoff, A. N. (2011). Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Developmental Cognitive Neuroscience, 1(2), 110123. https://doi.org/10.1016/j.dcn.2010.09.001CrossRefGoogle ScholarPubMed
Marshall, P. J., (2014). Neural mirroring mechanisms and imitation in human infants. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 2013062020130620. https://doi.org/10.1098/rstb.2013.0620Google Scholar
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 3540. https://doi.org/10.1016/J.IJPSYCHO.2008.01.002CrossRefGoogle ScholarPubMed
McDonald, N. M., & Perdue, K. L. (2018, April 1). The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 87, 3849. https://doi.org/10.1016/j.neubiorev.2018.01.007Google Scholar
Meltzoff, A. N. (2007). “Like me”: A foundation for social cognition. Developmental Science, 10(1), 126134. https://doi.org/10.1111/j.1467-7687.2007.00574.xGoogle Scholar
Meltzoff, A. N., & Gopnik, A. (1993). The role of imitation in understanding persons and developing a theory of mind. In Baron-Cohen, S., Tager-Flusberg, H., & Cohen, D. J. (Eds.), Understanding other minds: Perspectives from Autism (pp. 335366). New York, NY: Oxford University Press.Google Scholar
Mizuhara, H., & Inui, T. (2011). Is mu rhythm an index of the human mirror neuron system? A study of simultaneous fMRI and EEG. In Wang, R. & Gu, F. (Eds.), Advances in cognitive neurodynamics (II): Proceedings of the Second International Conference on Cognitive Neurodynamics (pp. 123127). Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-90-481-9695-1_19Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341349. https://doi.org/10.1016/J.NEUBIOREV.2011.07.004CrossRefGoogle ScholarPubMed
Morales, S., Bowman, L. C., Velnoskey, K. R., Fox, N. A., & Redcay, E. (2019). An fMRI study of action observation and action execution in childhood. Developmental Cognitive Neuroscience, 37. https://doi.org/10.1016/j.dcn.2019.100655Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756. https://doi.org/10.1016/j.cub.2010.02.045Google Scholar
Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19(2), 195201. https://doi.org/10.1016/j.cogbrainres.2003.12.001CrossRefGoogle ScholarPubMed
Ng, R., Brown, T. T., Erhart, M., Järvinen, A. M., Korenberg, J. R., Bellugi, U., & Halgren, E. (2016). Morphological differences in the mirror neuron system in Williams syndrome. Social Neuroscience, 11(3), 277288. https://doi.org/10.1080/17470919.2015.1070746Google Scholar
Nyström, P. (2008). The infant mirror neuron system studied with high density EEG. Social Neuroscience, 3(3–4), 334347. https://doi.org/10.1080/17470910701563665Google Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2011). Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14(2), 327335. https://doi.org/10.1111/j.1467-7687.2010.00979.xGoogle Scholar
Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190198. https://doi.org/10.1016/J.COGBRAINRES.2005.01.014Google Scholar
Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 15581565. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.01.010CrossRefGoogle ScholarPubMed
Orgs, G., Dombrowski, J. -H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alphabeta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. https://doi.org/10.1111/j.1460-9568.2008.06271.xGoogle Scholar
Overton, W. F. (2006). Developmental psychology: Philosophy, concepts, methodology. In Damon, W. I. & Lerner, R. M. (Eds.), Handbook of child psychology. Vol. 1: Theoretical models of human development (6th ed., pp. 1888). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470147658.chpsy0102Google Scholar
Paulus, M. (2012). Action mirroring and action understanding: An ideomotor and attentional account. Psychological Research, 76(6), 760767. https://doi.org/10.1007/s00426-011-0385-9Google Scholar
Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26(1–3), 121135. https://doi.org/10.1016/S0167-8760(97)00760-5Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: Norton.Google Scholar
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50(1), 5768. https://doi.org/10.1016/j.brainresrev.2005.04.005Google Scholar
Raymaekers, R., Wiersema, J. R., & Roeyers, H. (2009). EEG study of the mirror neuron system in children with high functioning autism. Brain Research, 1304, 113121. https://doi.org/10.1016/J.BRAINRES.2009.09.068Google Scholar
Rayson, H., Bonaiuto, J. J., Ferrari, P. F., & Murray, L. (2016). Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 19, 279287. https://doi.org/10.1016/j.dcn.2016.05.003Google Scholar
Reid, V. M., Striano, T., & Iacoboni, M. (2011). Neural correlates of dyadic interaction during infancy. Developmental Cognitive Neuroscience, 1(2), 124130. https://doi.org/10.1016/j.dcn.2011.01.001Google Scholar
Reynolds, J. E., Billington, J., Kerrigan, S., Williams, J., Elliott, C., Winsor, A. M., … Licari, M. K. (2017). Mirror neuron system activation in children with developmental coordination disorder: A replication functional MRI study. Research in Developmental Disabilities, 84, 1627. https://doi.org/10.1016/J.RIDD.2017.11.012Google Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. https://doi.org/10.1146/annurev.neuro.27.070203.144230Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141. https://doi.org/10.1016/0926-6410(95)00038-0Google Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670. https://doi.org/10.1038/35090060Google Scholar
Rogers, S. J., Hepburn, S. L., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with Autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, 44(5), 763781. https://doi.org/10.1111/1469–7610.00162Google Scholar
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Metin, B., & Roeyers, H. (2013). Neural mirroring during the observation of live and video actions in infants. Clinical Neurophysiology, 124(9), 17651770. https://doi.org/10.1016/j.clinph.2013.04.007Google Scholar
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Oostra, A., & Roeyers, H. (2014). Exploring the role of neural mirroring in children with autism spectrum disorder. Autism Research, 7(2), 197206. https://doi.org/10.1002/aur.1339Google Scholar
Salmelin, R., Hámáaláinen, M., Kajola, M., & Hari, R. (1995). Functional segregation of movement-related rhythmic activity in the human brain. NeuroImage, 2(4), 237243. https://doi.org/10.1006/NIMG.1995.1031Google Scholar
Salmelin, R., & Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60(2), 537550. https://doi.org/10.1016/0306-4522(94)90263-1Google Scholar
Salo, V. C. (2018). Examining the role of the motor system in early communicative development (Unpublished doctoral dissertation). University of Maryland, College Park.Google Scholar
Shapiro, I. (2011). Embodied cognition. New York, NY: Routledge.Google Scholar
Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. NeuroImage, 32(2), 930939. https://doi.org/10.1016/J.NEUROIMAGE.2006.03.044CrossRefGoogle ScholarPubMed
Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943974. https://doi.org/10.1037/a0020541Google Scholar
Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: Challenging a theory of Autism. Trends in Cognitive Sciences, 12(6), 225229. https://doi.org/10.1016/j.tics.2008.03.005Google Scholar
Southgate, V., Johnson, M. H., Karoui, I. E., & Csibra, G. (2010). Motor system activation reveals infants’ on-line prediction of others’ goals. Psychological Science, 21(3), 355359. https://doi.org/10.1177/0956797610362058Google Scholar
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. https://doi.org/10.1098/rsbl.2009.0474Google Scholar
Stadler, W., Ott, D. V. M., Springer, A., Schubotz, R. I., Schütz-Bosbach, S., & Prinz, W. (2012). Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience, 6, 20. https://doi.org/10.3389/fnhum.2012.00020Google Scholar
Stapel, J. C., Hunnius, S., van Elk, M., & Bekkering, H. (2010). Motor activation during observation of unusual versus ordinary actions in infancy. Social Neuroscience, 5(5–6), 451460. https://doi.org/10.1080/17470919.2010.490667Google Scholar
