Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T07:56:50.329Z Has data issue: false hasContentIssue false

Part V.II - Domains of Expertise: Arts, Sports, Games, and Other Skills

Published online by Cambridge University Press:  10 May 2018

K. Anders Ericsson
Affiliation:
Florida State University
Robert R. Hoffman
Affiliation:
Florida Institute for Human and Machine Cognition
Aaron Kozbelt
Affiliation:
Brooklyn College, City University of New York
A. Mark Williams
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Altenmüller, E., & Müller, D. (2013). A model of task-specific focal dystonia. Neural Networks, 48, 2531.Google Scholar
Araujo, M. V. (2016). Measuring self-regulated practice behaviours in highly skilled musicians. Psychology of Music, 44, 278292.CrossRefGoogle Scholar
Bangert, M., Jürgens, U, Häusler, U., & Altenmüller, E. (2006). Classical conditioned responses to absent tones. BMC Neuroscience, 7, 60. DOI: 10.1186/1471-2202-7-60.CrossRefGoogle ScholarPubMed
Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24, 18321834.Google Scholar
Bézenac, C., & Swindells, R. (2009). No pain, no gain? Motivation and self-regulation in music learning. International Journal of Education & the Arts, 10. http://ijea.org/v10n16/.Google Scholar
Billroth, T. (1895). Wer ist musikalisch? (Who is Musical?). Nachgelassene Schrift (ed. Hanslick, E.). Berlin: Paetel.Google Scholar
Bloom, B. S. (1985). Generalizations about talent development. In Bloom, B. S. (ed.), Developing talent in young people (pp. 507549). New York: Ballantine.Google Scholar
Boyle, J. D. (1992). Evaluation of music ability. In Colwell, R. (ed.), Handbook of research in music teaching and learning (pp. 247265). New York: Schirmer.Google Scholar
Butler, K., & Rosenkranz, K. (2006). Focal hand dystonia affecting musicians. Part I: An overview of epidemiology, pathophysiology and medical treatments. Hand Therapy, 11, 7278.Google Scholar
Chaffin, R., Demos, A. P., & Logan, T. (2016). Performing from memory. In Hallam, S., Cross, I., & Thaut, M. (eds.), The Oxford handbook of music psychology (pp. 559572). Oxford University Press.Google Scholar
Chaffin, R., & Imreh, G. (2001). A comparison of practice and self-report as sources of information about the goals of expert practice. Psychology of Music, 29, 3969.Google Scholar
Chaffin, R., Imreh, G., & Crawford, M. (2002). Practicing perfection: Memory and piano performance. Mahwah, NJ: Erlbaum.Google ScholarPubMed
Charness, N., Clifton, J., & MacDonald, L. (1988). Case study of a musical mono-savant. In Obler, L. & Fein, D. (eds.), The exceptional brain (pp. 277293). New York: Guilford.Google Scholar
Comeau, G., Huta, V., & Liu, Y. (2015). Work ethic, motivation, and parental influences in Chinese and North American children learning to play the piano. International Journal of Music Education, 33, 181194.Google Scholar
Csikszentmihalyi, M., Rathunde, K., & Whalen, S. (1993). Talented teenagers: The roots of success or failure. Cambridge University Press.Google Scholar
Davidson, J. W., Howe, M. J. A., Moore, D. G., & Sloboda, J. A. (1996). The role of parental influences in the development of musical ability. British Journal of Developmental Psychology, 14, 399412.CrossRefGoogle Scholar
Elbert, T., Candia, V., Altenmüller, E. O., Rau, H., Sterr, A., Rockstroh, B., … & Taub, E. (1998). Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport, 9, 35713575.Google Scholar
Ericsson, K. A. (2014). Why expert performance is special and cannot be extrapolated from studies of performance in the general population: A response to criticisms. Intelligence, 45, 81103.Google Scholar
Ericsson, K. A., & Crutcher, R. J. (1990). The nature of exceptional performance. In Baltes, P. B., Featherman, D. L., & Lerner, R. M. (eds.), Life-span development and behavior (Vol. 10, pp. 187217). Hillsdale, NJ: Erlbaum.Google Scholar
Ericsson, K. A., & Kintsch, W. (1995). Longterm working memory. Psychological Review, 102, 211245.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptations to task constraints. Annual Review of Psychology, 47, 273305.Google Scholar
Ericsson, K. A., Roring, R. K., & Nandagopal, K. (2007). Misunderstandings, agreements, and disagreements: Toward a cumulative science of reproducibly superior aspects of giftedness. High Ability Studies, 18, 97115.Google Scholar
Evans, P., & Bonneville-Roussy, A. (2015). Self-determined motivation for practice in university music students. Psychology of Music, 44, 10951110.Google Scholar
Evans, P., & McPherson, G. (2014). Identity and practice: The motivational benefits of a long-term musical identity. Psychology of Music, 43, 407422.Google Scholar
Evans, P., McPherson, G., & Davidson, J. (2012). The role of psychological needs in ceasing music and music learning activities. Psychology of Music, 41, 600619.Google Scholar
Fitts, P. M., & Posner, M. I. (1967). Human performance. Belmont, CA: Brooks/Cole.Google Scholar
Fiz, J. A., Aguilar, J., Carreras, A., Teixido, A., Haro, M., Rodenstein, D., & Morera, J. (1993). Maximum respiratory pressures in trumpet players. Chest, 104, 12031204.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514517.CrossRefGoogle ScholarPubMed
Gembris, H., & Heye, A. (2014). Growing older in a symphony orchestra: The development of the age-related self-concept and the self-estimated performance of professional musicians in a lifespan perspective. Musicae Scientiae, 18, 371391.Google Scholar
Green, L. (2002). How popular musicians learn. Aldershot: Ashgate.Google Scholar
Gruber, H., Degner, S., & Lehmann, A. C. (2004). Why do some commit themselves in deliberate practice for many years – and so many do not? Understanding the development of professionalism in music. In Radovan, M. & Dordevi, N. (eds.), Current issues in adult learning and motivation (pp. 222235). Ljubljana: Slovenian Institute for Adult Education.Google Scholar
Gruber, H., Weber, A., & Ziegler, A. (1996). Einsatzmoöglichkeiten retrospektiver Befragungen bei der Untersuchung des Expertiseerwerbs (The use of retrospective inquiry in the study of expertise acquisition). In Gruber, H. & Ziegler, A. (eds.), Expertiseforschung (pp. 169190). Opladen: Westdeutscher Verlag.Google Scholar
Gruhn, W., & Rauscher, F. (2002). The neurobiology of music cognition and learning. In Colwell, R. & Richardson, C. (eds.), The new handbook of research on music teaching and learning (pp. 445460). Oxford University Press.Google Scholar
Gruson, L. M. (1988). Rehearsal skill and musical competence: Does practice make perfect? In Sloboda, J. A. (ed.), Generative processes in music (pp. 91112). Oxford: Clarendon Press.Google Scholar
Hallam, S. (1995). Professional musicians’ approaches to the learning and interpretation of music. Psychology of Music, 23, 111128.Google Scholar
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 3445.Google Scholar
Hargreaves, D., Cork, C., & Setton, T. (1991). Cognitive strategies in jazz improvisation: An exploratory study. Canadian Journal of Research in Music Education, 33, 4754.Google Scholar
Hayes, R. (1989). The complete problem solver (2nd edn.). Hillsdale, NJ: Erlbaum.Google Scholar
Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502.Google Scholar
Houtsma, A. J., Durlach, N. I., & Horowitz, D. M. (1987). Comparative learning of pitch and loudness identification. Journal of the Acoustical Society of America, 81, 129132.Google Scholar
Hyllegard, R., & Bories, T. (2009). Deliberate practice theory: Perceived relevance, effort, and inherent enjoyment of music practice. Perceptual and Motor Skills, 109, 431440.Google Scholar
Jabusch, H.-C., Alpers, H., Kopiez, R., Vauth, H., & Altenmüller, E. (2009). The influence of practice on the development of motor skills in pianists: A longitudinal study in a selected motor task. Human Movement Science, 28, 7484.Google Scholar
Jørgensen, H. (1997). Time for practising? In Jørgensen, H. & Lehmann, A. C. (eds.), Does practice make perfect? (pp. 123140). Oslo: Norges Musikhogskole.Google Scholar
Keele, S., Pokorny, R., Corcos, D., & Ivry, R. (1985). Do perception and motor production share a common timing mechanism? Acta Psychologica, 60, 173193.Google Scholar
Kenny, D. T. & Ackermann, B. J. (2016). Optimizing physical and psychological health in performing musicians. In Hallam, S., Cross, I., & Thaut, M. (eds.), The Oxford handbook of music psychology (pp. 633648). Oxford University Press.Google Scholar
Kopiez, R. (1998). “Singers are late beginners”: Sängerbiographien aus Sicht der Expertiseforschung. Eine Schwachstellenanalyse (Singers’ biographies from the perspective of research on expertise: An analysis of weaknesses). In Gembris, H., Kraemer, R., & Maas, G. (eds.), Singen als Gegenstand der Grundlagenforschung (pp. 3756). Augsburg: Wissner.Google Scholar
Kopiez, R., Langner, J., & Steinhagen, P. (1999). Afrikanische Trommler (Ghana) bewerten und spielen europäische Rhythmen. Musicae Scientiae, 3, 139160.Google Scholar
Kopiez, R., & Lehmann, A. C. (2016). Musicological reports on early 20th century musical prodigies: The beginnings of an objective assessment. In McPherson, G. E. (ed.), Musical prodigies: Interpretations from psychology, education, musicology, and ethnomusicology (pp. 168184). Oxford University Press.Google Scholar
Krampe, R. T., & Ericsson, K. A. (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General, 125, 331359.Google Scholar
Law, L. N., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PloS One. http://dx.doi.org/10.1371/journal.pone.0052508.Google Scholar
Lehmann, A. C. (1997). Acquisition of expertise in music: Efficiency of deliberate practice as a moderating variable in accounting for sub-expert performance. In Deliège, I. & Sloboda, J. A. (eds.), Perception and cognition of music (pp. 161190). Hove: Psychology Press.Google Scholar
Lehmann, A. C. (2002). Effort and enjoyment in deliberate practice: A research note. In Hanken, I. M., Nielsen, S. G., & Nerland, M. (eds.), Research in and for music education: Festschrift for Harald Jørgensen (pp. 153166). Oslo: Norwegian Academy of Music.Google Scholar
Lehmann, A. C., & Ericsson, K. A. (1996). Music performance without preparation: Structure and acquisition of expert sight-reading. Psychomusicology, 15, 129.Google Scholar
Lehmann, A. C., & Ericsson, K. A. (1997). Research on expert performance and deliberate practice: Implications for the education of amateur musicians and music students. Psychomusicology, 16, 4058.Google Scholar
Lehmann, A. C. & Ericsson, K. A. (1998a). Preparation of a public piano performance: The relation between practice and performance. Musicae Scientiae, 2, 6994.Google Scholar
Lehmann, A. C., & Ericsson, K. A. (1998b). The historical development of domains of expertise: Performance standards and innovations in music. In Steptoe, A. (ed.), Genius and the mind: Studies of creativity and temperament in the historical record (pp. 6497). Oxford University Press.Google Scholar
Lehmann, A. C., & Kristensen, F. (2014). “Persons in the shadow” brought to light: Parents, teachers, and mentors – how guidance works in the acquisition of musical skills. Talent Development and Excellence, 6, 5770.Google Scholar
Lehmann, A. C., & Papousek, S. (2003). Selfreported performance goals predict actual practice behavior among adult piano beginners. In Kopiez, R., Lehmann, A. C., Wolther, I., & Wolf, C. (eds.), Proceedings of the 5th Triennial Conference of the European Society for the Cognitive Sciences of Music (pp. 389392). Hanover: University of Music and Drama.Google Scholar
Manturzewska, M. (1995). A biographical study of the life-span development of professional musicians. In Manturzewska, M., Miklaszewski, K., & Bialkowski, A. (eds.), Psychology of music today (pp. 311337). Warsaw: Fryderyk Chopin Music Academy.Google Scholar
McPherson, G. E. (ed.) (2016). Musical prodigies: Interpretations from psychology, education, musicology, and ethnomusicology. Oxford University Press.Google Scholar
McPherson, G. E., & Davidson, J. W. (2002). Musical practice: Mother and child interactions during the first year of learning an instrument. Music Education Research, 4, 141156.Google Scholar
McPherson, G. E., Davidson, J. W., & Faulkner, R. (2012). Music in our lives: Rethinking musical ability, development and identity. Oxford University Press.Google Scholar
McPherson, G. E., & Zimmerman, B. J. (2002). Self-regulation of musical learning: A social cognitive perspective. In Colwell, R. & Richardson, C. (eds.), The new handbook of research on music teaching and learning (pp. 327347). Oxford University Press.Google Scholar
Mishra, J. (2013). Factors related to sight-reading accuracy. Journal of Research in Music Education, 61, 452465.Google Scholar
Mosing, M., Pedersen, N., Madison, G., & Ullén, F. (2014). Genetic pleiatropy explains associations between musical auditory discrimination and intelligence. PloS ONE. http://dx.doi.org/10.1371/journal.pone.0113874.Google Scholar
Münte, T. F., Altenmüller, E. O., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews: Neuroscience, 3, 473478.Google Scholar
Nielsen, S. G. (2015). Learning pre-played solos: Self-regulated learning strategies in jazz/improvised music. Research Studies in Music Education, 37, 233246.Google Scholar
Nutley, S. B., Darki, F., & Klingberg, T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Psychology, 7. DOI: 10.3389/fnhum.2013.00926.Google Scholar
Ockelford, A. (2007). A music module in working memory? Evidence from the performance of a prodigious musical savant. Musicae Scentiae, 11, Special Issue, 536.Google Scholar
Palmer, C. (1997). Music performance. Annual Review of Psychology, 48, 115138.Google Scholar
Pantev, C., Roberts, L. E., Schulz, M. Engelien, A., & Ross, B. (2001). Timbre-specific enhancements of auditory cortical representations in musicians. Neuroreport, 12, 169174.Google Scholar
Platz, F., Kopiez, R., Lehmann, A. C., & Wolf, A. (2014). The influence of deliberate practice on musical achievement: A meta-analysis. Frontiers in Psychology – Cognition, 5, 646. DOI: 10.3389/fpsyg.2014.00646.Google ScholarPubMed
Pulli, K., Karma, K., Norio, R., Sistonen, P., Göring, H., & Järvelä, I. (2008). Genome-wide linkage scan for loci of musical aptitude in Finnish families: Evidence for a major locus at 4q22. Journal of Medical Genetics, 45, 451456.Google Scholar
Ragert, P., Schmidt, A., Altenmüller, E. O., & Dinse, R. (2004). Superior tactile performance and learning in professional pianists: Evidence for metaplasticity in musicians. European Journal of Neuroscience, 19, 473478.Google Scholar
Rauscher, F. H., & Hinton, S. C. (2003). Type of music training selectively influences perceptual processing. In Kopiez, R., Lehmann, A., Wolther, I., & Wolf, C. (eds.), Proceedings of the 5th Triennial Conference of the European Society for the Cognitive Sciences of Music (pp. 8992). Hanover: University of Music and Drama.Google Scholar
Renwick, J., & McPherson, G. E. (2002). Interest and choice: Student-selected repertoire and its effect on practising behavior. British Journal of Music Education, 19, 173188.Google Scholar
Roth, B. (2012). Die Bedeutung von Motivation und Willen für das Üben von Instrumenten. Eine Studie zum musikalischen Lernen von älteren Schülern und Schulmusikstudierenden (The importance of motivation and volition for instrumental music practicing). Augsburg: Wissner.Google Scholar
Schneider, P., Sluming, V., Roberts, N., Bleeck, S., & Rupp, A. (2005). Structural, functional and perceptual differences in the auditory cortex of musicians and non-musicians predict musical instrument preference. Annals of the New York Academy of Sciences, 1060, 387394.Google Scholar
Seashore, C. E. (1938). The psychology of music. New York: Dover.Google Scholar
Sloboda, J. A., Davidson, J. W., Howe, M. J. A., & Moore, D. G. (1996). The role of practice in the development of performing musicians. British Journal of Psychology, 87, 287309.Google Scholar
Sloboda, J. A., Hermelin, B., & O’Connor, N. (1985). An exceptional musical memory. Music Perception, 3, 155170.Google Scholar
Snyder, B. (2016). Memory for music. In Hallam, S., Cross, I., & Thaut, M. (eds.), The Oxford handbook of music psychology (pp. 167180). Oxford University Press.Google Scholar
Sudnow, D. (1993). Ways of the hand: The organisation of improvised conduct. London: Routledge & Kegan Paul.Google Scholar
Sundberg, J. (1987). The science of the singing voice. De Kalb: Northern Illinois University Press.Google Scholar
Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5. DOI: 10.3389/fpsyg.2014.00658.Google Scholar
Wagner, C. (1988). The pianist’s hand: Anthropometry and biomechanics. Ergonomics, 31, 97131.Google Scholar
Weisberg, R. W. (1999). Creativity and knowledge. In Sternberg, R. J. (ed.), Handbook of creativity (pp. 226250). Cambridge University Press.Google Scholar
Williamon, A. (ed.) (2004). Musical excellence: Strategies and techniques to enhance performance. Oxford University Press.Google Scholar
Williamon, A., & Valentine, E. (2000). Quantity and quality of musical practice as predictors of performance quality. British Journal of Psychology, 91, 353376.Google Scholar
Winner, E. (1996). The rage to master: The decisive role of talent in the visual arts. In Ericsson, K. A. (ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games (pp. 271302). Mahwah, NJ: Erlbaum.Google Scholar
Woody, R. H. (1999). The relationship between advanced musicians’ explicit planning and their expressive performance of dynamic variations in an aural modeling task. Journal of Research in Music Education, 47, 331342.Google Scholar
Woody, R. H. (2003). Explaining expressive performance: Component cognitive skills in an aural modeling task. Journal of Research in Music Education, 51, 5163.Google Scholar

