Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T10:51:14.562Z Has data issue: false hasContentIssue false

13 - Evolutionary and Neural Bases of the Sense of Animacy

from Part III - Social Cognition

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

A crucial skill for survival among animals is distinguishing between living and non-living entities, be those predators, social companions, or prey. Animacy is the perceived property of an object to be animate. Therefore, animals should possess fast unlearnt mechanisms for the detection of animacy. If, for instance, primates would rely on learning to avoid venomous snakes, they would probably die at the first encounter. If chicks would imprint on the first object seen immediately after hatching, they would frequently end up imprinting on an eggshell. It is thus likely that selective pressures shaped an adaptive set of unlearnt rudimental knowledge, shared among species. This knowledge helps them to tell apart, in an otherwise undifferentiated sensory world, animate from inanimate objects. Further learning would capitalize on this rudimental, original knowledge and shape more sophisticated cognitive abilities and behaviors (Vallortigara, 2009, 2012b, 2012a; Versace, Martinho-Truswell, Kacelnik, & Vallortigara, 2018). Some configurations of features and movements help animals to disentangle between animate and inanimate objects. The present chapter will thus discuss behavioural evidence and suggested neural mechanisms underlying the detection of static and dynamic cues to animacy in the various species with particular emphasis on their ontogenetic development.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18(2), 166172. https://doi.org/10.1016/j.conb.2008.06.006CrossRefGoogle ScholarPubMed
Aristotle, (1980). The Physics. Cambridge, MA: Harvard University Press.Google Scholar
Avarguès-Weber, A., Portelli, G., Benard, J., Dyer, A., & Giurfa, M. (2010). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. Journal of Experimental Biology, 213(4), 593601. https://doi.org/10.1242/jeb.039263CrossRefGoogle ScholarPubMed
Ball, W. & Tronick, E. (1971). Infant responses to impending collision: Optical and real. Science (New York, N.Y.), 171(3973), 818820.Google Scholar
Barrett, C. H. (2005). Adaptations to Predators and Preys. In Buss, D. M. (Ed.), The Handbook of Evolutionary Psychology (pp. 200223). New York: John Wiley & Sons.Google Scholar
Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley (Lepidoptera: Heliconidae). Biological Journal of the Linnean Society, 16(1), 4154. https://doi.org/10.1111/j.1095-8312.1981.tb01842.xCrossRefGoogle Scholar
Bern, C. & Herzog, H. A. (1994). Stimulus control of defensive behaviors of garter snakes (Thamnophis sirtalis): Effects of eye spots and movement. Journal of Comparative Psychology, 108(4), 353357. https://doi.org/10.1037/0735-7036.108.4.353Google Scholar
Bona, S. D., Valkonen, J. K., López-Sepulcre, A., & Mappes, J. (2015). Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Procedures of the Royal Society B, 282(1806), 20150202. https://doi.org/10.1098/rspb.2015.0202Google Scholar
Brown, J., Kaplan, G., Rogers, L. J., & Vallortigara, G. (2010). Perception of biological motion in common marmosets (Callithrix jacchus): By females only. Animal Cognition, 13(3), 555564. https://doi.org/10.1007/s10071-009-0306-0Google Scholar
Buiatti, M., Di Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., … & Vallortigara, G. (2019). Cortical route for facelike pattern processing in human newbornsProceedings of the National Academy of Sciences116(10), 46254630. https://doi.org/10.1073/pnas.1812419116Google Scholar
Burger, J. (1998). Antipredator behaviour of hatchling snakes: Effects of incubation temperature and simulated predators. Animal Behaviour, 56(3), 547–553. https://doi.org/10.1006/anbe.1998.0809CrossRefGoogle ScholarPubMed
Burger, J., Gochfeld, M., & Murray, B. G. (1991). Role of a predator’s eye size in risk perception by basking black iguana. Ctenosaura similis. Animal Behaviour, 42(3), 471476. https://doi.org/10.1016/S0003-3472(05)80046-6CrossRefGoogle Scholar