Sun, P. -P., Tan, F. -L., Zhang, Z., Jiang, Y. -H., Zhao, Y., & Zhu, C. -Z. (2018). Feasibility of functional near-infrared spectroscopy (fNIRS) to investigate the mirror neuron system: An experimental study in a real-life situation. Frontiers in Human Neuroscience, 12, 86. https://doi.org/10.3389/fnhum.2018.00086Google Scholar
Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B., Barton, M., … Fein, D. (2007). Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 98107. https://doi.org/10.1007/s10803-006-0340-6Google Scholar
Thorpe, S. G., Cannon, E. N., & Fox, N. A. (2016). Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clinical Neurophysiology, 127(1), 254269. https://doi.org/10.1016/j.clinph.2015.03.004Google Scholar
Tomasello, M. (1995). Joint attention and social cognition. In Moore, C. & Dunham, P. J. (Eds.), Joint attention: Its origins and role in development (pp. 103130). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675691. https://doi.org/10.1017/S0140525X05000129Google Scholar
Tomasello, M., Carpenter, M., & Liszkowski, U. (2007). A new look at infant pointing. Child Development, 78(3), 705722. https://doi.org/10.1111/j.1467-8624.2007.01025.xGoogle Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(3), 495. https://doi.org/10.1017/S0140525X0003123XGoogle Scholar
Toth, K., Munson, J., Meltzoff, A. N., & Dawson, G. (2006). Early predictors of communication development in young children with autism spectrum disorder: Joint attention, imitation, and toy play. Journal of Autism and Developmental Disorders, 36(8), 9931005. https://doi.org/10.1007/s10803-006-0137-7Google Scholar
van Elk, M., van Schie, H. T., Hunnius, S., Vesper, C., & Bekkering, H. (2008). You’ll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy. NeuroImage, 43(4), 808814. https://doi.org/10.1016/j.neuroimage.2008.07.057Google Scholar
van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564584. https://doi.org/10.1016/j.neuroimage.2009.06.009Google Scholar
Virji-Babul, N., Moiseev, A., Cheung, T., Weeks, D., Cheyne, D., & Ribary, U. (2008). Changes in mu rhythm during action observation and execution in adults with Down syndrome: Implications for action representation. Neuroscience Letters, 436(2), 177180. https://doi.org/10.1016/J.NEULET.2008.03.022Google Scholar
Virji-Babul, N., Rose, A., Moiseeva, N., & Makan, N. (2012). Neural correlates of action understanding in infants: Influence of motor experience. Brain and Behavior, 2(3), 237242. https://doi.org/10.1002/brb3.50Google Scholar
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283288. https://doi.org/10.1111/j.1467-7687.2004.00347.xGoogle Scholar
Woodward, A. L., & Gerson, S. A. (2014). Mirroring and the development of action understanding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130181. https://doi.org/10.1098/rstb.2013.0181Google Scholar
Yang, J., Andric, M., & Mathew, M. M. (2015). The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews, 57, 88104. https://doi.org/10.1016/j.neubiorev.2015.08.006Google Scholar
Yoo, K. H., Cannon, E. N., Thorpe, S. G., & Fox, N. A. (2015). Desynchronization in EEG during perception of means–end actions and relations with infants’ grasping skill. British Journal of Developmental Psychology, 34(1), 2437. https://doi.org/10.1111/bjdp.12115Google Scholar
Yoo, K. H., Thorpe, S. G., & Fox, N. A. (2016). Neural correlates of motor learning in infants. Paper presented at the Biennial International Conference on Infant Studies, New Orleans, LA.Google Scholar
Young, G. S., Rogers, S. J., Hutman, T., Rozga, A., Sigman, M., & Ozonoff, S. (2011). Imitation from 12 to 24 months in autism and typical development: A longitudinal Rasch analysis. Developmental Psychology, 47(6), 15651578. https://doi.org/10.1037/a0025418Google Scholar
Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., … Natowicz, M. R. (2015). Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and research. Pediatrics, 136(Suppl. 1), S60S81. https://doi.org/10.1542/peds.2014-3667EGoogle Scholar

References

Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 118.Google Scholar
Barrett, T. M., Davis, E. F., & Needham, A. (2007). Learning about tools in infancy. Developmental Psychology, 43(2), 352368.Google Scholar
Barrett, T. M., & Needham, A. (2008). Developmental differences in infants’ use of an object’s shape to grasp it securely. Developmental Psychobiology, 50(1), 97106.Google Scholar
Bassok, D., Latham, S., & Rorem, A. (2016). Is kindergarten the new first grade? AERA Open, 1(4), 131.Google Scholar
Belsky, J., & Most, R. K. (1981). From exploration to play: A cross-sectional study of infant free play behavior. Developmental Psychology, 17(5), 630639.Google Scholar
Bergen, D., Hutchinson, K., Nolan, J. T., & Weber, D. (2009). Effects of infant–parent play with a technology-enhanced toy: Affordance-related actions and communicative interactions. Journal of Research in Childhood Education, 24(1), 117.Google Scholar
Berthier, N. E., & Carrico, R. L. (2010). Visual information and object size in infant reaching. Infant Behavior and Development, 33(4), 555566.Google Scholar
Bodrova, E., & Leong, D. J. (2015). Vygotskian and post-Vygotskian views on children’s play. American Journal of Play, 7(3), 371388.Google Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (1995). Parent–child symbolic play: Three theories in search of an effect. Developmental Review, 15(4), 382400.Google Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (2006). Infants at play: Development, partners and functions. In Slater, A. & Lewis, M. (Eds.), Introduction to Infant Development. New York, NY: Oxford University Press.Google Scholar
Bornstein, M. H., Tamis-LeMonda, C. S., Hahn, C. S., & Haynes, O. M. (2008). Maternal responsiveness to young children at three ages: Longitudinal analysis of a multidimensional, modular, and specific parenting construct. Developmental Psychology, 44(3), 867874.Google Scholar
Bourgeois, K. S., Khawar, A. W., Neal, S. A., & Lockman, J. J. (2005). Infant manual exploration of objects, surfaces, and their interrelations. Infancy, 8(3), 233252.Google Scholar
Brand, R. J., Baldwin, D. A., & Ashburn, L. A. (2002). Evidence for “motionese”: Modifications in mothers’ infant-directed action. Developmental Science, 5(1), 7283.Google Scholar
Bretherton, I. (1984). Representing the social world in symbolic play: Reality and fantasy. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 341). Orlando, FL: Academic Press.Google Scholar
Bretherton, I., O’Connell, B., Shore, C., & Bates, E. (1984). The effect of contextual variation on symbolic play development from 20 to 28 months. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 271298). Orlando, FL: Academic Press.Google Scholar
Bruner, J. (1978). The role of dialogue in language acquisition. In Sinclair, A., Jarville, R. J., & Levelt, W. J. M. (Eds.), The child’s conception of language (pp. 241256). New York, NY: Springer.Google Scholar
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64(4), 10051021.Google Scholar
Bushnell, E. W., (1998). Exploring and exploiting objects with the hands during infancy. In Connolly, K. (Ed.), The psychobiology of the hand (pp. 144161). Cambridge, UK: Mac Keith Press.Google Scholar
Campbell, S. B., Mahoney, A. S., Northrup, J., Moore, E. L., Leezenbaum, N. B., & Brownell, C. A. (2018). Developmental changes in pretend play from 22 to 34months in younger siblings of children with autism spectrum disorder. Journal of Abnormal Child Psychology, 46(3), 639654.Google Scholar
Casasola, M. (2017). Above and beyond objects: The development of infants’ spatial concepts. In Benson, J. B. (Ed.), Advances in child development and behavior (Vol. 54, pp. 87121). San Diego, CA: Elsevier Academic.Google Scholar
Christakis, D. A., Zimmerman, F. J., & Garrison, M. M. (2007). Effect of block play on language acquisition and attention in toddlers: A pilot randomized controlled trial. Archives of Pediatrics & Adolescent Medicine, 161(10), 967971.Google Scholar
Clearfield, M. W. (2019). Play for success: An intervention to boost object exploration in infants from low-income households. Infant Behavior and Development, 55, 112122.Google Scholar