References

Altenmüller, E. (2003). Focal dystonia: Advances in brain imaging and understanding of fine motor control in musicians. Hand Clinics, 19, 523538.Google Scholar
Altenmüller, E., Baur, V., Hofmann, A., Lim, V. K., & Jabusch, H. C. (2012). Musician’s cramp as manifestation of maladaptive brain plasticity: Arguments from instrumental differences. Annals of the New York Academy of Sciences, 1252, 259265.Google Scholar
Altenmüller, E., & Furuya, S. (2016a). Brain plasticity and the concept of metaplasticity in skilled musicians. In Laczko, J. & Latash, M. L. (eds.), Progress in motor control: Theories and translations (pp. 197208). Berlin: Springer.Google Scholar
Altenmüller, E., & Furuya, S. (2016b). Planning and performance. In Hallam, S., Cross, I., & Thaut, M. (eds.), The Oxford handbook of music psychology (pp. 529546). Oxford University Press.Google Scholar
Altenmüller, E., Ioannou, C. I., & Lee, A. (2015). Apollo’s curse: Neurological causes of motor impairments in musicians. Progress in Brain Research, 217, 89106.Google Scholar
Altenmüller, E., Münte, T. H., & Gerloff, C. (2004). Neurocognitive functions and the EEG. In Niedermeyer, E. & da Silva, F. Lopes (eds.), Electroencephalography (pp. 661682). Baltimore: Lippincott Williams.Google Scholar
Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5, 206215.Google Scholar
Amunts, K., & Zilles, K. (2015). Architectonic mapping of the human brain beyond Brodmann. Neuron, 88, 10861107.Google Scholar
Auerbach, S. (1906). Zur Lokalisation des musicalischen Talentes im Gehirn und am Schädel. Archives of Anatomy and Physiology, 197230 (also 1908, 31–8; 1911, 110; 1913 (Suppl.), 8996).Google Scholar
Baharloo, S., Johnston, P. A., Service, S. K., Gitschier, J., & Freimer, N. B. (1998). Absolute pitch: An approach for identification of genetic and nongenetic components. American Journal of Human Genetics, 62, 224231.Google Scholar
Baharloo, S., Service, S. K., Risch, N., Gitschier, J., & Freimer, N. B. (2000). Familial aggregation of absolute pitch. American Journal of Human Genetics, 67, 755758.Google Scholar
Bandettini, P. A. (2009). What is new in neuroimaging methods? Annals of the New York Academy of Sciences, 1156, 260293.Google Scholar
Bangert, M. & Altenmüller, E. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 2636.Google Scholar
Bangert, M., Peschel, T., Rotte, M., Drescher, D., Hinrichs, H., Schlaug, G., … & Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.Google Scholar
Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external brain morphology. European Journal of Neuroscience, 24, 18321834.Google Scholar
Battistella, G., Termsarasab, P., Ramdhani, R. A., Fuertinger, S., & Simonyan, K. (2015). Isolated focal dystonia as a disorder of large-scale functional networks. Cerebral Cortex, 26, 113.Google Scholar
Baur, V., Jabusch, H. C., & Altenmüller, E. (2011). Behavioral factors influence the phenotype of musician’s dystonia. Movement Disorders, 26, 17801781.Google Scholar
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 11481150.Google Scholar
Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2008). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 15831596.Google Scholar
Brown, R. M., Chen, J. L., Hollinger, A., Palmer, C., Penhune, V., & Zatorre, R. J. (2013). Repetition suppression in auditory-motor regions to pitch and temporal structure in music. Journal of Cognitive Neuroscience, 25, 313328.Google Scholar
Brown, R. M., Penhune, V. B., & Zatorre, R. (2015). Expert music performance: Cognitive, neural, and developmental bases. Progress in Brain Research, 217, 5786.Google Scholar
Byl, N. N., Merzenich, M. M., & Jenkins, W. M. (1996). A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology, 47, 508520.Google Scholar
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20, 226239.Google Scholar
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 28442854.Google Scholar
Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222.Google Scholar
De Manzano, Ö., & Ullén, F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272280.Google Scholar
Elbert, T., Candia, V., Altenmüller, E., Rau, H., Rockstroh, B., Pantev, C., & Taub, E. (1998). Alteration of digital representations in somatosensory cortex in focal hand dystonia. NeuroReport, 16, 35713575.Google Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307.Google Scholar
Ellis, R. J., Norton, A., Overy, K., Winner, E., Alsop, D., & Schlaug, G. (2013). Differentiating maturational and training influences on fMRI activation during music processing. NeuroImage, 75, 97107.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273305.Google Scholar
Foster, N. E., & Zatorre, R. J. (2010). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex, 20, 13501359.Google Scholar
Furuya, S., & Altenmüller, E. (2013a). Flexibility of movement organization in piano performance. Frontiers in Human Neuroscience, 7, 173.Google Scholar
Furuya, S., & Altenmüller, E. (2013b). Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience, 247, 152163.Google Scholar
Furuya, S., Klaus, M., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014a). Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. Journal of Neuroscience, 34, 1383413839.Google Scholar
Furuya, S., Nitsche, M. A., Paulus, W., & Altenmüller, E. (2014b). Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Annals of Neurology, 75, 700707.Google Scholar
Furuya, S., Oku, T., Miyazaki, F., & Kinoshita, H. (2015). Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians. Scientific Reports, 5, 15750. DOI: 10.1038/srep15750.Google Scholar
Gaab, N., Gaser, C., & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. NeuroImage, 31, 255263.Google Scholar
Gärtner, H., Minnerop, M., Pieperhoff, P., Schleicher, A., Zilles, K., Altenmüller, E., & Amunts, K. (2013). Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Frontiers in Psychology, 4. DOI: 10.3389/fpsyg.2013.00636.Google Scholar
Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 92409245.Google Scholar
Gentner, R., & Classen, J. (2006). Modular organization of finger movements by the human central nervous system. Neuron, 52, 731742.Google Scholar
Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 370, 20140092. DOI: 10.1098/rstb.2014.0092.Google Scholar
Granert, O., Peller, M., Jabusch, H. C., Altenmüller, E., & Siebner, H. R. (2011). Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. Journal of Neurology, Neurosurgery and Psychiatry, 82, 12251231.CrossRefGoogle ScholarPubMed
Gregersen, P. K., Kowalsky, E., Kohn, N., & Marvin, E. W. (2001). Early childhood music education and predisposition to absolute pitch: Teasing apart genes and environment. American Journal of Medical Genetics, 98, 280282.Google Scholar
Haber, J. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26, 317330.Google Scholar
Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, 156.Google Scholar
Haslinger, B., Altenmüller, E., Castrop, F., Zimmer, C., & Dresel, C. (2010). Sensorimotor overactivity as a pathophysiologic trait of embouchure dystonia. Neurology, 74, 17901797.Google Scholar
Haslinger, B., Erhard, P., Altenmüller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17, 282293.Google Scholar
Henry, D. E., Chiodo, A. E., & Yang, W. (2011). Central nervous system reorganization in a variety of chronic pain states: A review. PM&R, 3, 11161125.Google Scholar
Herholz, S. C., Coffey, E. B., Pantev, C., & Zatorre, R. J. (2016). Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cerebral Cortex, 26, 31253134.Google Scholar
Herholz, S. C., & Zatorre, R. J., (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502.Google Scholar
Herrojo-Ruiz, M., Jabusch, H. C., & Altenmüller, E. (2009a). Detecting wrong notes in advance: Neuronal correlates of error monitoring in pianists. Cerebral Cortex, 19, 26252639.Google Scholar
Herrojo-Ruiz, M., Senghaas, P., Grossbach, M., Jabusch, H. C., Bangert, M., Hummel, F., … & Altenmüller, E. (2009b). Defective inhibition and inter-regional phase synchronization in pianists with musician’s dystonia (MD): An EEG study. Human Brain Mapping, 30, 26892700.Google Scholar
Hikosaka, O., & Nakamura, K. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12, 217222.Google Scholar
Hirata, Y., Kuriki, S., & Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. NeuroReport, 10, 9991002.Google Scholar
Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29, 30193025.Google Scholar
Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jäncke, L. (2009). White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. NeuroImage, 46, 600607.Google Scholar
Ioannou, C. I., & Altenmüller, E. (2014). Psychological characteristics in musician’s dystonia: A new diagnostic classification. Neuropsychologia, 61, 8088.Google Scholar
Ioannou, C. I., Furuya, S., & Altenmüller, E. (2016). The impact of stress on motor performance in skilled musicians suffering from focal dystonia: Physiological and psychological characteristics. Neuropsychologia, 85, 226236.Google Scholar
Jabusch, H. C., & Altenmüller, E. (2004). Anxiety as an aggravating factor during onset of focal dystonia in musicians. Medical Problems of Performing Artists, 19, 7581.Google Scholar
Jabusch, H. C., Müller, S. V., & Altenmüller, E. (2004). High levels of perfectionism and anxiety in musicians with focal dystonia. Movement Disorders, 19, 990991.Google Scholar
James, C. E., Oechslin, M. S., Van De Ville, D., Hauert, C.-A., Descloux, C., & Lazeyras, F. (2013). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure & Function, 219, 5366.Google Scholar
Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20, 11441152.Google Scholar
Koelsch, S. (2011). Toward a neural basis of music perception: A review and updated model. Frontiers in Psychology, 2, 110. DOI: 10.3389/fpsyg.2011.00110.Google Scholar
Krampe, R., & Ericsson, K. (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General, 125, 331359.Google Scholar
Kraus, N., McGee, T. J., & Koch, D. B. (1998). Speech sound representation, perception and plasticity: A neurophysiologic perspective. Audiology & Neuro-otology, 3, 168182.Google Scholar
Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O. (2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18, 33753387.Google Scholar
Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27, 308314.Google Scholar
Lee, A., Heiß, P., Eich, C., Ioannou, I. C., & Altenmüller, E. (Forthcoming). Phenomenology, risk-factors and treatment outcome in 369 musicians with focal dystonia. Submitted to Journal of Clinical Movement Disorders.Google Scholar
Lehmann, A. C. & Ericsson, K. A. (1998). The historical development of expert performance: Public performance of music. In Steptoe, A. (ed.), Genius and the mind (pp. 6797). Oxford University Press.Google Scholar
Lim, V., & Altenmüller, E. (2003). Musician’s cramp: Instrumental and gender differences. Medical Problems of Performing Artists, 18, 2127.Google Scholar
Lin, P. T., & Hallett, M. (2009). The pathophysiology of focal hand dystonia. Journal of Hand Therapy, 22, 109113.Google Scholar
Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2010). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 54, 521528.Google Scholar
Meinz, E. J. (2000). Experience-based attenuation of age-related differences in music cognition tasks. Psychology and Aging, 15, 297312.Google Scholar
Miyazaki, K. (1988). Musical pitch identification by absolute pitch possessors. Perception & Psychophysics, 44, 501512.Google Scholar
Mosing, M. A., Madison, G., Pedersen, N. L., Kuja-Halkola, R., & Ullén, F. (2014). Practice does not make perfect: No causal effect of music practice on music ability. Psychological Science, 43, 19.Google Scholar
Münte, T. F., Kohlmetz, C., Nager, W., & Altenmüller, E. (2001). Neuroperception: Superior auditory spatial tuning in professional conductors. Nature, 409, 580.Google Scholar
Münte, T. F., Nager, W., Beiss, T., Schroeder, C., & Altenmüller, E. (2003). Specialization of the specialized: Electrophysiological investigations in professional musicians. Annals of the New York Academy of Sciences, 999, 131139.Google Scholar
Oechslin, M. S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: A diffusion tensor imaging study. Frontiers in Human Neuroscience, 3, 112.Google Scholar
Öztürk, A. H., Tascioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29, 2934.Google Scholar
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811814.Google Scholar
Pascual-Leone, A. (2001). The brain that plays music and is changed by it. Annals of the New York Academy of Sciences, 930, 315329.Google Scholar
Pascual-Leone, A., Grafman, J., & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 12871289.Google Scholar
Paulig, J., Jabusch, H. C., Großbach, M., Boullet, L., & Altenmüller, E. (2014). Sensory trick phenomenon improves motor control in pianists with dystonia: Prognostic value of glove-effect. Frontiers in Psychology, 5, 1012. DOI: 10.3389/fpsyg.2014.01012.Google Scholar
Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H. R. (2003). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19, 473478.Google Scholar
Ramnani, N. (2014). Automatic and controlled processing in the corticocerebellar system. Progress in Brain Research, 210, 255285.Google Scholar
Ridding, M. C., Brouwer, B., & Nordstrom, M. A. (2000). Reduced interhemispheric inhibition in musicians. Experimental Brain Research, 133, 249253.Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.Google Scholar
Roland, P. E., & Zilles, J. (1996). Functions and structures of the motor cortices in humans. Current Opinion in Neurobiology, 6, 773781.Google Scholar
Rosenkranz, K., Altenmüller, E., Siggelkow, S., & Dengler, R. (2000). Alteration of sensorimotor integration in musician’s cramp: Impaired focussing of proprioception. Clinical Neurophysiology, 111, 20362041.Google Scholar
Rosenkranz, K., Williamon, A., Butler, K., Cordivari, C., Lees, A. J., & Rothwell, J. C. (2005). Pathophysiological differences between musician’s dystonia and writer’s cramp. Brain, 128, 918931.Google Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216219.Google Scholar
Schlaug, G. (2001). The brain of musicians: A model for functional and structural plasticity. Annals of the New York Academy of Sciences, 930, 281299.Google Scholar
Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 3755.CrossRefGoogle Scholar
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995a). Increased corpus callosum size in musicians. Neuropsychologia, 33, 10471055.Google Scholar
Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995b). In vivo evidence of structural brain asymmetry in musicians. Science, 267, 699701.Google Scholar
Schmidt, A., Jabusch, H. C., Altenmüller, E., Hagenah, J., Brüggemann, N., Lohmann, K., … & Klein, C. (2009). Etiology of musician’s dystonia: Familial or environmental? Neurology, 72, 12481254.Google Scholar
Schmidt, A., Jabusch, H. C., Altenmüller, E., Kasten, M., & Klein, C. (2013). Challenges of making music: What causes musician’s dystonia? JAMA Neurology, 70, 14561459.Google Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688694.Google Scholar
Schneider, P., Sluming, V., Roberts, N., Scherg, M., Goebel, R., Specht, H. J., … & Rupp, A. (2005). Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nature Neuroscience, 8, 12411247.Google Scholar
Seger, C. A. (2006). The basal ganglia in human learning. Neuroscientist, 12, 285290.Google Scholar
Sergeant, D. (1968). Experimental investigation of absolute pitch. Journal of Research in Music Education, 17, 135143.Google Scholar
Skoe, E., & Kraus, N. (2013). Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 4, 622.Google Scholar
Sommer, M., Ruge, D., Tergau, F., Beuche, W., Altenmüller, E., & Paulus, W. (2002). Spatial distribution of intracortical inhibition and facilitation in focal dystonia. Movement Disorders, 17, 10171025.Google Scholar
Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of Neuroscience, 33, 12821290.Google Scholar
Stetson, C., & Anderson, C. A. (2015). Early planning in frontal and parietal cortex in a simplified task. Journal of Neurophysiology, 113, 39153922.Google Scholar
Stewart, L., Henson, R., Kampe, K., Walsch, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. NeuroImage, 20, 7183.Google Scholar
Strübing, F., Ruiz, M. H., Jabusch, H. C., & Altenmüller, E. (2012). Error monitoring is altered in musician’s dystonia: Evidence from ERP-based studies. Annals of the New York Academy of Sciences, 1252, 192199Google Scholar
Taubert, M., Villringer, A., & Ragert, P. (2012). Learning-related gray and white matter changes in humans: An update. Neuroscientist, 18, 320325.Google Scholar
Termsarasab, P., Ramdhani, R. A., Battistella, G., Rubien-Thomas, E., Choy, M., Farwell, I. M., & Simonyan, K. (2015). Neural correlates of abnormal sensory discrimination in laryngeal dystonia. NeuroImage, 10, 1826.Google Scholar
van Vugt, F. T., Boullet, L., Jabusch, H. C., & Altenmüller, E. (2014). Musician’s dystonia in pianists: Long-term evaluation of retraining and other therapies. Parkinsonism & Related Disorders, 20, 812.Google Scholar
Vaquero, L., Hartmann, K., Ripolles, P., Rojo, N., Sierpowska, J., François, C., … & Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. NeuroImage, 126, 106119.Google Scholar
Vollmann, H., Ragert, P., Conde, V., Villringer, A., Classen, J., Witte, O. W., & Steel, J. (2014). Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: A comparison between musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8, 245. DOI: 10.3389/fnbeh.2014.00245.Google Scholar
Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: Auditory–motor transformations and the posterior temporal plane. Trends in Neurosciences, 28, 636643.Google Scholar
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10, 420422.Google Scholar
Zatorre, R. J. (2001). Neural specializations for tonal processing. Annals of the New York Academy of Sciences, 930, 193210.Google Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547558.Google Scholar
Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the USA, 110, 1043010437.Google Scholar