Burger, J., Gochfeld, M., & Murray, B. G. (1992). Risk discrimination of eye contact and directness of approach in black iguanas (Ctenosaura similis). Journal of Comparative Psychology, 106(1), 97101. https://doi.org/10.1037/0735-7036.106.1.97CrossRefGoogle Scholar
Burghardt, G. M. & Greene, H. W. (1988). Predator simulation and duration of death feigning in neonate hognose snakes. Animal Behaviour, 36(6), 18421844. https://doi.org/10.1016/S0003-3472(88)80127-1Google Scholar
Butler, A. B. & Hodos, W. (2005). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: John Wiley & Sons.Google Scholar
Catania, K. C. (2009). Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proceedings of the National Academy of Sciences, 106(27), 1118311187. https://doi.org/10.1073/pnas.0905183106Google Scholar
Clara, E., Regolin, L., Vallortigara, G., & Rogers, L. J. (2009). Chicks prefer to peck at insect-like elongated stimuli moving in a direction orthogonal to their longer axis. Animal Cognition, 12(6), 755765. https://doi.org/10.1007/s10071-009-0235-yCrossRefGoogle Scholar
Coss, R. G. (1978a). Development of face aversion by the jewel fish (Hemichromis bimaculatus, Gill 1862). Zeitschrift Für Tierpsychologie, 48(1), 2846. https://doi.org/10.1111/j.1439-0310.1978.tb00246.xCrossRefGoogle Scholar
Coss, R. G. (1978b). Perceptual determinants of gaze aversion by the lesser mouse lemur (Microcebus Murinus): The role of two facing eyes. Behaviour, 64(3), 248269. https://doi.org/10.1163/156853978X00053CrossRefGoogle Scholar
Coss, R. G. (1979). Delayed plasticity of an instinct: Recognition and avoidance of 2 facing eyes by the jewel fish. Developmental Psychobiology, 12(4), 335345. https://doi.org/10.1002/dev.420120408Google Scholar
Day-Brown, J. D., Wei, H., Chomsung, R. D., Petry, H. M., & Bickford, M. E. (2010). Pulvinar projections to the striatum and amygdala in the tree shrew. Frontiers in Neuroanatomy, 4. https://doi.org/10.3389/fnana.2010.00143Google Scholar
Dean, P., Redgrave, P., & Westby, G. W. M. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends in Neurosciences, 12(4), 137147. https://doi.org/10.1016/0166-2236(89)90052-0CrossRefGoogle ScholarPubMed
De Franceschi, G., Vivattanasarn, T., Saleem, A. B., & Solomon, S. G. (2016). Vision guides selection of freeze or flight defense strategies in mice. Current Biology, 26(16), 21502154. https://doi.org/10.1016/j.cub.2016.06.006Google Scholar
Dewell, R. B. & Gabbiani, F. (2012). Escape behavior: Linking neural computation to action. Current Biology, 22(5), R152R153. https://doi.org/10.1016/j.cub.2012.01.034CrossRefGoogle ScholarPubMed
Di Giorgio, E., Lunghi, M., Simion, F., & Vallortigara, G. (2016). Visual cues of motion that trigger animacy perception at birth: The case of self-propulsion. Developmental Science, 20(4), e12394. https://doi.org/10.1111/desc.12394Google ScholarPubMed
Di Giorgio, E., Loveland, J. L., Mayer, U., Rosa-Salva, O., Versace, E., & Vallortigara, G. (2017). Filial responses as predisposed and learned preferences: Early attachment in chicks and babies. Behavioural Brain Research, 325(Pt B), 90104. https://doi.org/10.1016/j.bbr.2016.09.018Google Scholar
Eaton, R. C., Bombardieri, R. A., & Meyer, D. L. (1977). The Mauthner-initiated startle response in teleost fish. Journal of Experimental Biology, 66(1), 6581.CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1972). A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behavior and Evolution, 6(1–6), 7591. https://doi.org/10.1159/000123698Google Scholar
Emery, N. J. (2000). The eyes have it: The neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews, 24(6), 581604. https://doi.org/10.1016/S0149-7634(00)00025-7Google Scholar
Ewert, J.-P. (1987). Neuroethology of releasing mechanisms: Prey-catching in toads. Behavioral and Brain Sciences, 10(3), 337368. https://doi.org/10.1017/S0140525X00023128Google Scholar