Clearfield, M. W., Bailey, L. S., Jenne, H. K., Stanger, S. B., & Tacke, N. (2014). Socioeconomic status affects oral and manual exploration across the first year. Infant Mental Health Journal, 35(1), 6369.Google Scholar
Corbetta, D., Thelen, E., & Johnson, K. (2000). Motor constraints on the development of perception–action matching in infant reaching. Infant Behavior and Development, 23(3–4), 351374.Google Scholar
Damast, A. M., Tamis-LeMonda, C. S., & Bornstein, M. H. (1996). Mother–child play: Sequential interactions and the relation between maternal beliefs and behaviors. Child Development, 67(4), 17521766.Google Scholar
DeLoache, J. S. (2004). Becoming symbol-minded. Trends in Cognitive Sciences, 8(2), 6670.CrossRefGoogle ScholarPubMed
Dore, R. A., Zosh, J. M., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Plugging into word learning: the role of electronic toys and digital media in language development. In Blumberg, F. C. & Brooks, P. J. (Eds.), Cognitive development in digital contexts (pp. 7591). Orlando, FL: Academic Press.Google Scholar
Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i113.Google Scholar
Edwards, C. P., & Whiting, B. B. (1993). Mother, older sibling, and me”: The overlapping roles of caregivers and companions in the social world of two- to three-year-olds in Ngeca, Kenya. In MacDonald, K. (Ed.), Parent–child play: Descriptions and implications (pp. 305329). Albany: State University of New York Press.Google Scholar
Fagard, J., & Jacquet, A. Y. (1996). Changes in reaching and grasping objects of different sizes between 7 and 13 months of age. British Journal of Developmental Psychology, 14(1), 6578.Google Scholar
Farver, J. M., & Howes, C. (1993). Cultural differences in American and Mexican mother–child pretend play. Merrill-Palmer Quarterly (1982–), 39(3), 344358.Google Scholar
Farver, J. A., & Wimbarti, S. (1995). Indonesian children’s play with their mothers and older siblings. Child Development, 66(5), 14931503.Google Scholar
Fein, G. G. (1981). Pretend play in childhood: An integrative review. Child Development, 52(4), 10951118.Google Scholar
Fenson, L., & Ramsay, D. S. (1980). Decentration and integration of the child’s play in the second year. Child Development, 51(1), 171178.Google Scholar
Field, T. (1983). High-risk infants “have less fun” during early interactions. Topics in Early Childhood Special Education, 3(1), 7787.Google Scholar
Fiese, B. H. (1990). Playful relationships: A contextual analysis of mother–toddler interaction and symbolic play. Child Development, 61(5), 16481656.Google Scholar
Fisher, K. R., Hirsh-Pasek, K., Newcombe, N., & Golinkoff, R. M. (2013). Taking shape: Supporting preschoolers’ acquisition of geometric knowledge through guided play. Child Development, 84(6), 18721878.Google Scholar
Fogle, L. M., & Mendez, J. L. (2006). Assessing the play beliefs of African American mothers with preschool children. Early Childhood Research Quarterly, 21(4), 507518.Google Scholar
Fontenelle, S. A., Kahrs, B. A., Neal, S. A., Newton, A. T., & Lockman, J. J. (2007). Infant manual exploration of composite substrates. Journal of Experimental Child Psychology, 98(3), 153167.Google Scholar
Garvey, C. (1990). Play (Vol. 27). Cambridge, MA: Harvard University Press.Google Scholar
Gaskins, S., Haight, W., & Lancy, D. F. (2007). The cultural construction of play. In Göncü, A. & Gaskins, S. (Eds.), Play and development: Evolutionary, sociocultural, and functional perspectives (pp. 179202). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Gesell, A., & Thompson, H.(1934). Infant behavior: Its genesis and growth. New York, NY: Greenwood Press.Google Scholar
Gibson, E. J. (1982). The concept of affordances in development: The renascence of functionalism. In Collins, W. A. (Ed.), The concept of development: The Minnesota symposia on child psychology (Vol. 15, pp. 5581). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
Gillespie, A., & Zittoun, T. (2010). Using resources: Conceptualizing the mediation and reflective use of tools and signs. Culture & Psychology, 16(1), 3762.Google Scholar
Green, D., Li, Q., Lockman, J. J., & Gredebäck, G. (2016). Culture influences action understanding in infancy: Prediction of actions performed with chopsticks and spoons in Chinese and Swedish infants. Child Development, 87(3), 736746.Google Scholar
Haight, W. L., & Miller, P. J. (1992). The development of everyday pretend play: A longitudinal study of mothers’ participation. Merrill-Palmer Quarterly (1982–), 38, 331349.Google Scholar
Haight, W. L., (1993). Pretending at home: Early development in a sociocultural context. Albany, NY: State University of New York Press.Google Scholar
Heathcock, J. C., & Lockman, J. J. (2019). Infant and child development: Innovations and foundations for rehabilitation. Physical Therapy, 99, 643646. https://doi.org/10.1093/ptj/pzz067Google Scholar
Hoff, E. (2013). Language development. Belmont, CA: Wadsworth Cengage Learning.Google Scholar
Hopkins, E. J., Smith, E. D., Weisberg, D. S., & Lillard, A. S. (2016). The development of substitute object pretense: The differential importance of form and function. Journal of Cognition and Development, 17(2), 197220.Google Scholar
Hrdy, S. B. (2009). The woman that never evolved. Cambridge, MA: Harvard University Press.Google Scholar
Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. New York, NY: Clarendon Press/Oxford University Press.Google Scholar
Jung, W. P., Kahrs, B. A., & Lockman, J. J. (2015). Manual action, fitting, and spatial planning: Relating objects by young children. Cognition, 134, 128139.Google Scholar
Jung, W. P., Kahrs, B. A., (2018). Fitting handled objects into apertures by 17-to 36-month-old children: The dynamics of spatial coordination. Developmental Psychology, 54(2), 228239.Google Scholar
Kahrs, B. A., Jung, W. P., & Lockman, J. J. (2013). Motor origins of tool use. Child Development, 84(3), 810816.Google Scholar
Kahrs, B. A., Jung, W. P., (2014). When does tool use become distinctively human? Hammering in young children. Child Development, 85(3), 10501061.Google Scholar
Kaplan, B., Rachwani, J., Sida, A., Vasa, A., Tamis-LeMonda, C. S., & Adolph, K. E. (2018, June). Perceptual-motor exploration and problem solving: Learning to implement the designed action of Duplo bricks. Paper presented at the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Karasik, L. B., Schneider, J. L., Kuchirko, Y. A. & Tamis-LeMonda, C. S. (2018, June). Not so WEIRD object play in Tajikistan. Paper presented at the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Koterba, E. A., & Iverson, J. M. (2009). Investigating motionese: The effect of infant-directed action on infants’ attention and object exploration. Infant Behavior and Development, 32(4), 437444.Google Scholar
Kuypers, H. G. (1962). Corticospinal connections: postnatal development in the rhesus monkey. Science, 138(3541), 678680.Google Scholar
LaForett, D. R., & Mendez, J. L. (2017). Children’s engagement in play at home: A parent’s role in supporting play opportunities during early childhood. Early Child Development and Care, 187(5–6), 910923.Google Scholar
Lawrence, D. G., & Hopkins, D. A. (1972). Developmental aspects of pyramidal motor control in the rhesus monkey. Brain Research, 40, 117118.Google Scholar
Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19(3), 342368.Google Scholar
Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind.” Psychological Review, 94(4), 412426.Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066.Google Scholar
Lillard, A. S. (1993). Pretend play skills and the child’s theory of mind. Child Development, 64(2), 348371.Google Scholar
Lillard, A. S. (2007). Pretend play in toddlers. In Brownell, C. & Kopp, C. (Eds.), Socioemotional development in the toddler years: Transitions and transformations (pp. 149176). New York, NY: Guilford Press.Google Scholar