References

Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 9971013.Google Scholar
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115117.Google Scholar
Biederman, I., & Kim, J. G. (2008). 17,000 years of depicting the junction of two smooth shapes. Perception, 37, 161164.Google Scholar
Brown, D. (1991). Human universals. New York: McGraw-Hill.Google Scholar
Bullot, N. J., & Reber, R. (2013). The artful mind meets art history: Toward a psycho-historical framework for the science of art appreciation. Behavioral and Brain Sciences, 36, 123137.Google Scholar
Carson, L., & Allard, F. (2013). Angle-drawing accuracy as an objective performance-based measure of drawing expertise. Psychology of Aesthetics, Creativity, and the Arts, 7, 119129.Google Scholar
Cennini, C. d’A. (1954). The craftsman’s handbook (Il libro dell’arte) (trans. Thompson, D. V. Jr.). New York: Dover. (Original work published early fifteenth century)Google Scholar
Chamberlain, R., McManus, I. C., Brunswick, N., Rankin, Q., & Riley, H. (2015). Scratching the surface: Practice, personality, approaches to learning, and the acquisition of high-level representational drawing ability. Psychology of Aesthetics, Creativity, and the Arts, 9, 451462.Google Scholar
Chamberlain, R., McManus, I. C., Riley, H., Rankin, Q., & Brunswick, N. (2013). Local processing enhancements associated with superior observational drawing are due to enhanced perceptual functioning, not weak central coherence. Quarterly Journal of Experimental Psychology, 66, 14481466.Google Scholar
Chamberlain, R., McManus, I. C., Riley, H., Rankin, Q., & Brunswick, N. (2014). Cain’s house task revisited and revived: Extending theory and methodology for quantifying drawing accuracy. Psychology of Aesthetics, Creativity, and the Arts, 8, 152167.Google Scholar
Chamberlain, R., & Wagemans, J. (2015). Visual arts training is linked to flexible attention to local and global levels of visual stimuli. Acta Psychologica, 161, 185197.Google Scholar
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 5581.Google Scholar
Cohen, D. J., & Bennett, S. (1997). Why can’t most people draw what they see? Journal of Experimental Psychology: Human Perception and Performance, 23, 609621.Google Scholar
Cohen, D. J., & Earls, H. (2010). Inverting an image does not improve drawing accuracy. Psychology of Aesthetics, Creativity, and the Arts, 4, 168172.Google Scholar
Cohen, D. J., & Jones, H. E. (2008). How shape constancy relates to drawing accuracy. Psychology of Aesthetics, Creativity, and the Arts, 2, 819.Google Scholar
Cupchik, G. C. (1992). From perception to production: A multilevel analysis of the aesthetic process. In Cupchik, G. C. & Laszlo, J. (eds.), Emerging visions of the aesthetic process (pp. 8399). Cambridge University Press.Google Scholar
Dodson, B. (1985). Keys to drawing. Cincinnati, OH: North Light Books.Google Scholar
Drake, J. E., & Winner, E. (2011). Realistic drawing talent in typical adults is associated with the same kind of local processing bias found in individuals with ASD. Journal of Autism and Developmental Disorders, 41, 11921201.Google Scholar
Drake, J., & Winner, E. (2012). Predicting artistic brilliance. Scientific American Mind, 23, 4248.Google Scholar
Edwards, B. (2012). Drawing on the right side of the brain. New York: Penguin.Google Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273305.Google Scholar
Feist, G. J. (2004). The evolved fluid specificity of human creative talent. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (eds.), Creativity: From potential to realization (pp. 5782). Washington, DC: American Psychological Association.Google Scholar
Firestone, C., & Scholl, B. J. (2015). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences, 20, 177.Google Scholar
Fry, R. (1960). Vision and design. New York: Meridian Books. (Original work published 1919)Google Scholar
Gaines, R. (1975). Developmental perception and cognitive styles: From young children to master artists. Perceptual and Motor Skills, 40, 983998.Google Scholar
Galenson, D. W. (2001). Painting outside the lines: Patterns of creativity in modern art. Cambridge, MA: Harvard University Press.Google Scholar
Gardner, H. (1983). Frames of mind. New York: Basic Books.Google Scholar
Glazek, K. (2012). Visual and motor processing in visual artists: Implications for cognitive and neural mechanisms. Psychology of Aesthetics, Creativity, and the Arts, 6, 155167.Google Scholar
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6, 225255.Google Scholar
Goldwater, R., & Treves, M. (eds.) (1972). Artists on art from the 14th to the 20th century. New York: Pantheon.Google Scholar
Gombrich, E. H. (1960). Art and illusion. Princeton University Press.Google Scholar
Gowen, E., & Miall, R. C. (2006). Eye–hand interactions in tracing and drawing tasks. Human Movement Science, 25, 568585.Google Scholar
Hamm, J. (1963). Drawing the head and figure. New York: Grosset & Dunlap.Google Scholar
Hammad, S., Kennedy, J. M., Juricevic, I., & Rajani, S. (2008). Ellipses on the surface of a picture. Perception, 37, 504510.Google Scholar
Hayes, S., & Milne, N. (2011). What’s wrong with this picture? An experiment in quantifying accuracy in 2D portrait drawing. Visual Communication, 10, 149174.Google Scholar
Hoffman, H. S. (1989). Vision and the art of drawing. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Kaufman, J. C., Baer, J., Cole, J. C., & Sexton, J. D. (2008). A comparison of expert and nonexpert raters using the consensual assessment technique. Creativity Research Journal, 20, 171178.CrossRefGoogle Scholar
Kelen, E. (ed.) (1990). Leonardo da Vinci’s advice to artists. Philadelphia: Running Press.Google Scholar
Kozbelt, A. (2001). Artists as experts in visual cognition. Visual Cognition, 8, 705723.Google Scholar
Kozbelt, A. (2008). Hierarchical linear modeling of creative artists’ problem solving behaviors. Journal of Creative Behavior, 42, 181200.Google Scholar
Kozbelt, A., & Ostrofsky, J. (2013). Extending the psycho-historical framework to understand artistic production. Behavioral and Brain Sciences, 36, 148149.Google Scholar
Kozbelt, A., & Seeley, W. P. (2007). Integrating art historical, psychological, and neuroscientific explanations of artists’ advantages in drawing and perception. Psychology of Aesthetics, Creativity, and the Arts, 1, 8090.Google Scholar
Kozbelt, A., Seidel, A., ElBassiouny, A., Mark, Y., & Owen, D. R. (2010). Visual selection contributes to artists’ advantages in realistic drawing. Psychology of Aesthetics, Creativity, and the Arts, 4, 93102.Google Scholar
Kozbelt, A., Snodgrass, E., & Ostrofsky, J. (2014). Pixel drawing: A novel signal detection-based approach to measuring drawing skill. In Kozbelt, A. (ed.), Proceedings of the Twenty-Third Biennial Congress of the International Association of Empirical Aesthetics (pp. 276281). New York: IAEA.Google Scholar
Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic BooksGoogle Scholar
Li, R., Polat, U., Makous, W., & Bevalier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12, 549551.Google Scholar
Livingstone, M. S., & Conway, B. R. (2004). Was Rembrandt stereoblind? New England Journal of Medicine, 351, 12641265.Google Scholar
Livingstone, M. S., Lafer-Sousa, R., & Conway, B. R. (2011). Stereopsis and artistic talent: Poor stereopsis among art students and established artists. Psychological Science, 22, 336338.Google Scholar
Martindale, C. (1990). The clockwork muse: The predictability of artistic change. New York: Basic Books.Google Scholar
Matthews, W. J., & Adams, A. (2008). Another reason why adults find it hard to draw accurately. Perception, 37, 628630.Google Scholar
McManus, I. C., Loo, P.-W., Chamberlain, R. C., Riley, H. & Brunswick, N. (2011). Does shape constancy relate to drawing ability? Two failures to replicate. Empirical Studies of the Arts, 29, 191208.Google Scholar
Melcher, D., & Cavanagh, P. (2011). Pictorial cues in art and in visual perception. In Bacci, F. & Melcher, D. (eds.), Art and the senses (pp. 359394). Oxford University Press.Google Scholar
Mitchell, P., Ropar, D., Ackroyd, K., & Rajendran, G. (2005). How perception impacts on drawings. Journal of Experimental Psychology: Human Perception and Performance, 31, 9961003.Google Scholar
Murray, C. (2003). Human accomplishment. New York: Basic Books.Google Scholar
Ostrofsky, J. (2015). Do graphic long-term memories influence the production of observational drawings? The relationship between memory- and observation-based face drawings. Psychology of Aesthetics, Creativity, and the Arts, 9, 217227.Google Scholar
Ostrofsky, J., Cohen, D. J., & Kozbelt, A. (2014). Objective versus subjective measures of face-drawing accuracy and their relations with perceptual constancies. Psychology of Aesthetics, Creativity, and the Arts, 8, 486497.Google Scholar
Ostrofsky, J., Kozbelt, A., & Cohen, D. J. (2015). Observational drawing biases are predicted by biases in perception: Empirical support of the misperception hypothesis of drawing accuracy with respect to two angle illusions. Quarterly Journal of Experimental Psychology, 68, 10071025.Google Scholar
Ostrofsky, J., Kozbelt, A., & Kurylo, D. (2013). Perceptual grouping in artists and non-artists: A psychophysical comparison. Empirical Studies of the Arts, 31, 131143.Google Scholar
Ostrofsky, J., Kozbelt, A., & Seidel, A. (2012). Perceptual constancies and visual selection as predictors of realistic drawing skill. Psychology of Aesthetics, Creativity, and the Arts, 6, 124136.Google Scholar
Ostrofsky, J., Kozbelt, A., Tumminia, M., & Cipriano, M. (2016). Why do non-artists draw the eyes too far up the head? How vertical eye-drawing errors relate to schematic knowledge, pseudoneglect and context-based perceptual biases. Psychology of Aesthetics, Creativity, and the Arts, 10, 332343.Google Scholar
Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.Google Scholar
Pariser, D. (1991). Normal and unusual aspects of juvenile artistic development in Klee, Lautrec, and Picasso. Creativity Research Journal, 4, 5165.Google Scholar
Perdreau, F., & Cavanagh, P. (2011). Do artists see their retinas? Frontiers in Human Neuroscience, 5, 110.Google Scholar
Perdreau, F., & Cavanaugh, P. (2013). The artist’s advantage: Better integration of object information across eye movements. i-Perception, 4, 380395.Google Scholar
Perdreau, F., & Cavanaugh, P. (2014). Drawing skill is related to the efficiency of encoding object structure. i-Perception, 5, 101119.Google Scholar
Perdreau, F., & Cavanagh, P. (2015). Drawing experts have better visual memory while drawing. Journal of Vision, 15, 5. DOI: 10.1167/15.5.5.Google Scholar
Pfeiffer, J. E. (1982). The creative explosion. New York: Harper & Row.Google Scholar
Purves, D., & Howe, C. Q. (2005). Perceiving geometry: Geometrical illusions explained by natural scene statistics. New York: Springer.Google Scholar
Rosenbaum, D. A., Augustyn, J. S., Cohen, R. G., & Jax, S. A. (2006). Perceptual-motor expertise. In Ericsson, K. A., Charness, N., Hoffman, R. R., & Feltovich, P. J. (eds.), The Cambridge handbook of expertise and expert performance (pp. 505520). Cambridge University Press.Google Scholar
Runco, M. A., McCarthy, K. A., & Svenson, E. (1994). Judgments of the creativity of artwork from students and professional artists. Journal of Psychology, 128, 2331.Google Scholar
Ruskin, J. (1971). The elements of drawing. New York: Dover. (Original work published 1857)Google Scholar
Schlewitt-Haynes, L. D., Earthman, M. S., & Burns, B. (2002). Seeing the world differently: An analysis of descriptions of visual experiences provided by visual artists and nonartists. Creativity Research Journal, 14, 361372.Google Scholar
Seeley, W. P., & Kozbelt, A. (2008). Art, artists, and perception: A model for premotor contributions to perceptual analysis and form recognition. Philosophical Psychology, 21, 149171.Google Scholar
Selfe, L. (1977). Nadia: A case of extraordinary drawing ability in an autistic child. London: Academic Press.Google Scholar
Serafin, J., Kozbelt, A., Seidel, A., & Dolese, M. (2011). Dynamic evaluation of high- and low-creativity drawings by artist and non-artist raters: Replication and methodological extension. Psychology of Aesthetics, Creativity, and the Arts, 5, 350359.Google Scholar
Solso, R. L. (2001). Brain activities in an expert versus a novice artist: An fMRI study. Leonardo, 34, 3134.Google Scholar
Taylor, L. M., & Mitchell, P. (1997). Judgments of apparent shape contaminated by knowledge of reality: Viewing circles obliquely. British Journal of Psychology, 88, 653670.Google Scholar
Tchalenko, J. (2009). Segmentation and accuracy in copying and drawing: Experts and beginners. Vision Research, 49, 791800.Google Scholar
Tchalenko, J., Nam, S.-H., Ladanga, M., & Miall, R. C. (2014). The gaze-shift strategy in drawing. Psychology of Aesthetics, Creativity, and the Arts, 8, 330339.Google Scholar
Thouless, R. H. (1931). Phenomenal regression to the real object. British Journal of Psychology, 21, 339359.Google Scholar
Thouless, R. H. (1932). Individual differences in phenomenal regression. British Journal of Psychology, 22, 216241.Google Scholar
Treffert, D. A. (2009). Savant syndrome: An extraordinary condition. A synopsis: Past, present, future. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 13511357.Google Scholar
Turner, M. (ed.) (2006). The artful mind: Cognitive science and the riddle of human creativity. Oxford University Press.Google Scholar
Ullman, S. (1984). Visual routines. Cognition, 18, 97159.Google Scholar
Vasari, G. (1996). Lives of the painters, sculptors, and architects, 2 vols. (trans. de Vere, G.). New York: Knopf. (Original work published 1550)Google Scholar
Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8, 562581.Google Scholar
Willats, J. (1997). Art and representation: New principles in the analysis of pictures. Princeton University Press.Google Scholar
Winner, E. (1996). The rage to master: The decisive case for talent in the visual arts. In Ericsson, K. A. (ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games (pp. 271301). Mahwah, NJ: Erlbaum.Google Scholar