Ewert, J.-P. (2004). Motion Perception Shapes the Visual World of Amphibians. In Prete, F. R. (Ed.), Complex Worlds from Simpler Nervous Systems (pp. 177260). Cambridge: MIT Press.Google Scholar
Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 1724517250. https://doi.org/10.1073/pnas.0502205102CrossRefGoogle ScholarPubMed
Fotowat, H. & Gabbiani, F. (2007). Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. Journal of Neuroscience, 27(37), 1004710059. https://doi.org/10.1523/JNEUROSCI.1515-07.2007CrossRefGoogle ScholarPubMed
Fotowat, H., Harrison, R. R., & Gabbiani, F. (2011). Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron, 69(1), 147158. https://doi.org/10.1016/j.neuron.2010.12.007Google Scholar
Frost, B. J. & Nakayama, K. (1983). Single visual neurons code opposing motion independent of direction. Science, 220(4598), 744745.Google Scholar
Frost, B. J., Cavanagh, P., & Morgan, B. (1988). Deep tectal cells in pigeons respond to kinematograms. Journal of Comparative Physiology A, 162(5), 639647. https://doi.org/10.1007/BF01342639Google Scholar
van der Gaag, C., Minderaa, R. B., & Keysers, C. (2007). The BOLD signal in the amygdala does not differentiate between dynamic facial expressions. Social Cognitive and Affective Neuroscience, 2(2), 93103. https://doi.org/10.1093/scan/nsm002Google Scholar
Gallup, G. G., Cummings, W. H., & Nash, R. F. (1972). The experimenter as an independent variable in studies of animal hypnosis in chickens (Gallus gallus). Animal Behaviour, 20(1), 166169. https://doi.org/10.1016/S0003-3472(72)80187-8Google Scholar
Goodson, J. L. & Kingsbury, M. A. (2013). What’s in a name? Considerations of homologies and nomenclature for vertebrate Social Behavior Networks. Hormones and Behavior, 64(1), 103112. https://doi.org/10.1016/j.yhbeh.2013.05.006CrossRefGoogle Scholar
Guthrie, S. E. & Guthrie, S. (1993). Faces in the Clouds: A New Theory of Religion. Oxford: Oxford University Press.Google Scholar
Harlow, H. F. (1958). The nature of love. American Psychologist, 13(12), 673685. https://doi.org/10.1037/h0047884Google Scholar
Harlow, H. F. & Suomi, S. J. (1971). Social recovery by isolation-reared monkeys. Proceedings of the National Academy of Sciences, 68(7), 15341538. https://doi.org/10.1073/pnas.68.7.1534Google Scholar
Hatschek, B. (1888): Lehrbuch der Zoologie, 1. Lieferung (pp. 1–144); Jena (Gustav Fischer)Google Scholar
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223233. https://doi.org/10.1016/S1364-6613(00)01482-0Google Scholar
Headland, T. N. & Greene, H. W. (2011). Hunter–gatherers and other primates as prey, predators, and competitors of snakes. Proceedings of the National Academy of Sciences, 108(52), E1470E1474. https://doi.org/10.1073/pnas.1115116108CrossRefGoogle ScholarPubMed
Hébert, M., Versace, E., & Vallortigara, G. (2019). Inexperienced preys know when to flee or to freeze in front of a threatProceedings of the National Academy of Sciences116(46), 2291822920. https://doi.org/10.1073/pnas.1915504116Google Scholar
Hennig, C. W. (1977). Effects of simulated predation on tonic immobility in Anolis carolinensis: The role of eye contact. Bulletin of the Psychonomic Society, 9(4), 239242. https://doi.org/10.3758/BF03336987Google Scholar
Hernik, M., Fearon, P., & Csibra, G. (2014). Action anticipation in human infants reveals assumptions about anteroposterior body-structure and action. Procedures of the Royal Society B, 281(1781), 20133205. https://doi.org/10.1098/rspb.2013.3205Google Scholar
Hoffman, K. L., Gothard, K. M., Schmid, M. C., & Logothetis, N. K. (2007). Facial-expression and gaze-selective responses in the monkey amygdala. Current Biology, 17(9), 766772. https://doi.org/10.1016/j.cub.2007.03.040Google Scholar
Horn, G. (2004). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience, 5(2), 108120. https://doi.org/10.1038/nrn1324CrossRefGoogle ScholarPubMed
Horn, G. & McCabe, B. J. (1984). Predispositions and preferences. Effects on imprinting of lesions to the chick brain. Animal Behaviour, 32(1), 288292. https://doi.org/10.1016/S0003-3472(84)80349-8Google Scholar