Lillard, A. S. (2011). Mother–child fantasy play. In Nathan, P. & Pelligrini, A. D. (Eds.), The Oxford handbook of the development of play (pp. 284295). New York, NY: Oxford University Press.Google Scholar
Lillard, A. S. (2013). Playful learning and Montessori education. NAMTA Journal, 38(2), 137174.Google Scholar
Lillard, A. S. (2015). The development of play volume. In Lerner, R. M. (Ed.), Handbook of child psychology and developmental science (7th ed., Vol. 2, pp. 425468). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Lillard, A., Nishida, T., Massaro, D., Vaish, A., Ma, L., & McRoberts, G. (2007). Signs of pretense across age and scenario. Infancy, 11(1), 130.Google Scholar
Little, E. E., Carver, L. J., & Legare, C. H. (2016). Cultural variation in triadic infant–caregiver object exploration. Child Development, 87(4), 11301145.Google Scholar
Lobo, M., Hall, M. L., Greenspan, B., Rohloff, P., Prosser, L. A., & Smith, B. A. (2019). Wearables for pediatric rehabilitation: How to optimally design and use products to meet the needs of users. Physical Therapy, 99, 647657. https://doi.org/10.1093/ptj/pzz024Google Scholar
Lockman, J. J. (2000). A perception–action perspective on tool use development. Child development, 71(1), 137144.Google Scholar
Lockman, J. J., & Ashmead, D. H. (1983). Asynchronies in the development of manual behavior. Advances in Infancy Research, 2, 113136.Google Scholar
Lockman, J. J., Ashmead, D. H., & Bushnell, E. W. (1984). The development of anticipatory hand orientation during infancy. Journal of Experimental Child Psychology, 37(1), 176186.Google Scholar
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26(4), 330334.Google Scholar
Lockman, J. J., & McHale, J. P. (1989). Object manipulation in infancy. In Lockman, J. J. & McHale, J. P. (Eds.), Action in social context (pp. 129167). New York, NY: Plenum.Google Scholar
Martin, J. C. (2005). The corticospinal system: From development to motor control. Neuroscientist, 11, 161173.Google Scholar
Marzke, M. W. (1997). Precision grips, hand morphology, and tools. American Journal of Physical Anthropology, 102(1), 91110.Google Scholar
McCarty, M. E., Clifton, R. K., & Collard, R. R. (2001). The beginnings of tool use by infants and toddlers. Infancy, 2(2), 233256.Google Scholar
McCune, L. (1995). A normative study of representational play in the transition to language. Developmental Psychology, 31(2), 198206. doi:10.1037/0012-1649.31.2.198Google Scholar
McCune-Nicolich, L. (1981). Toward symbolic functioning: Structure of early pretend games and potential parallels with language. Child Development, 52, 785797. doi:10.2307/1129078Google Scholar
Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
Milner, A. D., (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774785.Google Scholar
Molina, M., & Jouen, F. (1998). Modulation of the palmar grasp behavior in neonates according to texture property. Infant Behavior and Development, 21(4), 659666.Google Scholar
Morgante, J. D., & Keen, R. (2008). Vision and action: The effect of visual feedback on infants’ exploratory behaviors. Infant Behavior and Development, 31(4), 729733.Google Scholar
Morris, B., Croker, S., Zimmerman, C., Gill, D., & Romig, C. (2013). Gaming science: The “Gamification” of scientific thinking. Frontiers in Psychology, 4, 116.Google Scholar
Napier, J. (1962). The evolution of the hand. Scientific American, 207(6), 5665.Google Scholar
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky mittens” enhances young infants’ object exploration skills. Infant Behavior and Development, 25(3), 279295.Google Scholar
O’Connell, B., & Bretherton, I. (1984). Toddler’s play, alone and with mother: The role of maternal guidance. In Bretherton, I. (Ed.), Symbolic play: The development of social understanding (pp. 337368). Orlando, FL: Academic Press.Google Scholar
Orr, E., & Geva, R. (2015). Symbolic play and language development. Infant Behavior and Development, 38, 147161.Google Scholar
Palmer, C. F. (1989). The discriminating nature of infants’ exploratory actions. Developmental Psychology, 25(6), 885893.Google Scholar
Parish-Morris, J., Mahajan, N., Hirsh-Pasek, K., Golinkoff, R. M., & Collins, M. F. (2013). Once upon a time: Parent–child dialogue and storybook reading in the electronic era. Mind, Brain, and Education, 7(3), 200211.Google Scholar
Piaget, J. (1945). Play, dreams, and imitation in childhood. New York, NY: Norton.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: W.W. Norton & Co.Google Scholar
Piaget, J. (1954). The construction of reality in the child (M. Cook, Trans.). New York, NY: Basic Books.Google Scholar
Power, T. G. (2000). Play and exploration in children and animals. Mahwah NJ: Lawrence Erlbaum Associates.Google Scholar
Quinn, S., Donnelly, S., & Kidd, E. (2018). The relationship between symbolic play and language acquisition: A meta-analytic review. Developmental Review, 49, 121135.Google Scholar
Quinn, S., & Kidd, E. (2018). Symbolic play promotes non-verbal communicative exchanges in infant–caregiver dyads. British Journal of Developmental Psychology, 37(1), 3350.Google Scholar
Rachwani, J., Tamis-LeMonda, C. S., Lockman, J. J., Karasik, L. B., & Adolph, K. E. (2020). Learning the designed actions of everyday objects. Journal of Experimental Psychology: General, 149(1), 6778. https://doi.org/10.1037/xge0000631Google Scholar
Rips, L. J., & Hespos, S. J. (2015). Divisions of the physical world: Concepts of objects and substances. Psychological Bulletin, 141(4), 786811.Google Scholar
Rochat, P. (1989). Object manipulation and exploration in 2- to 5-month-old infants. Developmental Psychology, 25(6), 871884.Google Scholar
Rogoff, B., Mistry, J., Göncü, A., & Mosier, C. (1991). Cultural variation in the role relations of toddlers and their families. In Bornstein, M. (Ed.), Cultural approaches to parenting (pp. 173183). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rogoff, B., Mistry, J., Göncü, A., Mosier, C., Chavajay, P., & Heath, S. B. (1993). Guided participation in cultural activity by toddlers and caregivers. Monographs of the Society for Research in Child Development, i179.Google Scholar
Ruff, H. A. (1984). Infants’ manipulative exploration of objects: Effects of age and object characteristics. Developmental Psychology, 20(1), 920.Google Scholar
Scarr-Salapatek, S., & Williams, M. L. (1973). The effects of early stimulation on low-birth-weight infants. Child Development, 94101.Google Scholar
Schum, N., Jovanovic, B., & Schwarzer, G. (2011). Ten- and twelve-month-olds’ visual anticipation of orientation and size during grasping. Journal of Experimental Child Psychology, 109(2), 218231.Google Scholar
Slade, A. (1987). Quality of attachment and early symbolic play. Developmental Psychology, 23(1), 7885.Google Scholar
Smith, L. B., Street, S., Jones, S. S., & James, K. H. (2014). Using the axis of elongation to align shapes: Developmental changes between 18 and 24 months of age. Journal of Experimental Child Psychology, 123, 1535.Google Scholar
Street, S. Y., James, K. H, Jones, S. S., & Smith, L. B. (2011). Vision for action in toddlers: The posting task. Child Development, 82, 20832094.Google Scholar
Striano, T., & Bushnell, E. W. (2005). Haptic perception of material properties by 3-month-old infants. Infant Behavior and Development, 28(3), 266289.Google Scholar
Sutherland, S. L., & Friedman, O. (2013). Just pretending can be really learning: Children use pretend play as a source for acquiring generic knowledge. Developmental Psychology, 49(9), 16601668.Google Scholar
Tacke, N. F., Bailey, L. S., & Clearfield, M. W. (2015). Socio-economic status (SES) affects infants’ selective exploration. Infant and Child Development, 24(6), 571586.Google Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1991). Individual variation, correspondence, stability, and change in mother and toddler play. Infant Behavior and Development, 14(2), 143162.Google Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1993). Play and its relations to other mental functions in the child. New Directions for Child and Adolescent Development, 1993(59), 1728.Google Scholar