References

Bilalić, M., McLeod, P., & Gobet, F. (2007). Personality profiles of young chess players. Personality and Individual Differences, 42, 901910.Google Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2008a). Inflexibility of experts: Reality or myth? Quantifying the Einstellung effect in chess masters. Cognitive Psychology, 56, 73102.Google Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2008b). Why good thoughts block better ones: The mechanism of the pernicious Einstellung (set) effect. Cognition, 108, 652661.Google Scholar
Bilalić, M., McLeod, P., & Gobet, F. (2009a). Specialization effect and its influence on memory and problem solving in expert chess players. Cognitive Science, 33, 11171143.Google Scholar
Bilalić, M., Smallbone, K., McLeod, P., & Gobet, F. (2009b). Why are (the best) women so good at chess? Participation rates and gender differences in intellectual domains. Proceedings of the Royal Society of London B: Biological Sciences, 276, 11611165.Google Scholar
Binet, A. (1966). Mnemonic virtuosity: A study of chess players. Genetic Psychology Monographs, 74, 127162. Translated from Revue des Deux Mondes, 117 (1893), 826859.Google Scholar
Bossomaier, T., Traish, J., Gobet, F., & Lane, P. C. R. (2012). Neuro-cognitive model of move location in the game of Go. International Joint Conference on Neural Networks (IJCNN 2012) (pp. 17). New York: IEEE.Google Scholar
Burgoyne, A. P., Sala, G., Gobet, F., Macnamara, B. N., Campitelli, G., & Hambrick, D. Z. (2017). The relationship between cognitive ability and chess skill: A comprehensive meta-analysis. Intelligence, 61, 130139.Google Scholar
Calderwood, R., Klein, G. A., & Crandall, B. W. (1988). Time pressure, skill, and move quality in chess. American Journal of Psychology, 100, 481495.Google Scholar
Campitelli, G., & Gobet, F. (2005). The mind’s eye in blindfold chess. European Journal of Cognitive Psychology, 17, 2345.Google Scholar
Campitelli, G., & Gobet, F. (2008). The role of practice in chess: A longitudinal study. Learning and Individual Differences, 18, 446458.Google Scholar
Campitelli, G., Gobet, F., & Bilalić, M. (2014). Cognitive processes and development of chess genius: An integrative approach. In Simonton, D. K. (ed.), The Wiley handbook of genius (pp. 350374). Chichester: John Wiley.Google Scholar
Chabris, C. F., & Glickman, M. E. (2006). Sex differences in intellectual performance: Analysis of a large cohort of competitive chess players. Psychological Science, 17, 10401046.Google Scholar
Chabris, C. F., & Hearst, E. S. (2003). Visualization, pattern recognition, and forward search: Effects of playing speed and sight of the position on grandmaster chess errors. Cognitive Science, 27, 637648.Google Scholar
Charness, N. (1976). Memory for chess positions: Resistance to interference. Journal of Experimental Psychology: Human Learning and Memory, 2, 641653.Google Scholar
Charness, N. (1981a). Aging and skilled problem solving. Journal of Experimental Psychology: General, 110, 2138.Google Scholar
Charness, N. (1981b). Search in chess: Age and skill differences. Journal of Experimental Psychology: Human Perception and Performance, 7, 467476.Google Scholar
Charness, N. (1989). Expertise in chess and bridge. In Klahr, D. & Kotovsky, K. (eds.), Complex information processing: The impact of Herbert A. Simon (pp. 183208). Hillsdale, NJ: Erlbaum.Google Scholar
Charness, N. (1992). The impact of chess research on cognitive science. Psychological Research, 54, 49.Google Scholar
Charness, N., & Gerchak, Y. (1996). Participation rates and maximal performance: A log-linear explanation for group differences, such as Russian and male dominance in chess. Psychological Science, 7, 4651.Google Scholar
Charness, N., Krampe, R., & Mayr, U. (1996). The role of practice and coaching in entrepreneurial skill domains: An international comparison of life-span chess skill acquisition. In Ericsson, K. A. (ed.) The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games (pp. 5180). Mahwah, NJ: Erlbaum.Google Scholar
Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29, 11461152.Google Scholar
Charness, N., Tuffiash, M., & Jastrzembski, T. (2004). Motivation, emotion, and expert skill acquisition. In Dai, D. & Sternberg, R. J. (eds.) Motivation, emotion, and cognition: Integrative perspectives (pp. 299319). Mahwah, NJ: Erlbaum.Google Scholar
Charness, N., Tuffiash, M., Krampe, R., Reingold, E. M., & Vasyukova, E. (2005). The role of deliberate practice in chess expertise. Applied Cognitive Psychology, 19, 151165.Google Scholar
Chase, W. G., & Simon, H. A. (1973a). Perception in chess. Cognitive Psychology, 4, 5581.Google Scholar
Chase, W. G., & Simon, H. A. (1973b). The mind’s eye in chess. In Chase, W. G. (ed.), Visual information processing (pp. 215281). New York: Academic Press.Google Scholar
Chassy, P., & Gobet, F. (2011). Measuring chess experts’ single-use sequence knowledge using departure from ‘theoretical’ openings: An archival study. PloS ONE, 6, e26692.Google Scholar
Chassy, P., & Gobet, F. (2013). Visual search in ecological and non-ecological displays: Evidence for a non-monotonic effect of complexity on performance. PLoS One, 8, e53420.Google Scholar
Chassy, P., & Gobet, F. (2015). Risk taking in adversarial situations: Civilization differences in chess experts. Cognition, 141, 3640.Google Scholar
Chi, M. T. H. (1978). Knowledge structures and memory development. In Siegler, R. S. (ed.), Children’s thinking: What develops? (pp. 7396). Hillsdale, NJ: Erlbaum.Google Scholar
Connors, M. H., Burns, B. D., & Campitelli, G. (2011). Expertise in complex decision making: The role of search in chess 70 years after de Groot. Cognitive Science, 35, 15671579.Google Scholar
Cooke, N. J., Atlas, R. S., Lane, D. M., & Berger, R. C. (1993). Role of high-level knowledge in memory for chess positions. American Journal of Psychology, 106, 321351.Google Scholar
Cranberg, L., & Albert, M. L. (1988). The chess mind. In Obler, L. K. & Fein, D. (eds.), The exceptional brain: Neuropsychology of talent and special abilities (pp. 156190). New York: Guilford Press.Google Scholar
de Bruin, A. B., Kok, E. M., Leppink, J., & Camp, G. (2014). Practice, intelligence, and enjoyment in novice chess players: A prospective study at the earliest stage of a chess career. Intelligence, 45, 1825.Google Scholar
de Bruin, A. B., Rikers, R., & Schmidt, H. G. (2007). The influence of achievement motivation and chess-specific motivation on deliberate practice. Journal of Sport & Exercise Psychology, 29, 561583.Google Scholar
de Bruin, A. B., Smits, N., Rikers, R., & Schmidt, H. G. (2008). Deliberate practice predicts performance over time in adolescent chess players and drop-outs: A linear mixed models analysis. British Journal of Psychology, 99, 473497.Google Scholar
de Groot, A. (1965). Thought and choice in chess. The Hague: Mouton (Original work published 1946)Google Scholar
de Groot, A., & Gobet, F. (1996). Perception and memory in chess. Assen: Van Gorcum.Google Scholar
Didierjean, A., Cauzinille-Marmèche, E., & Savina, Y. (1999). Learning from examples: Case-based reasoning in chess for novices. Current Psychology of Cognition, 18, 337361.Google Scholar
Djakow, I. N., Petrowski, N. W., & Rudik, P. A. (1927). Psychologie des Schachspiels. Berlin: Walter de Gruyter.Google Scholar
Elo, A. E. (1986). The rating of chessplayers, past and present (2nd edn.). New York: Arco.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Frey, P. W., & Adesman, P. (1976). Recall memory for visually presented chess positions. Memory & Cognition, 4, 541547.Google Scholar
Freyhoff, H., Gruber, H., & Ziegler, A. (1992). Expertise and hierarchical knowledge representation in chess. Psychological Research, 54, 3237.Google Scholar
Gerdes, C., & Gränsmark, P. (2010). Strategic behavior across gender: A comparison of female and male expert chess players. Labour Economics, 17, 766775.Google Scholar
Gobet, F. (1997). A pattern-recognition theory of search in expert problem solving. Thinking & Reasoning, 3, 291313.Google Scholar
Gobet, F. (1998a). Expert memory: A comparison of four theories. Cognition, 66, 115152.Google Scholar
Gobet, F. (1998b). Chess players’ thinking revisited. Swiss Journal of Psychology, 57, 1832.Google Scholar
Gobet, F. (2009). Using a cognitive architecture for addressing the question of cognitive universals in cross-cultural psychology: The example of Awalé. Journal of Cross-Cultural Psychology, 40, 627648.Google Scholar
Gobet, F. (2013). Expertise vs. talent. Talent Development and Excellence, 5, 7586.Google Scholar
Gobet, F. (2016). Understanding expertise: A multi-disciplinary approach. Basingstoke: Palgrave Macmillan.Google Scholar
Gobet, F., & Campitelli, G. (2007). The role of domain-specific practice, handedness and starting age in chess. Developmental Psychology, 43, 159172.Google Scholar
Gobet, F., Campitelli, G., & Waters, A. J. (2002). Rise of human intelligence: Comments on Howard (1999). Intelligence, 30, 303311.Google Scholar
Gobet, F., & Chassy, P. (2008). Season of birth and chess expertise. Journal of Biosocial Science, 40, 313316.Google Scholar
Gobet, F., & Clarkson, G. (2004). Chunks in expert memory: Evidence for the magical number four … or is it two? Memory, 12, 732747.Google Scholar
Gobet, F., de Voogt, A., & Retschitzki, J. (2004). Moves in mind: The psychology of board games. New York: Psychology Press.Google Scholar
Gobet, F., & Ereku, M. (2014). Checkmate to deliberate practice: The case of Magnus Carlsen. Frontiers in Psychology, 5, 878.Google Scholar
Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 3544.Google Scholar
Gobet, F., & Jansen, P. J. (1994). Towards a chess program based on a model of human memory. In van den Herik, H. J., Herschberg, I. S., & Uiterwijk, J. W. (eds.), Advances in computer chess 7 (pp. 3560). Maastricht: University of Limburg Press.Google Scholar
Gobet, F., & Jansen, P. J. (2006). Training in chess: A scientific approach. In Redman, T. (ed.), Chess and education: Selected essays from the Koltanowski conference (pp. 8197). Dallas: Chess Program at the University of Texas at Dallas.Google Scholar
Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236243.Google Scholar
Gobet, F., & Simon, H. A. (1996a). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 140.Google Scholar
Gobet, F., & Simon, H. A. (1996b). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 3, 159163.Google Scholar
Gobet, F., & Simon, H. A. (1996c). Recall of random and distorted positions: Implications for the theory of expertise. Memory & Cognition, 24, 493503.Google Scholar
Gobet, F., & Simon, H. A. (1996d). The roles of recognition processes and look-ahead search in time-constrained expert problem solving: Evidence from grandmaster level chess. Psychological Science, 7, 5255.Google Scholar
Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6, 225255.Google Scholar
Gobet, F., & Simon, H. A. (2000). Five seconds or sixty? Presentation time in expert memory. Cognitive Science, 24, 651682.Google Scholar
Gobet, F., & Waters, A. J. (2003). The role of constraints in expert memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 10821094.Google Scholar
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 3445.Google Scholar
Holding, D. H. (1985). The psychology of chess skill. Hillsdale, NJ: Erlbaum.Google Scholar
Holding, D. H., & Reynolds, R. (1982). Recall or evaluation of chess positions as determinants of chess skill. Memory & Cognition, 10, 237242.Google Scholar
Howard, R. W. (1999). Preliminary real-world evidence that average human intelligence really is rising. Intelligence, 27, 235250.Google Scholar
Howard, R. W. (2011). Does high-level intellectual performance depend on practice alone? Debunking the Polgar sisters case. Cognitive Development, 26, 196202.Google Scholar
Howard, R. W. (2014a). Gender differences in intellectual performance persist at the limits of individual capabilities. Journal of Biosocial Science, 46, 386404.Google Scholar
Howard, R. W. (2014b). Learning curves in highly skilled chess players: A test of the generality of the power law of practice. Acta Psychologica, 151, 1623.Google Scholar
Jastrzembski, T., Charness, N., & Vasyukova, C. (2006). Expertise and age effects on knowledge activation in chess. Psychology and Aging, 21, 401405.Google Scholar
Jongman, R. W. (1968). Het oog van de meester (The eye of the master). Assen: Van Gorcum.Google Scholar
Maass, A., D’Ettole, C., & Cadinu, M. (2008). Checkmate? The role of gender stereotypes in the ultimate intellectual sport. European Journal of Social Psychology, 38, 231245.Google Scholar
Mireles, D. E., & Charness, N. (2002). Computational explorations of the influence of structured knowledge on age-related cognitive decline. Psychology and Aging, 17, 245259.Google Scholar
Moxley, J. H., Ericsson, K. A., Charness, N., & Krampe, R. T. (2012). The role of intuition and deliberative thinking in experts’ superior tactical decision-making. Cognition, 124, 7278.Google Scholar
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Raab, M., & Johnson, J. G. (2007). Expertise-based differences in search and option-generation strategies. Journal of Experimental Psychology: Applied, 13, 158170.Google Scholar
Reingold, E. M., Charness, N., Pomplun, M., & Stampe, D. M. (2001a). Visual span in expert chess players: Evidence from eye movements. Psychological Science, 12, 4855.Google Scholar
Reingold, E. M., Charness, N., Schultetus, R. S., & Stampe, D. M. (2001b). Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychonomic Bulletin & Review, 8, 504510.Google Scholar
Robbins, T. W., Anderson, E. J., Barker, D. R., Bradley, A. C., Fearnyhough, C., Henson, R., & Hudson, S. R. (1996). Working memory in chess. Memory & Cognition, 24, 8393.Google Scholar
Saariluoma, P. (1990). Apperception and restructuring in chess players’ problem solving. In Gilhooly, K. J., Keane, M. T. G., Logie, R. H., & Erdos, G. (eds.), Lines of thought: Reflections on the psychology of thinking (Vol. 2, pp. 4157). New York: John Wiley.Google Scholar
Saariluoma, P. (1991). Aspects of skilled imagery in blindfold chess. Acta Psychologica, 77, 6589.Google Scholar
Saariluoma, P. (1992). Error in chess: The apperception-restructuring view. Psychological Research, 54, 1726.Google Scholar
Saariluoma, P. (1994). Location coding in chess. Quarterly Journal of Experimental Psychology Section A, 47, 607630.Google Scholar
Saariluoma, P., & Hohlfeld, M. (1994). Apperception in chess players’ long-range planning. European Journal of Cognitive Psychology, 6, 122.Google Scholar
Saariluoma, P., & Kalakoski, V. (1997). Skilled imagery and long-term working memory. American Journal of Psychology, 110, 177201.Google Scholar
Saariluoma, P., & Kalakoski, V. (1998). Apperception and imagery in blindfold chess. Memory, 6, 6790.Google Scholar
Saariluoma, P., & Laine, T. (2001). Novice construction of chess memory. Scandinavian Journal of Psychology, 42, 137146.Google Scholar
Sala, G., & Gobet, F. (2016). Do the benefits of chess instruction transfer to academic and cognitive skills? A meta-analysis. Educational Research Review, 18, 4657.Google Scholar
Sala, G., & Gobet, F. (2017). Experts’ memory superiority for domain-specific random material generalizes across fields of expertise: A meta-analysis. Memory & Cognition, 45, 183193.Google Scholar
Schneider, W., Gruber, H., Gold, A., & Opwis, K. (1993). Chess expertise and memory for chess positions in children and adults. Journal of Experimental Child Psychology, 56, 328349.Google Scholar
Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. American Journal of Psychology, 112, 555569.Google Scholar
Sheridan, H., & Reingold, E. M. (2013). The mechanisms and boundary conditions of the Einstellung effect in chess: Evidence from eye movements. PloS ONE, 8, e75796.Google Scholar
Simon, H. A., & Gilmartin, K. J. (1973). A simulation of memory for chess positions. Cognitive Psychology, 5, 2946.Google Scholar
Simonton, D. K. (1997). Creative productivity: A predictive and explanatory model of career trajectories and landmarks. Psychological Review, 104, 6689.Google Scholar
Slezak, D. F., & Sigman, M. (2012). Do not fear your opponent: Suboptimal changes of a prevention strategy when facing stronger opponents. Journal of Experimental Psychology: General, 141, 527538.Google Scholar
Smith, L., Gobet, F., & Lane, P. C. R. (2007). An investigation into the effect of ageing on expert memory with CHREST. Proceedings of the United Kingdom Workshop on Computational Intelligence – UKCI07, 18.Google Scholar
Unterrainer, J. M., Kaller, C. P., Leonhart, R., & Rahm, B. (2011). Revising superior planning performance in chess players: The impact of time restriction and motivation aspects. American Journal of Psychology, 124, 213225.Google Scholar
Van der Maas, H. L. J., & Wagenmakers, E.-J. (2005). A psychometric analysis of chess expertise. American Journal of Psychology, 118, 2960.Google Scholar
Vollstadt-Klein, S., Grimm, O., Kirsch, P., & Bilalić, M. (2010). Personality of elite male and female chess players and its relation to chess skill. Learning and Individual Differences, 20, 517521.Google Scholar
Waters, A. J., Gobet, F., & Leyden, G. (2002). Visuo-spatial abilities in chess players. British Journal of Psychology, 93, 557565.Google Scholar