Ikebuchi, M., Nanbu, S., Okanoya, K., Suzuki, R., & Bischof, H.-J. (2012). Very early development of nucleus taeniae of the amygdala. Brain, Behavior and Evolution, 81(1), 1226. https://doi.org/10.1159/000342785Google Scholar
Ingle, D. (1973). Two visual systems in the frog. Science, 181(4104), 10531055. https://doi.org/10.1126/science.181.4104.1053Google Scholar
Isbell, L. A. (2009). The Fruit, the Tree, and the Serpent. London: Harvard University Press.Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766774. https://doi.org/10.1038/nrn1766Google Scholar
Johnson, M. H., Bolhuis, J. J., & Horn, G. (1985). Interaction between acquired preferences and developing predispositions during imprinting. Animal Behaviour, 33(3), 10001006. https://doi.org/10.1016/S0003-3472(85)80034-8Google Scholar
Johnson, M. H. & Horn, G. (1986). Dissociation of recognition memory and associative learning by a restricted lesion of the chick forebrain. Neuropsychologia, 24(3), 329340. https://doi.org/10.1016/0028-3932(86)90018-7CrossRefGoogle ScholarPubMed
Johnson, M. H. & Horn, G. (1987). The role of a restricted region of the chick forebrain in the recognition of individual conspecifics. Behavioural Brain Research, 23(3), 269275. https://doi.org/10.1016/0166-4328(87)90027-1Google Scholar
Johnson, M. H. & Horn, G. (1988). Development of filial preferences in dark-reared chicks. Animal Behaviour, 36(3), 675683. https://doi.org/10.1016/S0003-3472(88)80150-7Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1), 119. https://doi.org/10.1016/0010-0277(91)90045-6Google Scholar
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience & Biobehavioral Reviews, 50, 169179. https://doi.org/10.1016/j.neubiorev.2014.10.009Google Scholar
Jones, R. B. (1980). Reactions of male domestic chicks to two-dimensional eye-like shapes. Animal Behaviour, 28(1), 212218. https://doi.org/10.1016/S0003-3472(80)80025-XGoogle Scholar
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 43024311. https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997Google Scholar
Kasturiratne, A., Wickremasinghe, A. R., Silva, N. de, Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., … Silva, H. J. de. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), e218. https://doi.org/10.1371/journal.pmed.0050218CrossRefGoogle ScholarPubMed
King, J. G. Jr., Lettvin, J. Y., & Gruberg, E. R. (1999). Selective, unilateral, reversible loss of behavioral responses to looming stimuli after injection of tetrodotoxin or cadmium chloride into the frog optic nerve. Brain Research, 841(1–2), 2026. https://doi.org/10.1016/S0006-8993(99)01764-3CrossRefGoogle ScholarPubMed
Kostyk, S. K. & Grobstein, P. (1982). Visual orienting deficits in frogs with various unilateral lesions. Behavioural Brain Research, 6(4), 379388. https://doi.org/10.1016/0166-4328(82)90019-5CrossRefGoogle ScholarPubMed
Kovács, K., Kis, A., Kanizsár, O., Hernádi, A., Gácsi, M., & Topál, J. (2016). The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Animal Cognition, 19(3), 513522. https://doi.org/10.1007/s10071-015-0951-4CrossRefGoogle ScholarPubMed
Kutschera, U., Burghagen, H., & Ewert, J. P. (2008). Prey-Catching Behaviour in Mudskippers and Toads: A Comparative Analysis. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=AV20120141573Google Scholar
Larsch, J. & Baier, H. (2018). Biological motion as an innate perceptual mechanism driving social affiliation. BioRxiv, 347419. https://doi.org/10.1101/347419Google Scholar
Leonard, C. M., Rolls, E. T., Wilson, F. A. W., & Baylis, G. C. (1985). Neurons in the amygdala of the monkey with responses selective for faces. Behavioural Brain Research, 15(2), 159176. https://doi.org/10.1016/0166-4328(85)90062-2CrossRefGoogle ScholarPubMed
Leopold, D. A. & Rhodes, G. (2010). A comparative view of face perception. Journal of Comparative Psychology, 124(3), 233251. https://doi.org/10.1037/a0019460Google Scholar
Leventhal, A. G., Rodieck, R. W., & Dreher, B. (1981). Retinal ganglion cell classes in the Old World monkey: Morphology and central projections. Science, 213(4512), 11391142. https://doi.org/10.1126/science.7268423Google Scholar