(1996). Variation in children’s exploratory, nonsymbolic, and symbolic play: An explanatory multidimensional framework. In Rovee-Collier, C. & Lipsitt, L. P. (Ed.), Advances in infancy research (pp. 3778). Westport, CT: Ablex.Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Tafuro, L. (2013). From action to interaction: Infant object exploration and mothers’ contingent responsiveness. IEEE Transactions on Autonomous Mental Development, 5(3), 202209.Google Scholar
Tamis-LeMonda, C. S., & Schatz, J. (2019). Learning language in the context of play. In Horst, J., von Koss, J., & Torkildsen, K. (Eds.) International handbook of language development (pp. 442461). New York, NY: Routledge.Google Scholar
Uccelli, P., Hemphill, L., Pan, B. A., & Snow, C. (2006). Conversing with toddlers about the nonpresent: Precursors to narrative development in two genres. In Balter, L. & Tamis-LeMonda, C. S. (Eds.), Child psychology: A handbook of contemporary issues (pp. 215237). New York, NY: Psychology Press.Google Scholar
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. Analysis of visual behavior. In Ingle, D. J. Goodale, M. A., & Mansfield, R. J. W. (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: MIT Press.Google Scholar
von Hofsten, C. (1983). Catching skills in infancy. Journal of Experimental Psychology: Human Perception and Performance, 9(1), 7585.Google Scholar
von Hofsten, C. (2007). Action in development. Developmental Science, 10(1), 5460.Google Scholar
von Hofsten, C., & Fazel-Zandy, S. (1984). Development of visually guided hand orientation in reaching. Journal of Experimental Child Psychology, 38(2), 208219.Google Scholar
von Hofsten, C., & Rönnqvist, L. (1988). Preparation for grasping an object: A developmental study. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 610621.Google Scholar
Vygotsky, L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology, 5(3), 618.Google Scholar
Weisberg, D. S., Hirsh-Pasek, K., Golinkoff, R. M., Kittredge, A. K., & Klahr, D. (2016). Guided play: Principles and practices. Current Directions in Psychological Science, 25(3), 177182.Google Scholar
Weisner, T. S. (1987). Socialization for parenthood in sibling caretaking societies. In Altmann, J. (Ed.), Parenting across the life span: Biosocial dimensions (pp. 237270). New York, NY: Routledge.Google Scholar
Welniarz, Q., Delsart, I., & Roze, E. (2017). The corticospinal tract: Evolution, development, and human disorders. Developmental Neurobiology, 77, 810829.Google Scholar
Werner, H., & Kaplan, B. (1963). Symbol formation. Oxford: Wiley.Google Scholar
Witherington, D. (2005). The development of prospective grasping control between 5 and 7 months. Infancy, 7, 143161.Google Scholar
Wolfe, S. W., Crisco, J. J., Orr, C. M., & Marzke, M. W. (2006). The dart-throwing motion of the wrist: is it unique to humans? Journal of Hand Surgery, 31(9), 14291437.Google Scholar
Wooldridge, M. B., & Shapka, J. (2012). Playing with technology: Mother–toddler interaction scores lower during play with electronic toys. Journal of Applied Developmental Psychology, 33(5), 211218.Google Scholar
Yu, C., & Smith, L. (2016). The social origins of sustained attention in 1-year-old human infants. Current Biology, 26(9), R357R359.Google Scholar
Zosh, J. M., Verdine, B. N., Filipowicz, A., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2015). Talking shape: Parental language with electronic versus traditional shape sorters. Mind, Brain, and Education, 9(3), 136144.Google Scholar

References

Adolph, K., Tamis-LeMonda, C., Gilmore, R. O., & Soska, K. (2018). Play & learning across a year (PLAY) project summit (2018-06-29 Philadelphia). Databrary. Retrieved from http://doi.org/10.17910/B7.724.Google Scholar
Adolphs, R. (2002). Recognizing emotion from facial expressions: Psychological and neurological mechanisms. Behavioral and Cognitive Neuroscience Reviews, 1(1), 2162.Google Scholar
Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron, 21, 373383.Google Scholar
Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387(6631), 401.Google Scholar
Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R., & Livingstone, M. S. (2017). Seeing faces is necessary for face-domain formation. Nature Neuroscience, 20(10), 1404.Google Scholar
Augustine, E., Jones, S. S., Smith, L. B., & Longfield, E. (2015). Relations among early object recognition skills: Objects and letters. Journal of Cognition and Development, 16(2), 221235.Google Scholar
Bambach, S., Crandall, D. J., & Yu, C. (2015). Viewpoint integration for hand-based recognition of social interactions from a first-person view. Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, November, 351354.Google Scholar
Bechtel, W., & Richardson, R. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton, NJ: Princeton University Press.Google Scholar
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551565.Google Scholar
Bergelson, E., Amatuni, A., Dailey, S., Koorathota, S., & Tor, S. (2019). Day by day, hour by hour: Naturalistic language input to infants. Developmental Science, 22(1), e12715.Google Scholar
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 32533258.Google Scholar
Bertenthal, B. I., Campos, J. J., & Barrett, K. C. (1984). Self-produced locomotion. In Bertenthal, B. I., Campos, J. J. & Barrett, K. C. (Eds.), Continuities and discontinuities in development (pp. 175210). New York, NY: Springer.Google Scholar
Blais, C., Jack, R. E., Scheepers, C., Fiset, D., & Caldara, R. (2008). Culture shapes how we look at faces. PloS One, 3(8), e3022.Google Scholar
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 15881609.Google Scholar
Brandone, A. C. (2015). Infants’ social and motor experience and the emerging understanding of intentional actions. Developmental Psychology, 51(4), 512.Google Scholar
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99108.Google Scholar
Burling, J. M., & Yoshida, H. (2018). Visual constancies amidst changes in handled objects for 5- to 24-month-old infants. Child Development, 90(2), 452461.Google Scholar
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64(4), 10051021.Google Scholar
Bushnell, W. (2003). Newborn face recognition. In Pascalis, O. & Slater, A. (Eds.), The development of face processing in infancy and early childhood (pp. 4153) New York, NY: Nova Science.Google Scholar
Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from extended brain–body–behavior networks. Trends in Cognitive Sciences, 18(8), 395403.Google Scholar
Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A., & DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 10(12), e1003963.Google Scholar
Cameron, C. E., Cottone, E. A., Murrah, W. M., & Grissmer, D. W. (2016). How are motor skills linked to children’s school performance and academic achievement? Child Development Perspectives, 10(2), 9398.Google Scholar
Carey, S., & Diamond, R. (1994). Are faces perceived as configurations more by adults than by children? Visual Cognition, 1(2–3), 253274.Google Scholar
Castelhano, M. S., & Witherspoon, R. L. (2016). How you use it matters: Object function guides attention during visual search in scenes. Psychological Science, 27(5), 606621.Google Scholar
Chua, H. F., Boland, J. E., & Nisbett, R. E. (2005). Cultural variation in eye movements during scene perception. Proceedings of the National Academy of Sciences, 102(35), 1262912633.Google Scholar
Clark, E. V., & Estigarribia, B. (2011). Using speech and gesture to introduce new objects to young children. Gesture, 11(1), 123.Google Scholar
Clerkin, E. M., Hart, E., Rehg, J. M., Yu, C., & Smith, L. B. (2017). Real-world visual statistics and infants’ first-learned object names. Philosophical Transactions of the Royal Society B, 372(1711), 20160055.Google Scholar
Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466476.Google Scholar
Collins, F. S. (2011). Reengineering translational science: The time is right. Science Translational Medicine, 3(90). doi: 10.1126/scitranslmed.3002747.Google Scholar