References

Alarcon, M., Defries, J., Gillis Light, J., & Pennington, B. (1997). A twin study of mathematics disability. Journal of Learning Disabilities, 30, 617623.Google Scholar
Alexander, J. E., O’Boyle, M. W., & Benbow, C. P. (1996). Developmentally advanced EEG alpha power in gifted male and female adolescents. International Journal of Psychophysiology, 23, 2531.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences USA, 113, 49094917.Google Scholar
Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54, 695701.Google Scholar
Ashcraft, M. (1995). Cognitive psychology and simple arithmetic: A review and summary of new directions. Mathematical Cognition, 1, 334.Google Scholar
Aydin, K., Ucar, A., Oguz, K. K., Okur, O. O., Agayev, A., Unal, Z., … & Ozturk, C. (2007). Increased gray matter density in the parietal cortex of mathematicians: A voxel-based morphometry study. American Journal of Neuroradiology, 28, 18591864.Google Scholar
Barlow, F. (1952). Mental prodigies. New York: Greenwood Press.Google Scholar
Barner, D., Alvarez, G., Sullivan, J., Brooks, N., Srinivasan, M., & Frank, M. C. (2016). Learning mathematics in a visuospatial format: A randomized, controlled trial of mental abacus instruction. Child Development, 87, 11461158.Google Scholar
Becker, B. J., & Hedges, L. V. (1988). The effects of selection and variability in studies of gender differences: Commentary on Benbow (1988). Behavioral and Brain Sciences, 11, 183184.Google Scholar
Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. Behavioral and Brain Sciences, 11, 169183.Google Scholar
Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs. Paris: Hachette.Google Scholar
Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
Butterworth, B. (2001). What makes a prodigy? Nature Neuroscience, 4, 1112.Google Scholar
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology & Psychiatry, 46, 318.Google Scholar
Butterworth, B., Cipolotti, L., & Warrington, E. K. (1996). Short-term memory impairments and arithmetical ability. Quarterly Journal of Experimental Psychology Section A, 49, 251262.Google Scholar
Butterworth, B., Shallice, T., & Watson, F. (1990). Short-term retention without short-term memory. In Vallar, G. & Shallice, T. (eds.), Neuropsychological impairments of short-term memory (pp. 187213). Cambridge University Press.Google Scholar
Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 10491053.Google Scholar
Bynner, J., & Parsons, S. (1997). Does numeracy matter? London: The Basic Skills Agency.Google Scholar
Cappelletti, M., Kopelman, M., & Butterworth, B. (2002). Why semantic dementia drives you to the dogs (but not to the horses): A theoretical account. Cognitive Neuropsychology, 19, 483503.Google Scholar
Charness, N., & Campbell, J. I. D. (1988). Acquiring skill at mental calculation in adulthood: A task decomposition. Journal of Experimental Psychology: General, 117, 115129.Google Scholar
Cipolotti, L., & van Harskamp, N. (2001). Disturbances of number processing and calculation. In Berndt, R. S. (ed.), Handbook of neuropsychology (2nd edn.) (Vol. 3, pp. 305334). Amsterdam: Elsevier Science.Google Scholar
Cockcroft, W. H. (1982). Mathematics counts: Report of the Committee of Inquiry into the Teaching of Mathematics in Schools under the Chairmanship of Dr. W. H. Cockcroft. London: HMSO.Google Scholar
de Groot, A. (1965). Thought and choice in chess. The Hague: Mouton. (Original work published 1946)Google Scholar
Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford University Press.Google Scholar
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83120.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487506.Google Scholar
Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33, 697710.Google Scholar
Edwards, C. J., Alder, T. B., & Rose, G. J. (2002). Auditory midbrain neurons that count. Nature Neuroscience, 5, 934936.Google Scholar
Ericsson, K. A., & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist, 49, 725747.Google Scholar
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211245.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307314.Google Scholar
Frank, M. C., & Barner, D. (2011). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141, 134149.Google Scholar
Galton, F. (1979). Hereditary genius: An inquiry into its laws and consequences. London: Julian Friedman Publishers. (Original work published 1869)Google Scholar
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
Geary, D. C. (1996). Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 19, 229284.Google Scholar
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
Girelli, L., & Delazer, M. (1996). Subtraction bugs in an acalculic patient. Cortex, 32, 547555.Google Scholar
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences USA, 109, 1111611120.Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665668.Google Scholar
Hardy, G. H. (1969). A mathematician’s apology. Cambridge University Press. (Original work published 1940)Google Scholar
Hauser, M., MacNeilage, P., & Ware, M. (1996). Numerical representations in primates. Proceedings of the National Academy of Sciences USA, 93, 15141517.Google Scholar
Hécaen, H., Angelergues, R., & Houillier, S. (1961). Les variétés cliniques des acalculies au cours des lésions rétro-rolandiques: Approche statistique du problème. Revue Neurologique, 105, 85103.Google Scholar
Hermelin, B., & O’Connor, N. (1990). Factors and primes: A specific numerical ability. Psychological Medicine, 20, 163169.Google Scholar
Hittmair-Delazer, M., Semenza, C., & Denes, G. (1994). Concepts and facts in calculation. Brain, 117, 715728.Google Scholar
Hoyles, C., Wolf, A., Molyneux-Hodgson, S., & Kent, P. (2002). Mathematical skills in the workplace. London: Institute of Education.Google Scholar
Hunter, I. M. L. (1962). An exceptional talent for calculative thinking. British Journal of Psychology, 53, 243280.Google Scholar
Jensen, A. R. (1990). Speed of information-processing in a calculating prodigy. Intelligence, 14, 259274.Google Scholar
Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. Psychology of Learning and Motivation, 58, 117165.Google Scholar
Keys, W., Harris, S., & Fernandes, C. (1996). Third international mathematics and science study: First national report. Part 1. Slough: National Foundation for Educational Research.Google Scholar
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9 year old students. Cognition, 93, 99125.Google Scholar
Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory & Cognition, 22, 395410.Google Scholar
McCloskey, M., & Caramazza, A. (1987). Dissociations of calculation processes. In Deloche, G. & Seron, X. (eds.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 221234). Hillsdale, NJ: Erlbaum.Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47, 379387.Google Scholar
Menninger, K. (1969). Number words and number symbols: A cultural history of numbers (trans. Broneer, P.). Cambridge, MA: MIT Press.Google Scholar
Mitchell, F. D. (1907). Mathematical prodigies. American Journal of Psychology, 18, 61143.Google Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.Google Scholar
O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11, 415443.Google Scholar
O’Boyle, M. W., Gill, H. S., Benbow, C. P., & Alexander, J. E. (1994). Concurrent finger-tapping in mathematically gifted males: Evidence for enhanced right-hemisphere involvement during linguistic processing. Cortex, 30, 519526.Google Scholar
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 20132019.Google Scholar
Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342345.Google Scholar
Pesenti, M. (2005). Calculation abilities in expert calculators. In Campbell, J. I. D. (ed.), Handbook of mathematical cognition (pp. 413430). Hove: Psychology Press.Google Scholar
Pesenti, M., Seron, X., Samson, D., & Duroux, B. (1999). Basic and exceptional calculation abilities in a calculating prodigy: A case study. Mathematical Cognition, 5, 97148.Google Scholar
Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience, 12, 461479.Google Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., … & Tzourio-Mazoyer, N. (2001). Mental calculation expertise in a prodigy is sustained by right prefrontal and medial-temporal areas. Nature Neuroscience, 4, 103107.Google Scholar
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24, 10371043.Google Scholar
Rivera-Batiz, F. L. (1992). Quantitative literacy and the likelihood of employment among young adults in the United States. Journal of Human Resources, 27, 313328.Google Scholar
Scripture, E. W. (1891). Arithmetical prodigies. Amercian Journal of Psychology, 4, 159.Google Scholar
Semenza, C., Delazer, M., Bertella, L., Grana, A., Mori, I, Conti, F., … & Mauro, A. (2006). Is math lateralised on the same side as language? Right hemisphere aphasia and mathematical abilities. Neuroscience Letters, 406, 285288.Google Scholar
Shalev, R. S., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337342.Google Scholar
Singh, H., & O’Boyle, M. W. (2004). Interhemispheric interaction during global–local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18, 371377.Google Scholar
Smith, S. B. (1983). The great mental calculators: The psychology, methods, and lives of calculating prodigies. New York: Columbia University Press.Google Scholar
Starkey, P., & Cooper, R. G. Jr. (1980). Perception of numbers by human infants. Science, 210, 10331035.Google Scholar
Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., … & Honda, M. (2012). Abacus in the brain: A longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3, 315. DOI: 10.3389/fpsyg.2012.00315.Google Scholar
Tibber, M. S., Manasseh, G. S. L., Clarke, R. C., Gagin, G., Swanbeck, S. N., Butterworth, B., … & Dakin, S. C. (2013). Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability. Vision Research, 89, 19.Google Scholar
van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication: Implications for the organisation of arithmetical facts. Cortex, 37, 363388.Google Scholar
Weinland, J. D., & Schlauch, W. S. (1937). An examination of the computing ability of Mr. Salo Finkelstein. Journal of Experimental Psychology, 21, 382402.Google Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749751.Google Scholar
Wynn, K. (2000). Findings of addition and subtraction in infants are robust and consistent: Reply to Wakeley, Rivera, and Langer. Child Development, 71, 15351536.Google Scholar
Wynn, K. (2002). Do infants have numerical expectations or just perceptual preferences? Commentary. Developmental Science, 5, 207209.Google Scholar
Wynn, K., Bloom, P., & Chiang, W. C. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55B62.Google Scholar
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314327.Google Scholar

References

Adolphs, S., & Durrow, V. (2004). Social-cultural integration and the development of formulaic sequences. In Schmitt, N. (ed.), Formulaic sequences: Acquisition, processing, and use (pp. 107126). Amsterdam: John Benjamins Publishing.Google Scholar
Alali, F. A., & Schmitt, N. (2012). Teaching formulaic sequences: The same as or different from teaching single words? TESOL Journal, 3, 153180.Google Scholar
Alderson, J. C. (2005). Diagnosing foreign language proficiency. London: Continuum.Google Scholar
Anderson, R. C., & Freebody, P. (1981). Vocabulary knowledge. In Guthrie, J. T. (ed.), Comprehension and teaching: Research reviews (pp. 77117). Newark, DE: International Reading Association.Google Scholar
Bahns, J., & Eldaw, M. (1993). Should we teach EFL students collocations? System, 21, 101114.Google Scholar
Barfield, P. A., & Gyllstad, D. H. (2009). Researching collocations in another language: Multiple interpretations. New York: Palgrave Macmillan.Google Scholar
Bonk, W. J. (2000). Second language lexical knowledge and listening comprehension. International Journal of Listening, 14, 1431.Google Scholar
Carter, J. (2012). Vocabulary: Applied linguistic perspectives. Abingdon: Routledge.Google Scholar
Cobb, T. (n.d.). Lextutor. www.lextutor.ca.Google Scholar
Conklin, K., & Schmitt, N. (2012). The processing of formulaic language. Annual Review of Applied Linguistics, 32, 4561.Google Scholar
Cremer, M., Dingshoff, D., Beer, M., & Schoonen, R. (2010). Do word associations assess words knowledge? A comparison of L1 and L2, child and adult word associations. International Journal of Bilingualism, 15, 187204.Google Scholar
d’Ydewalle, G., & Pavakanun, U. (1995). Acquisition of a second/foreign language by viewing a television program. In Winterhoff-Spurk, P. (ed.), Psychology of media in Europe: The state of the art – perspectives for the future (pp. 5164). Opladen: Westdeutscher Verlag.Google Scholar
Dagut, M., & Laufer, B. (1985). Avoidance of phrasal verbs: A case for contrastive analysis. Studies in Second Language Acquisition, 7, 7379.Google Scholar
Daller, H., Milton, J., & Treffers-Daller, J. (eds.) (2007). Modelling and assessing vocabulary knowledge. Cambridge University Press.Google Scholar
Dörnyei, Z., Durrow, V., & Zahran, K. (2004). Individual differences and their effects on formulaic sequence acquisition. In Schmitt, N. (ed.), Formulaic sequences: Acquisition, processing, and use (pp. 87106). Amsterdam: John Benjamins Publishing.Google Scholar
Erman, B., & Warren, B. (2000). The idiom principle and the open choice principle. Text – Interdisciplinary Journal for the Study of Discourse, 20, 2962.Google Scholar
Fitzpatrick, T., & Munby, I. (2014). Knowledge of word associations. In Milton, J. & Fitzpatrick, T. (eds.), Dimensions of vocabulary knowledge (pp. 92105). Basingstoke: Palgrave Macmillan.Google Scholar
Garnier, M., & Schmitt, N. (2015). The PHaVE list: A pedagogical list of phrasal verbs and their most frequent meaning senses. Language Teaching Research, 19, 645666.Google Scholar
Garnier, M., & Schmitt, N. (2016). Picking up polysemous phrasal verbs: How many do learners know and what facilitates this knowledge? System, 59, 2944.Google Scholar
González-Fernández, B. (in preparation). Towards a theory of vocabulary acquisition: Relationships and order of acquisition of different types of word knowledge by L2 learners. PhD dissertation, University of Nottingham.Google Scholar
González-Fernández, B., & Schmitt, N. (2015). How much collocation knowledge do L2 learners have? The effects of frequency and amount of exposure. ITL International Journal of Applied Linguistics, 166, 94126.Google Scholar
Goulden, R., Nation, P., & Read, J. (1990). How large can a receptive vocabulary be? Applied Linguistics, 11, 341363.Google Scholar
Hirsh, D., & Nation, P. (1992). What vocabulary size is needed to read unsimplified texts for pleasure? Reading in a Foreign Language, 8, 689696.Google Scholar
Hu, M., & Nation, I. S. P. (2000). Vocabulary density and reading comprehension. Reading in a Foreign Language, 13, 403430.Google Scholar
Hulstijn, J. H. (2001). Intentional and incidental second language vocabulary learning: A reappraisal of elaboration, rehearsal and automaticity. In Robinson, P. (ed.), Cognition and second language instruction (pp. 258286). Cambridge University Press.Google Scholar
King, J. (2002). Using DVD feature films in the EFL classroom. Computer Assisted Language Learning, 15, 509523.Google Scholar
Kuiper, K. (2000). On the linguistic properties of formulaic speech. Oral Tradition, 15, 279305.Google Scholar
Kuiper, K., & Haggo, D. (1984). Livestock auctions, oral poetry, and ordinary language. Language in Society, 13, 205234.Google Scholar
Laufer, B., & Goldstein, Z. (2004). Testing vocabulary knowledge: Size, strength, and computer adaptiveness. Language Learning, 54, 399436.Google Scholar
Laufer, B., & Ravenhorst-Kalovski, G. C. (2010). Lexical threshold revisited: Lexical coverage, learners’ vocabulary size and reading comprehension. Reading in a Foreign Language, 22, 1530.Google Scholar
Li, M., & Kirby, J. R. (2015). The effects of vocabulary breadth and depth on English reading. Applied Linguistics, 36, 611634.Google Scholar
Lin, P. M. S. (2014). Investigating the validity of internet television as a resource for acquiring L2 formulaic sequences. System, 42, 164176.Google Scholar
Macis, M., & Schmitt, N. (2017). Not just ‘small potatoes’: Knowledge of the idiomatic meanings of collocations. Language Teaching Research, 21, 321340.Google Scholar
Martinez, R., & Schmitt, N. (2012). A phrasal expressions list. Applied Linguistics, 33, 299320.Google Scholar
Meara, P. (1996). The dimensions of lexical competence. In Brown, G., Malmkjær, K., & Williams, J. (eds.), Performance and competence in second language acquisition (pp. 3553). Cambridge University Press.Google Scholar
Meara, P., & Wolter, B. (2004). V_LINKS: Beyond vocabulary depth. In Albrechtsen, D., Haastrup, K., & Henriksen, B. (eds.), Angles on the English speaking world 4 (pp. 8596). Copenhagen: Museum Tusculanum.Google Scholar
Millar, N. (2011). The processing of malformed formulaic language. Applied Linguistics, 32, 129148.Google Scholar
Milton, J., Alexiou, T., & Mattheoudakis, M. (2014). Knowledge of spoken form. In Milton, J. & Fitzpatrick, T. (eds.), Dimensions of vocabulary knowledge (pp. 1329). Basingstoke: Palgrave MacmillanGoogle Scholar
Milton, J., & Fitzpatrick, T. (eds.) (2014). Dimensions of vocabulary knowledge. Basingstoke: Palgrave Macmillan.Google Scholar
Nation, I. S. P. (1990). Teaching and learning vocabulary. New York: Newbury House.Google Scholar
Nation, I. S. P. (2001). Learning vocabulary in another language. Cambridge University Press.Google Scholar
Nation, I. S. P. (2006). How large a vocabulary is needed for reading and listening? Canadian Modern Language Review, 63, 5981.Google Scholar
Nation, I. S. P. (2013). Learning vocabulary in another language (2nd edn.). Cambridge University Press.Google Scholar
Nattinger, J. R., & DeCarrico, J. S. (1992). Lexical phrases and language teaching. Oxford University Press.Google Scholar
Oppenheim, N. (2000). The importance of recurrent sequences for non-native speaker fluency and cognition. In Riggenbach, H. (ed.), Perspectives on fluency (pp. 220240). Ann Arbor: University of Michigan Press.Google Scholar
Paquot, M., & Granger, S. (2012). Formulaic language in learner corpora. Annual Review of Applied Linguistics, 32, 130149.Google Scholar
Paribakht, T. S., & Wesche, M. B. (1997). Vocabulary enhancement activities and reading for meaning in second language vocabulary acquisition. In Coady, J. & Huckin, T. (eds.), Second language vocabulary acquisition (pp. 174200). Cambridge University Press.Google Scholar
Pawley, A., & Syder, F. H. (1983). Two puzzles for linguistic theory: nativelike selection and nativelike fluency. In Richards, J. C. & Schmidt, R. W. (eds.), Language communication (pp. 191226). New York: Longman.Google Scholar
Pellicer-Sánchez, A. (2017). Learning L2 collocations incidentally from reading. Language Teaching Research, 21, 381402.Google Scholar
Pellicer-Sánchez, A., & Schmitt, N. (2010). Incidental vocabulary acquisition from an authentic novel: Do things fall apart? Reading in a Foreign Language, 22, 3155.Google Scholar
Pinker, S. (1998). Words and rules. Lingua, 106, 219242.Google Scholar
Read, J. (2000). Assessing vocabulary. Cambridge University Press.Google Scholar
Reves, T., & Levine, A. (1988). The FL receptive skills: Same or different? System, 16, 327336.Google Scholar
Richards, J. C. (1976). The role of vocabulary teaching. TESOL Quarterly, 10, 7789.Google Scholar
Rodgers, M. P. H., & Webb, S. (2011). Narrow viewing: The vocabulary in related television programs. TESOL Quarterly, 45, 689717.Google Scholar
Rost, M. (2002). Teaching and researching listening. Harlow: Longman.Google Scholar
Schmitt, N. (1998). Quantifying word association responses: What is native-like? System, 26, 389401.Google Scholar
Schmitt, N. (2010). Researching vocabulary: A vocabulary research manual. Basingstoke: Palgrave Macmillan.Google Scholar
Schmitt, N. (2014). Size and depth of vocabulary knowledge: What the research shows. Language Learning, 64, 913951.Google Scholar
Schmitt, N., Cobb, T., Horst, M., & Schmitt, D. (2017). How much vocabulary is needed to use English? Replication of Van Zeeland & Schmitt (2012), Nation (2006), and Cobb (2007). Language Teaching, 50, 212226.Google Scholar
Schmitt, N., Jiang, X., & Grabe, W. (2011). The percentage of words known in a text and reading comprehension. Modern Language Journal, 95, 2643.Google Scholar
Schmitt, N., & Marsden, R. (2006). Why is English like that? Historical answers to hard ELT questions. Ann Arbor: University of Michigan Press.Google Scholar
Schmitt, N., & Schmitt, D. (2014). A reassessment of frequency and vocabulary size in L2 vocabulary teaching. Language Teaching, 47, 484503.Google Scholar
Schmitt, N., Schmitt, D., & Clapham, C. (2001). Developing and exploring the behaviour of two new versions of the Vocabulary Levels Test. Language Testing, 18, 5588.Google Scholar
Schmitt, N., & Zimmerman, C. B. (2002). Derivative word forms: What do learners know? TESOL Quarterly, 36, 145171.Google Scholar
Siyanova-Chanturia, A. (2015). On the ‘holistic’ nature of formulaic language. Corpus Linguistics and Linguistic Theory, 11, 117.Google Scholar
Siyanova-Chanturia, A., Conklin, K., & Schmitt, N. (2011). Adding more fuel to the fire: An eye-tracking study of idiom processing by native and non-native speakers. Second Language Research, 27, 251272.Google Scholar
Siyanova-Chanturia, A., & Martinez, R. (2015). The idiom principle revisited. Applied Linguistics, 36, 549569.Google Scholar
Sonbul, S. (2015). Fatal mistake, awful mistake, or extreme mistake? Frequency effects on off-line/on-line collocational processing. Bilingualism: Language and Cognition, 18, 419437.Google Scholar
Sorhus, H. B. (1977). To hear ourselves: Implications for teaching English as a second language. English Language Teaching Journal, 31, 211221.Google Scholar
Stæhr, L. S. (2008). Vocabulary size and the skills of listening, reading and writing. Language Learning Journal, 36, 139152.Google Scholar
van Zeeland, H. (2014). Second language vocabulary knowledge in and from listening. PhD Dissertation, University of Nottingham.Google Scholar
van Zeeland, H., & Schmitt, N. (2013). Lexical coverage in L1 and L2 listening comprehension: The same or different from reading comprehension? Applied Linguistics, 34, 457479.Google Scholar
Vilkaitė, L. (2016). Formulaic language is not all the same: Comparing the frequency of idiomatic phrases, collocations, lexical bundles, and phrasal verbs. Taikomoji kalbotyra, 8. www.taikomojikalbotyra.lt.Google Scholar
Walters, J., & Bozkurt, N. (2009). The effect of keeping vocabulary notebooks on vocabulary acquisition. Language Teaching Research, 13(4), 403423.Google Scholar
Waring, R., & Takaki, M. (2003). At what rate do learners learn and retain new vocabulary from reading a graded reader? Reading in a Foreign Language, 15, 127.Google Scholar
Webb, S. (2007). The effects of repetition on vocabulary knowledge. Applied Linguistics, 28, 4665.Google Scholar
Webb, S. (2011). Selecting television programs for language learning: Investigating television programs from the same genre. International Journal of English Studies, 11, 117136.Google Scholar
Webb, S., & Kagimoto, E. (2009). The effects of vocabulary learning on collocation and meaning. TESOL Quarterly, 43, 5577.Google Scholar
Webb, S., Newton, J., & Chang, A. (2013). Incidental learning of collocation. Language Learning, 63, 91120.Google Scholar
Webb, S., & Rodgers, M. P. H. (2009). The lexical coverage of movies. Applied Linguistics, 30, 407427.Google Scholar
Wolter, B. (2002). Assessing proficiency through word associations: Is there still hope? System, 30, 315329.Google Scholar
Wolter, B., & Gyllstad, H. (2011). Collocational links in the L2 mental lexicon and the influence of L1 intralexical knowledge. Applied Linguistics, 32, 430449.Google Scholar
Wray, A. (2002). Formulaic language and the lexicon. Cambridge University Press.Google Scholar
Zechmeister, E. B., Chronis, A. M., Cull, W. L., D’Anna, C. A., & Healy, N. A. (1995). Growth of a functionally important lexicon. Journal of Reading Behavior, 27(2), 201212.Google Scholar
Zimmerman, K. J. (2004). The role of vocabulary size in assessing second language proficiency. MA Dissertation, Brigham Young University.Google Scholar