D’Souza, D. E., D’Souza, H., & Karmiloff-Smith, A. (2017). Precursors to language development in typically and atypically developing infants and toddlers: The importance of embracing complexity. Journal of Child Language, 44(3), 591627.Google Scholar
DiCarlo, J. J., & Cox, D. D. J. (2007). Untangling invariant object recognition. Trends in Cognitive Science, 11(8), 333341.Google Scholar
Dickinson, D. K., Golinkoff, R. M., & Hirsh-Pasek, K. (2010). Speaking out for language: Why language is central to reading development. Educational Researcher, 39(4), 305310.Google Scholar
Dobson, V., Teller, D. Y., & Belgum, J. J. (1978). Visual acuity in human infants assessed with stationary stripes and phase-alternated checkerboards. Vision Research, 18(9), 12331238.Google Scholar
Doherty, M. J., Anderson, J. R., & Howieson, L. (2009). The rapid development of explicit gaze judgment ability at 3 years. Journal of Experimental Child Psychology, 104(3), 296312.Google Scholar
Dolgin, E. (2015). The myopia boom. Nature, 519(7543), 276.Google Scholar
Duffy, S., Toriyama, R., Itakura, S., & Kitayama, S. (2009). Development of cultural strategies of attention in North American and Japanese children. Journal of Experimental Child Psychology, 102, 351359.Google Scholar
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York, NY: Basic Books.Google Scholar
Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s action goals. Nature Neuroscience, 9(7), 878.Google Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297.Google Scholar
Farroni, T., Johnson, M. H., Brockbank, M., & Simion, F. (2000). Infants’ use of gaze direction to cue attention: The importance of perceived motion. Visual Cognition, 7(6), 705718.Google Scholar
Farroni, T., Pividori, D., Simion, F., Massaccesi, S., & Johnson, M. H. (2004). Eye gaze cueing of attention in newborns. Infancy, 5(1), 3960.Google Scholar
Fathi, A., Ren, X., & Rehg, J. M. (2011). Learning to recognize objects in egocentric activities. Paper presented at the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO.Google Scholar
Fausey, C. M., Jayaraman, S., & Smith, L. B. (2016). From faces to hands: Changing visual input in the first two years. Cognition, 152, 101107.Google Scholar
Fernald, A., & Weisleder, A. (2015). Twenty years after “meaningful differences,” it’s time to reframe the “deficit” debate about the importance of children’s early language experience. Human Development, 58(1), 1.Google Scholar
Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424(6950), 769.Google Scholar
Foody, G. M., McCulloch, M. B., & Yates, W. B. (1995). The effect of training set size and composition on artificial neural network classification. International Journal of Remote Sensing, 16, 17071723Google Scholar
Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 19201931.Google Scholar
Franchak, J. M., & Adolph, K. E. J. (2010). Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 50(24), 27662774.Google Scholar
Franchak, J. M., Kretch, K. S., & Adolph, K. E. (2018). See and be seen: Infant–caregiver social looking during locomotor free play. Developmental Science, 21(4), e12626.Google Scholar
Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., … Lew-Williams, C. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. Infancy, 22(4), 421435.Google Scholar
Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring the face recognition mechanisms. Vision Research, 37(12), 16731682.Google Scholar
Geisler, W. S. (2008). Visual perception and the statistical properties of natural scenes. Annual Review of Psychology, 59, 167192.Google Scholar
Gerson, S. A., Meyer, M., Hunnius, S., & Bekkering, H. (2017). Unravelling the contributions of motor experience and conceptual knowledge in action perception: A training study. Scientific Reports, 7, 46761.Google Scholar
Gilkerson, J., & Richards, J. A. (2008). The LENA natural language study. Boulder, CO: LENA Foundation.Google Scholar
Gilmore, R. O., Baker, T. J., & Grobman, K. (2004). Stability in young infants’ discrimination of optic flow. Developmental Psychology, 40(2), 259.Google Scholar
Gogate, L. J., Bahrick, L. E., & Watson, J. D. (2000). A study of multimodal motherese: The role of temporal synchrony between verbal labels and gestures. Child Development, 71(4), 878894.Google Scholar
Goh, J. O. S., Hebrank, A. C., Sutton, B. P., Chee, M. W. L., Sim, S. K. Y., & Park, D. C. (2013). Culture-related differences in default network during visuo-spatial judgments. Social Cognitive and Affective Neuroscience, 8, 134142.Google Scholar
Goldin-Meadow, S., & Wagner, S. M. (2005). How our hands help us learn. Trends in Cognitive Sciences, 9(5), 234241.Google Scholar
Golinkoff, R. M., Hoff, E., Rowe, M. L., Tamis-LeMonda, C. S., & Hirsh-Pasek, K. (2018). Language matters: Denying the existence of the 30-million-word gap has serious consequences. Child Development, 90(3), 985992.Google Scholar
Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544549.Google Scholar
Hadad, B. S., Maurer, D., & Lewis, T. L. (2011). Long trajectory for the development of sensitivity to global and biological motion. Developmental Science, 14(6), 13301339.Google Scholar
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665.CrossRefGoogle ScholarPubMed
Han, S., & Northoff, G. (2008). Reading direction and culture. Nature Reviews Neuroscience, 9(12), 965.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Science, 4(6), 223233.Google Scholar
Haxby, J. V., Hoffman, E. A., (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 5967.Google Scholar
Hedden, T., Ketay, S., Aron, A., Markus, H. R., & Gabrieli, J. D. E. (2008). Cultural influences on neural substrates of attentional control. Psychological Science, 19, 1217.Google Scholar
Henrich, J., Heine, S. J., & Norenzayan, A. (2010a). Beyond WEIRD: Towards a broad-based behavioral science. Behavioral and Brain Sciences, 33(2–3), 111135.Google Scholar
Henrich, J., Heine, S. J., (2010b). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183.Google Scholar
Higgins, C. I., Campos, J. J., & Kermoian, R. (1996). Effect of self-produced locomotion on infant postural compensation to optic flow. Developmental Psychology, 32(5), 836.Google Scholar
Hinton, R., Budimirovic, D. B., Marschik, P. B., Talisa, V. B., Einspieler, C., Gipson, T., & Johnston, M. V. (2013). Parental reports on early language and motor milestones in fragile X syndrome with and without autism spectrum disorders. Developmental Neurorehabilitation, 16(1), 5866.Google Scholar
Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791804.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378.Google Scholar
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16(1), 1130.Google Scholar
Hurtado, N., Marchman, V. A., & Fernald, A. (2008). Does input influence uptake? Links between maternal talk, processing speed and vocabulary size in Spanish-learning children. Developmental Science, 11(6), F31F39.Google Scholar
Huttenlocher, J., Waterfall, H., Vasilyeva, M., Vevea, J., & Hedges, L. V. (2010). Sources of variability in children’s language growth. Cognitive Psychology, 61(4), 343365.Google Scholar
Iidaka, T., Omori, M., Murata, T., Kosaka, H., Yonekura, Y., Okada, T., & Sadato, N. (2001). Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. Journal of Cognitive Neuroscience, 13(8), 10351047.Google Scholar
Im, H. Y., Park, W. J., & Chong, S. C. (2015). Ensemble statistics as units of selection. Journal of Cognitive Psychology, 27(1), 114127.Google Scholar
Imada, T., Carlson, S. M., & Itakura, S. (2013). East–West cultural differences in context sensitivity are evident in early childhood. Developmental Science, 16, 198208.Google Scholar
Ishii, K., Tsukasaki, T., & Kitayama, S. (2009). Culture and visual perception: Does perceptual inference depend on culture? Japanese Psychological Research, 51(2), 103109.Google Scholar
Iverson, J. M. (2010). Developing language in a developing body: The relationship between motor development and language development. Journal of Child Language, 37(2), 229261.Google Scholar