References

Abernethy, B., Gill, D. P., Parks, S. L., & Packer, S. T. (2001). Expertise and the perception of kinematic and situational probability information. Perception, 30, 233252.Google Scholar
Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual-search strategy in a racquet sport. Human Movement Science, 6, 283319.Google Scholar
Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353367.Google Scholar
Alain, C., & Proteau, L. (1978). Etude des variables relatives au traitment de l’information en sports de raquette. Canadian Journal of Applied Sports Sciences, 3, 2735.Google Scholar
Alain, C., & Proteau, L. (1980). Decision making in sport. In Nadeau, C. H., Halliwell, W. R., Newell, K. M., & Roberts, G. C. (eds.), Psychology of motor behavior and sport (pp. 465477). Champaign, IL: Human Kinetics.Google Scholar
Baker, J., Côté, J., & Abernethy, B. (2003a). Sport specific training, deliberate practice and the development of expertise in team ball sports. Journal of Applied Sport Psychology, 15, 1225.Google Scholar
Baker, J., Côté, J., & Abernethy, B. (2003b). Learning from the experts: Practice activities of expert decision makers in sport. Research Quarterly for Exercise and Sport, 74, 342347.Google Scholar
Baker, J., & Young, B. (2014). 20 years later: Deliberate practice and the development of expertise in sport. International Review of Sport and Exercise Psychology, 7, 135157.Google Scholar
Belling, P., Suss, J., & Ward, P. (2015). Advancing theory and application of cognitive research in sport: Using representative tasks to explain and predict skilled anticipation, decision-making, and option-generation behavior. Psychology of Sport and Exercise, 16, 4559.Google Scholar
Cañal-Bruland, R., & Mann, D. L. (2015). Time to broaden the scope of research on anticipatory behavior: A case for the role of probabilistic information. Frontiers in Psychology, 6. DOI: 10.3389/fpsyg.2015.01518.Google Scholar
Casanaova, F., Gargante, J., Silva, G., Alves, A. J. Oliveira, J., & Williams, A. M. (2013). The effects of prolonged intermittent exercise on perceptual-cognitive processes. Medicine and Science in Sport and Exercise, 45, 16101617.Google Scholar
Catteeuw, P., Helsen, W. F., Gilis, B., & Wagemans, J. (2009). Decision-making skills, role specificity, and deliberate practice in association football refereeing. Journal of Sports Sciences, 11, 11251136.Google Scholar
Causer, J., Janelle, C., Vickers, J., & Williams, A. M. (2012). Perceptual expertise: What can be trained? In Williams, A. M. & Hodges, N. J. (eds.), Skill acquisition in sport: Research, theory and practice (2nd edn.) (pp. 306324). London: Routledge.Google Scholar
Chase, W. G., & Simon, A. S. (1973). Perception in chess. Cognitive Psychology, 4, 5581.Google Scholar
Cocks, A. J., Jackson, R. C., Bishop, D. T., & Williams, A. M. (2016). Anxiety, anticipation and contextual information: A test of attentional control theory. Cognition & Emotion, 30, 10371048.Google Scholar
Côté, J., Murphy-Mills, J., & Abernethy, B. (2012). The development of skill in sport. In Williams, A. M. & Hodges, N. J. (eds.), Skill acquisition in sport: Research, theory and practice (2nd edn.) (pp. 269286). London: Routledge.Google Scholar
Coughlan, E. (2016). How experts learn: The role of deliberate practice. PhD Dissertation, Liverpool John Moores University.Google Scholar
Coughlan, E. K., Williams, A. M., McRobert, A. P., & Ford, P. R. (2013). How experts practice: A novel test of deliberate practice theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 449458.Google Scholar
Cushion, C., Ford, P. R., & Williams, A. M. (2012). Coach behaviours and practice structures in youth soccer: Implications for talent development. Journal of Sports Sciences, 30, 16311641.Google Scholar
Dittrich, W. H. (1999). Seeing biological motion: Is there a role for cognitive strategies? In Braffort, A., Gherbi, R., Gibet, S., Richardson, J., & Teil, D. (eds.), Gesture-based communication in human–computer interaction (pp. 322). Berlin: Springer-Verlag.Google Scholar
Ericsson, K. A. (ed.) (1996). The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games. Mahwah, NJ: Erlbaum.Google Scholar
Ericsson, K. A. (2003). The development of elite performance and deliberate practice: An update from the perspective of the expert-performance approach. In Starkes, J. & Ericsson, K. A. (eds.), Expert performance in sport: Recent advances in research on sport expertise (pp. 4981). Champaign, IL: Human Kinetics.Google Scholar
Ericsson, K. A. (2007). Deliberate practice and the modifiability of body and mind: Toward a science of the structure and acquisition of expert and elite performance. International Journal of Sport Psychology, 38, 434.Google Scholar
Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine, 15, 988994.Google Scholar
Ericsson, K. A. (2016). Summing up hours of any type of practice versus identifying optimal practice activities: Commentary on Macnamara, Moreau, & Hambrick (2016). Perspectives on Psychological Science, 11, 351354.Google Scholar
Ericsson, K. A., Charness, N., Hoffman, R. R., & Feltovich, P. J. (eds.) (2006). The Cambridge handbook of expertise and expert performance. Cambridge University Press.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Ericsson, K. A., & Williams, A. M. (2007). Capturing naturally occurring superior performance in the laboratory: Translational research on expert performance. Journal of Experimental Psychology: Applied, 13, 115123.Google Scholar
Ford, P. R., Carling, C., Garces, M., Marques, M., Miguel, C., Farrant, A., … & Williams, A. M. (2012). The developmental activities of elite soccer players aged under-16 years from Brazil, England, France, Ghana, Mexico, Portugal and Sweden. Journal of Sports Sciences, 30, 16531663.Google Scholar
Ford, P. R., Coughlan, E. K., Hodges, N. J., & Williams, A. M. (2015). Deliberate practice in sport. In Baker, J. & Farrow, D. (eds.), The handbook of sport expertise (pp. 347362). London: Routledge.Google Scholar
Ford, P. R., Hodges, N. J., & Williams, A. M. (2013). Creating champions: The development of expertise in sports. In Kaufman, S. B. (ed.), Beyond talent: The complexity of greatness (pp. 391414). Oxford University Press.Google Scholar
Ford, P. R., & Williams, A. M. (2012). The developmental activities engaged in by elite youth soccer players who progressed to professional status compared to those who did not. Psychology of Sport and Exercise, 13, 349352.Google Scholar
Ford, P. R., & Williams, A. M. (2013). ‘Game intelligence’: Anticipation and decision making. In Williams, A. M. (ed.), Science and soccer III (pp. 105121). London: Routledge.Google Scholar
Ford, P. R., & Williams, A. M. (2017). Sport activity in childhood: Early specialization and diversification. In Baker, J., Cobley, S., Schorer, J., & Wattie, N. (eds.), Routledge handbook of talent identification and development in sport (pp. 117132). London: Routledge.Google Scholar
Ford, P. R., Yates, I., & Williams, A. M. (2010). An analysis of practice activities and instructional behaviours used by youth soccer coaches during practice: Exploring the link between science and application. Journal of Sports Sciences, 28, 483495.Google Scholar
Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. Quarterly Journal of Experimental Psychology, 65, 11511160.Google Scholar
Hambrick, D. Z., Oswald, F. L., Altman, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 3445.Google Scholar
Hambrick, D. Z., & Tucker-Drob, E. M. (2015). The genetics of music accomplishment: Evidence for gene–environment correlation and interaction. Psychonomic Bulletin & Review, 22, 112120.Google Scholar
Helsen, W. F., & Starkes, J. L. (1999). A multidisciplinary approach to skilled perception and performance in sport. Applied Cognitive Psychology, 13, 127.Google Scholar
Helsen, W. F., Starkes, J. L., & Hodges, N. J. (1998). Team sports and the theory of deliberate practice. Journal of Sport & Exercise Psychology, 20, 1234.Google Scholar
Hendry, D. T., Crocker, P. R. E., & Hodges, N. J. (2014). Practice and play as determinants of self-determined motivation in youth soccer players. Journal of Sports Sciences, 32, 10911099.Google Scholar
Hendry, D. T., & Hodges, N. J. (in preparation). Predicting success from practice data: A longitudinal follow up of elite youth soccer players.Google Scholar
Hodges, N. J., Edwards, C., Luttin, S., & Bowcock, A. (2011). Learning from the experts: Gaining insights into best practice during the acquisition of three novel motor skills. Research Quarterly for Exercise and Sport, 82, 178187.Google Scholar
Hodges, N. J., Kerr, T., Starkes, J. L., & Nananidou, A. (2004). Predicting performance times from deliberate practice hours for triathletes and swimmers: What, when, and where is practice important? Journal of Experimental Psychology: Applied, 10, 219237.Google Scholar
Hodges, N. J., & Starkes, J. L. (1996). Wrestling with the nature of expertise: A sport-specific test of Ericsson, Krampe and Tesch-Römer’s (1993) theory of “deliberate practice.” International Journal of Sport Psychology, 27, 400424.Google Scholar