James, K. H. (2010). Sensori-motor experience leads to changes in visual processing in the developing brain. Developmental Science, 13(2), 279288.Google Scholar
James, K. H., & Atwood, T. P. (2009). The role of sensorimotor learning in the perception of letter-like forms: Tracking the causes of neural specialization for letters. Cognitive Neuropsychology, 26(1), 91110.Google Scholar
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2015). The faces in infant-perspective scenes change over the first year of life. PloS one, 10(5), e0123780.Google Scholar
Jayaraman, S., Fausey, C. M., (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53(1), 38.Google Scholar
Jayaraman, S., & Smith, L. B. (2017). The homeview project. Retrieved from www.iub.edu/~cogdev/homeview.html.Google Scholar
Jayaraman, S., (2018). Faces in early visual environments are persistent not just frequent. Vision Research, 157, 213221.Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1–2), 119.Google Scholar
Johnson, M. H., & Morton, J. (1991) Biology and cognitive development: The case of face recognition. Oxford: Blackwell.Google Scholar
Kanwisher, N. J. (2000). Domain specificity in face perception. Nature Neuroscience, 3(8), 759.Google Scholar
Kanwisher, N. J., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., & Adolph, K. E. (2011). Transition from crawling to walking and infants’ actions with objects and people. Child Development, 82(4), 11991209.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Adolph, K. E., & Bornstein, M. H. (2015). Places and postures: A cross-cultural comparison of sitting in 5-month-olds. Journal of Cross-Cultural Psychology, 46(8), 10231038.Google Scholar
Keller, E. F. (2007). The disappearance of function from “self-organizing systems.” In Boogerd, F., Bruggeman, F. Hofmeyre, J. H., & Westerhoff, H. V. (Eds.), Systems biology (pp. 303317). Amsterdam: Elsevier.Google Scholar
Kelly, D. J., Liu, S., Rodger, H., Miellet, S., Ge, L., & Caldara, R. (2011). Developing cultural differences in face processing. Developmental Science, 14(5), 11761184.Google Scholar
Kelly, D. J., Miellet, S., & Caldara, R. (2010). Culture shapes eye movements for visually homogeneous objects. Frontiers in Psychology, 1, 6.Google Scholar
Kitayama, S., Duffy, S., Kawamura, T., & Larsen, J. T. (2003). Perceiving an object and its context in different cultures: A cultural look at new look. Psychological Science, 14, 201206.Google Scholar
Kitson, A., Brook, A., Harvey, G., Jordan, Z., Marshall, R., O’Shea, R., & Wilson, D. (2018). Using complexity and network concepts to inform healthcare knowledge translation. International Journal of Health Policy and Management, 7(3), 231.Google Scholar
Kovack-Lesh, K. A., Horst, J. S., & Oakes, L. M. (2008). The cat is out of the bag: The joint influence of previous experience and looking behavior on infant categorization. Infancy, 13(4), 285307.Google Scholar
Kovack-Lesh, K. A., Oakes, L. M., & McMurray, B. (2012). Contributions of attentional style and previous experience to 4-month-old infants’ categorization. Infancy, 17(3), 324338.Google Scholar
Krogh-Jespersen, S., & Woodward, A. L. (2018). Reaching the goal: Active experience facilitates 8-month-old infants’ prospective analysis of goal-based actions. Journal of Experimental Child Psychology, 171, 3145.Google Scholar
Kuwabara, M., & Smith, L. B. (2016) Cultural differences in visual object recognition in 3-year-old children. Journal of Experimental Child Psychology, 147, 2238.CrossRefGoogle ScholarPubMed
Kuwabara, M., & Smith, L. B. (2012). Cross-cultural differences in cognitive development: Attention to relations and objects. Journal of Experimental Child Psychology, 113, 2035.Google Scholar
Kuwabara, M., Son, J. Y., & Smith, L. B. (2011). Attention to context: U.S. and Japanese children’s emotional judgments. Journal of Cognition and Development, 12, 502517.Google Scholar
Lansford, J. E., Godwin, J., Al-Hassan, S. M., Bacchini, D., Bornstein, M. H., Chang, L., & Malone, P. S. (2018). Longitudinal associations between parenting and youth adjustment in twelve cultural groups: Cultural normativeness of parenting as a moderator. Developmental Psychology, 54(2), 362.Google Scholar
Leffel, K., & Suskind, D. (2013, November). Parent-directed approaches to enrich the early language environments of children living in poverty. Seminars in Speech and Language, 34(4), 267278Google ScholarPubMed
Lenfant, C. (2003). Clinical research to clinical practice: Lost in translation? New England Journal of Medicine, 349(9), 868874.Google Scholar
Leonard, H. C., & Hill, E. L. (2014). The impact of motor development on typical and atypical social cognition and language: A systematic review. Child and Adolescent Mental Health, 19(3), 163170.Google Scholar
Libertus, K., & Needham, A. (2011). Reaching experience increases face preference in 3-month-old infants. Developmental Science, 14, 13551364.Google Scholar
Lloyd-Fox, S., Wu, R., Richards, J. E., Elwell, C. E., & Johnson, M. H. (2013). Cortical activation to action perception is associated with action production abilities in young infants. Cerebral Cortex, 25(2), 289297.Google Scholar
Loomis, J. M., Kelly, J. W., Pusch, M., Bailenson, J. N., & Beall, A. C. (2008). Psychophysics of perceiving eye-gaze and head direction with peripheral vision: Implications for the dynamics of eye-gaze behavior. Perception, 37(9), 14431457.Google Scholar
Macchi, C. V., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15(6), 379383.Google Scholar
Masuda, T., Ellsworth, P. C., Mesquita, B., Leu, J., Tanida, S., & van de Veerdonk, E. (2008). Placing the face in context: cultural differences in the perception of facial emotion. Journal of Personality and Social Psychology, 94(3), 365.Google Scholar
Masuda, T., & Nisbett, R. E. (2001). Attending holistically versus analytically: Comparing the context sensitivity of Japanese and Americans. Journal of Personality and Social Psychology, 81(5), 922.Google Scholar
Masuda, T., (2006). Culture and change blindness. Cognitive Science, 30(2), 381399.Google Scholar
Masuda, T., Russell, M. J., Chen, Y. Y., Hioki, K., & Caplan, J. B. (2014). N400 incongruity effect in an episodic memory task reveals different strategies for handling irrelevant contextual information for Japanese than European Canadian. Cognitive Neuroscience, 5, 1725.Google Scholar
Maurer, D. J. (2017). Critical periods re-examined: Evidence from children treated for dense cataracts. Cognitive Development, 42, 2736.Google Scholar
Maurer, D. J., & Lewis, T. L. (2001a). Visual acuity: The role of visual input in inducing postnatal change. Clinical Neuroscience Research, 1(4), 239247.CrossRefGoogle Scholar
Maurer, D., & Lewis, T. (2001b). Visual acuity and spatial contrast sensitivity: Normal development and underlying mechanisms. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (pp. 237250). Cambridge, MA: MIT Press.Google Scholar
Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. Developmental Science, 10(1), 4047.Google Scholar
McKone, E., Crookes, K., Jeffery, L., & Dilks, D. D. (2012). A critical review of the development of face recognition: Experience is less important than previously believed. Cognitive Neuropsychology, 29(1–2), 174212.Google Scholar
Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Sciences, 17(12), 627640.Google Scholar
Miyamoto, Y., Yoshikawa, S., & Kitayama, S. (2011). Feature and configuration in face processing: Japanese are more configural than Americans. Cognitive Science, 35, 563574.Google Scholar
Montag, J. L., Jones, M. N., & Smith, L. B. (2018). Quantity and diversity: Simulating early word learning environments. Cognitive Science, 42, 375412.Google Scholar
Moriguchi, Y., Evans, A. D., Hiraki, K., Itakura, S., & Lee, K. (2012). Cultural differences in the development of cognitive shifting: East–West comparison. Journal of Experimental Child Psychology, 111, 156163.Google Scholar
Moulson, M. C., Westerlund, A., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). The effects of early experience on face recognition: An event-related potential study of institutionalized children in Romania. Child Development, 80(4), 10391056.Google Scholar
Nisbett, R. E., & Masuda, T. (2003). Culture and point of view. Proceedings of the National Academy of Sciences, 100(19), 1116311170.Google Scholar
Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: Holistic versus analytic perception. Trends in Cognitive Sciences, 9, 467473.Google Scholar
Nisbett, R. E., Peng, K. P., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108, 291310.Google Scholar
Nishimura, M., Scherf, S., & Behrmann, M. (2009). Development of object recognition in humans. F1000 Biology Reports, 1, 56.Google Scholar
Norman, D. A. (2010). The research-practice gap: The need for translational developers. Interactions, 17(4), 912.Google Scholar
Oakes, L. M. (2017). Plasticity may change inputs as well as processes, structures, and responses. Cognitive Development, 42, 414.Google Scholar
Oruç, İ., & Barton, J. (2010). Critical frequencies in the perception of letters, faces, and novel shapes: Evidence for limited scale invariance for faces. Journal of Vision, 10(12), 20-20.Google Scholar
Pascalis, O., Loevenbruck, H., Quinn, P. C., Kandel, S., Tanaka, J. W., & Lee, K. (2014). On the links among face processing, language processing, and narrowing during development. Child Development Perspectives, 8(2), 6570.Google Scholar
Perry, L. K., Samuelson, L. K., Malloy, L. M., & Schiffer, R. N. (2010). Learn locally, think globally: Exemplar variability supports higher-order generalization and word learning. Psychological Science, 21(12), 18941902.CrossRefGoogle ScholarPubMed
Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735748.Google Scholar
Prevoo, M. J., & Tamis-LeMonda, C. S. (2017). Parenting and globalization in Western countries: Explaining differences in parent–child interactions. Current Opinion in Psychology, 15, 3339.Google Scholar
Ravizza, S. M., Solomon, M., Ivry, R. B., & Carter, C. S. (2013). Restricted and repetitive behaviors in autism spectrum disorders: The relationship of attention and motor deficits. Development and Psychopathology, 25(3), 773784.Google Scholar
Reese, E., Sparks, A., & Leyva, D. (2010). A review of parent interventions for preschool children’s language and emergent literacy. Journal of Early Childhood Literacy, 10(1), 97117.CrossRefGoogle Scholar
Roberts, M. Y., & Kaiser, A. P. (2011). The effectiveness of parent-implemented language interventions: A meta-analysis. American Journal of Speech-Language Pathology, 20(3), 180199.Google Scholar
Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., Rowe, M. L., & Gabrieli, J. D. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29(5), 700710.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83(5), 17621774.Google Scholar
Roy, D., Patel, R., DeCamp, P., Kubat, R., Fleischman, M., Roy, B., … Levit, M. (2006, September). The human speechome project. In Nehaniv, C., Vogt, P., Sugita, Y., & Tuci, E. (Eds.), Symbol grounding and beyond: Third International Workshop on Emergence and Evolution of Linguistic Communication (pp. 192196). Berlin: Springer.Google Scholar
Salakhutdinov, R., Torralba, A., & Tenenbaum, J. (2011). Learning to share visual appearance for multiclass object detection. Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, 14811488. https://doi.org/10.1109/CVPR.2011.5995720Google Scholar
Scherf, K. S., & Scott, L. S. (2012). Connecting developmental trajectories: Biases in face processing from infancy to adulthood. Developmental Psycholobiology, 54(6), 643663.Google Scholar
Scott, L. S., Pascalis, O., & Nelson, C. A. (2007). A domain-general theory of the development of perceptual discrimination. Current Directions in Psychological Science, 16(4), 197201.Google Scholar
Senzaki, S., Masuda, T., & Nand, K. (2014). Holistic versus analytic expressions in artworks: Cross-cultural differences and similarities in drawings and collages by Canadian and Japanese school-aged children. Journal of Cross-Cultural Psychology, 45, 12971316.Google Scholar
Shneidman, L. A., Arroyo, M. E., Levine, S. C., & Goldin-Meadow, S. (2013). What counts as effective input for word learning? Journal of Child Language, 40, 672686.Google Scholar
Simoncelli, E. P. (2003). Vision and the statistics of the visual environment. Current Opinion in Neurobiology, 13(2), 144149.Google Scholar
Smith, L. B. (2005). Action alters shape categories. Cognitive Science, 29(4), 665679.Google Scholar
Smith, L. B. (2009). From fragments to geometric shape: Changes in visual object recognition between 18 and 24 months. Current Directions in Psychological Science, 18(5), 290294.Google Scholar
Smith, L. B., Yu, C., & Pereira, A. F. J. D. S. (2011). Not your mother’s view: The dynamics of toddler visual experience. Developmental Science, 14(1), 917.Google Scholar
Smith, L. B., Yu, C., Yoshida, H., & Fausey, C. M. (2015). Contributions of head-mounted cameras to studying the visual environments of infants and young children. Journal of Cognition and Development, 16(3), 407419.Google Scholar
Sommerville, J. A., Upshaw, M. B., & Loucks, J. (2012). The nature of goal-directed action representations in infancy. Advances in Child Development and Behavior, 43, 351387.Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96, B1B11.Google Scholar
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: Motor skill acquisition facilitates three-dimensional object completion. Developmental Psychology, 46(1), 129.Google Scholar
Sperry, D. E., Sperry, L. L., & Miller, P. J. (2018). Reexamining the verbal environments of children from different socioeconomic backgrounds. Child Development, 90(4), 13031318.Google Scholar
Sporns, O., & Edelman, G. M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development, 64(4), 960981.Google Scholar
Striano, T., & Reid, V. M. (2006). Social cognition in the first year. Trends in Cognitive Sciences, 10(10), 471476.Google Scholar
Sugden, N. A., Mohamed-Ali, M. I., & Moulson, M. C. (2014). I spy with my little eye: Typical, daily exposure to faces documented from a first-person infant perspective. Developmental Psychobiology, 56(2), 249261.Google Scholar
Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5.Google Scholar
VanDam, M., Warlaumont, A. S., Bergelson, E., Cristia, A., Soderstrom, M., de Palma, P., & MacWhinney, B. (2016). HomeBank: An online repository of daylong child-centered audio recordings. Seminars in Speech and Language, 37(2), 128142.Google Scholar
Vida, M. D., & Maurer, D. (2012). Gradual improvement in fine-grained sensitivity to triadic gaze after 6 years of age. Journal of Experimental Child Psychology, 111(2), 299318.Google Scholar
Walker, D., Greenwood, C., Hart, B., & Carta, J. (1994). Prediction of school outcomes based on early language production and socioeconomic factors. Child Development, 65(2), 606621.Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24(11), 21432152.Google Scholar
Wolfe, J. M., , M. L. H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 7784.Google Scholar
Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 134.Google Scholar
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356.Google Scholar
Yoshida, H., & Smith, L. B. (2008). What’s in view for toddlers? Using a head camera to study visual experience. Infancy, 13(3), 229248.Google Scholar
Yu, C., & Smith, L. B. (2013). Joint attention without gaze following: Human infants and their parents coordinate visual attention to objects through eye–hand coordination. PloS One, 8(11), e79659.Google Scholar
Yu, C., (2017). From infant hands to parent eyes: Hand–eye coordination predicts joint attention. Child Development, 88(6), 20602078.Google Scholar
Yurovsky, D., Smith, L. B., & Yu, C. (2013). Statistical word learning at scale: The baby’s view is better. Developmental Science, 16(6), 959966.CrossRefGoogle ScholarPubMed
Zukow, P. G. (1990). Socio-perceptual bases for the emergence of language: An alternative to innatist approaches. Developmental Psychobiology, 23, 705726. https://doi.org/10.1002/dev.420230711Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×