Huys, R., Smeeton, N. J., Hodges, N. J., Beek, P., & Williams, A. M. (2008). The dynamical information underlying anticipation skill in tennis. Perception and Psychophysics, 18, 12171234.Google Scholar
Jones, C. M., & Miles, T. R. (1978). Use of advance cues in predicting the flight of a lawn tennis ball. Journal of Human Movement Studies, 4, 231235.Google Scholar
Lee, T. D. (1988). Transfer-appropriate processing: A framework for conceptualizing practice effects in motor learning. Advances in Psychology, 50, 201215.Google Scholar
Loffing, F., & Hagemann, N. (2014). On-court position influences skilled tennis players’ anticipation of shot outcome. Journal of Sport & Exercise Psychology, 36, 1426.Google Scholar
Low, J., Williams, A. M., McRobert, A. P., & Ford, P. R. (2013). The microstructure of practice activities engaged in by elite and recreational youth cricket players. Journal of Sport Sciences, 31, 12421250.Google Scholar
Macnamara, B. N., Moreau, D., & Hambrick, D. Z. (2016). The relationship between deliberate practice and performance in sports: A meta-analysis. Perspectives on Psychological Science, 11, 333350.Google Scholar
Mann, D. L., Schaefers, T., & Cañal-Bruland, R. (2014). Action preferences and the anticipation of action outcomes in penalty situations. Acta Psychologica, 152, 19.Google Scholar
McRobert, A., Ward, P., Eccles, D., & Williams, A. M. (2011). The effect of manipulating context-specific information on perceptual-cognitive processes during a simulated anticipation task. British Journal of Psychology, 102, 519534.Google Scholar
McRobert, A., Williams, A. M., Ward, P., & Eccles, D. W. (2009). Perceptual-cognitive mechanisms underpinning expertise: The effects of task constraints. Ergonomics, 52, 474483.Google Scholar
Moore, C., & Müller, S. (2014). Transfer of expert visual anticipation to a similar domain. Quarterly Journal of Experimental Psychology, 67, 186196.Google Scholar
Murphy, C. P., Jackson, R. C., Cooke, K., Roca, A., Benguigui, N., & Williams, A. M. (2016). Contextual information and perceptual-cognitive expertise in a dynamic, temporally-constrained task. Journal of Experimental Psychology: Applied, 22, 455470.Google Scholar
Murphy, C. P., Jackson, R. C., & Williams, A. M. (2015). Perceiving context: The key to anticipation in sport? In Schmid, O. & Seiler, S. (eds.), 14th European Congress of Sport Psychology. Bern: University of Bern.Google Scholar
Navia, J. A., van der Kamp, J., & Ruiz, L. M. (2013). On the use of situation and body information in goalkeeper actions during a soccer penalty kick. International Journal of Sport Psychology, 44, 234251.Google Scholar
North, J. S., Ward, P., Ericsson, K. A., & Williams, A. M. (2011). Mechanisms underlying skilled anticipation and recognition in a dynamic and temporally constrained domain. Memory, 19, 155168.Google Scholar
Proteau, L. (1992). On the specificity of learning and the role of visual information for movement control. In Proteau, L. & Elliott, D. (eds.), Vision and motor control (pp. 67103). Amsterdam: North-Holland.Google Scholar
Ripoll, H., Kerlirzin, Y., Stein, J. F., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325349.Google Scholar
Roca, A., Ford, P. R., McRobert, A. P., & Williams, A. M. (2013). Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. Journal of Sport & Exercise Psychology, 35, 144155.Google Scholar
Roca., A., & Williams, A. M. (2016). Expertise and the interaction between different perceptual-cognitive skills: Implications for testing and training. Frontiers in Psychology. DOI: 10.3389/fpsyg.2016.00792.Google Scholar
Roca, A., Williams, A. M., & Ford, P. R. (2012). Developmental activities and the acquisition of superior anticipation and decision making in soccer players. Journal of Sports Sciences, 30, 16431652.Google Scholar
Runswick., O. R., Roca, A., Williams, A. M., & North, J. (2016). The effects of anxiety and situation-specific context on perceptual-motor skill: A multi-level investigation. Journal of Sport & Exercise Psychology, 2016, S103S104.Google Scholar
Schmidt, R. A., & Lee, T. D. (2013). Motor control and learning (6th edn.). Champaign, IL: Human Kinetics.Google Scholar
Smeeton, N. J., Ward, P., & Williams, A. M. (2004). Do pattern recognition skills transfer across sports? A preliminary analysis. Journal of Sports Sciences, 22, 205213.Google Scholar
Starkes, J. L., Deakin, J., Allard, F., Hodges, N. J., & Hayes, A. (1996). Deliberate practice in sports: What is it anyway? In Ericsson, K. A. (ed.), The road to excellence: The acquisition of expert performance in the arts and sciences, sports and games (pp. 81106). Mahwah, NJ: Erlbaum.Google Scholar
Starkes, J. L., & Ericsson, K. A. (eds.) (2003). Expert performance in sports: Advances in research on sport expertise. Champaign, IL: Human Kinetics.Google Scholar
Thorndike, E. L. (1912). Education: A first book. New York: Macmillan.Google Scholar
Toering, T. T., Elferink-Gemser, M. T., Jonker, L., Van Heuvelen, M. J. G., & Visscher, C. (2012). Measuring self-regulation in a learning context: Reliability and validity of the Self-Regulation of Learning Self-Report Scale (SRL-SRS). International Journal of Sport and Exercise Psychology, 10, 2438.Google Scholar
Vaeyens, R., Lenoir, M., Williams, A. M., Mazyn, L., & Philippaerts, R. M. (2007). The effects of task constraints on visual search behavior and decision making skill in youth soccer players. Journal of Sport & Exercise Psychology, 29, 156175.Google Scholar
Vaeyens, R., Lenoir, M., Williams, A. M., & Philippaerts, R. M. (2008). Talent identification and development programmes in sport: Current models and future directions. Sports Medicine, 38, 703714.Google Scholar
Vater, C., Roca, A., & Williams, A. M. (2016). Effects of anxiety on anticipation and visual search in dynamic, time-constrained situations. Sport, Exercise, and Performance Psychology, 5, 179192.Google Scholar
Ward, P., Ericsson, K. A., & Williams, A. M. (2013). Complex perceptual-cognitive expertise in a simulated task environment. Journal of Cognitive Engineering and Decision Making, 7, 231254.Google Scholar
Ward, P., Hodges, N. J., Starkes, J. L., & Williams, A. M. (2007). The road to excellence: Deliberate practice and the development of expertise. High Ability Studies, 18, 119153.Google Scholar
Ward, P., Hodges, N. J., Williams, A. M., & Starkes, J. L. (2004). Deliberate practice and expert performance: Defining the path to excellence. In Williams, A. M. & Hodges, N. J. (eds.), Skill acquisition in sport: Research, theory and practice (pp. 231258). London: Routledge.Google Scholar
Ward, P., & Williams, A. M. (2003). Perceptual and cognitive skill development in soccer: The multidimensional nature of expert performance. Journal of Sport & Exercise Psychology, 25, 93111.Google Scholar
Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73, 107112.Google Scholar
Weissensteiner, J., Abernethy, B., & Farrow, D. (2009). Towards the development of a conceptual model of expertise in cricket batting: A grounded theory approach. Journal of Applied Sport Psychology, 21, 276292.Google Scholar
Weissensteiner, J., Abernethy, B., Farrow, D., & Muller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30, 663684.Google Scholar
Williams, A. M. (2009). Perceiving the intentions of others: How do skilled performers make anticipation judgements? In Raab, M., Johnson, J. G., & Heekeren, H. R. (eds.), Mind and motion: The bidirectional link between thought and action (pp. 7383). Amsterdam: Elsevier.Google Scholar
Williams, A. M., & Davids, K. (1998). Visual search strategy, selective attention, and expertise in soccer. Research Quarterly for Exercise and Sport, 69, 111128.Google Scholar
Williams, A. M., Davids, K., Burwitz, L., & Williams, J. G. (1994). Visual search strategies in expert and novice soccer players. Research Quarterly for Exercise and Sport, 65, 127135.Google Scholar
Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. London: Spon.Google Scholar
Williams, A. M., & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport and Exercise Psychology, 1, 418.Google Scholar
Williams, A. M., & Hodges, N. J. (2005). Practice, instruction and skill acquisition in soccer: Challenging tradition. Journal of Sports Sciences, 23, 637650.Google Scholar
Williams, A. M., Janelle, C. M., & Davids, K. (2004). Constraints on the search for visual information in sport. International Journal of Sport and Exercise Psychology, 2, 301318.Google Scholar
Williams, A. M., North, J. S., & Hope, E. R. (2012a). Identifying the mechanisms underpinning recognition of structured sequences of action. Quarterly Journal of Experimental Psychology, 65, 19751992.Google Scholar
Williams, A. M., & Reilly, T. (2000). Talent identification and development in soccer. Journal of Sports Sciences, 18, 657667.Google Scholar
Williams, A. M., Ward, P., Bell-Walker, J., & Ford, P. R. (2012b). Perceptual-cognitive expertise, practice history profiles and recall performance in soccer. British Journal of Psychology, 103, 393411.Google Scholar
Williams, A. M., Ward, P., Smeeton, N. J., & Ward, J. (2008). Task specificity, role, and anticipation skill in soccer. Research Quarterly for Exercise and Sport, 79, 429433.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×