Liu, J., Li, J., Feng, L., Li, L., Tian, J., & Lee, K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 6077. https://doi.org/10.1016/j.cortex.2014.01.013Google Scholar
LoBue, V. & DeLoache, J. S. (2010). Superior detection of threat-relevant stimuli in infancy. Developmental Science, 13(1), 221228. https://doi.org/10.1111/j.1467-7687.2009.00872.xGoogle Scholar
Lorenzi, E., Mayer, U., Rosa-Salva, O., & Vallortigara, G. (2017). Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks (Gallus gallus). Neuroscience, 354, 5468. https://doi.org/10.1016/j.neuroscience.2017.04.022CrossRefGoogle ScholarPubMed
Lorenzi, E., Pross, A., Rosa Salva, O., Versace, E., Sgadò, P., & Vallortigara, G. (2019). Embryonic exposure to valproic acid affects social predispositions for dynamic cues of animate motion in newly-hatched chicksFrontiers in Physiology10, 501. https://doi.org/10.3389/fphys.2019.00501CrossRefGoogle ScholarPubMed
Loveland, J. L., Stewart, M. G., & Vallortigara, G. (2019). Effects of oxytocin‐family peptides and substance P on locomotor activity and filial preferences in visually naïve chicks. European Journal of Neuroscience. https://doi.org/10.1111/ejn.14520CrossRefGoogle Scholar
Luksch, H., Cox, K., & Karten, H. J. (1998). Bottlebrush dendritic endings and large dendritic fields: Motion-detecting neurons in the tectofugal pathway. Journal of Comparative Neurology, 396(3), 399414. https://doi.org/10.1002/(SICI)1096-9861(19980706)396:3<399::AID-CNE9>3.0.CO;2-YGoogle Scholar
Maior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C. H., Ono, T., … Tomaz, C. (2011). Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys. Neuroscience Letters, 504(3), 257260. https://doi.org/10.1016/j.neulet.2011.09.042Google Scholar
Maior, R. S., Hori, E., Uribe, C. E., Saletti, P. G., Ono, T., Nishijo, H., & Tomaz, C. (2012). A role for the superior colliculus in the modulation of threat responsiveness in primates: Toward the ontogenesis of the social brain. Revneuro, 23(5–6), 697706. https://doi.org/10.1515/revneuro-2012-0055Google Scholar
Manteuffel, G. & Fiseifis, S. (1990). Configuration-sensitive visual responses in the superior colliculus of the house mouse (Mus musculus domesticus). Brain, Behavior and Evolution, 35(3), 176184. https://doi.org/10.1159/000115865Google Scholar
Martínez-García, F., Novejarque, A., & Lanuza, E. (2008). Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Research Bulletin, 75(2–4), 206213. https://doi.org/10.1016/j.brainresbull.2007.10.019Google Scholar
Mascalzoni, E., Regolin, L., & Vallortigara, G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences, 107(9), 44834485. https://doi.org/10.1073/pnas.0908792107CrossRefGoogle ScholarPubMed
Masino, T. & Knudsen, E. I. (1992). Anatomical pathways from the optic tectum to the spinal cord subserving orienting movements in the barn owl. Experimental Brain Research, 92(2), 194208. https://doi.org/10.1007/BF00227965Google Scholar
Mayer, U., Rosa-Salva, O., Lorenzi, E., & Vallortigara, G. (2016). Social predisposition dependent neuronal activity in the intermediate medial mesopallium of domestic chicks (Gallus gallus domesticus). Behavioural Brain Research, 310, 93102. https://doi.org/10.1016/j.bbr.2016.05.019Google Scholar
Mayer, U., Rosa-Salva, O., Morbioli, F., & Vallortigara, G. (2017). The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). European Journal of Neuroscience, 45(3), 423432. https://doi.org/10.1111/ejn.13484Google Scholar
Mayer, U., Rosa-Salva, O., & Vallortigara, G. (2017). First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus). Behavioural Brain Research, 317, 7181. https://doi.org/10.1016/j.bbr.2016.09.031Google Scholar
Morton, J. & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98(2), 164181.Google Scholar
Nakano, T., Higashida, N., & Kitazawa, S. (2013). Facilitation of face recognition through the retino-tectal pathway. Neuropsychologia, 51(10), 20432049. https://doi.org/10.1016/j.neuropsychologia.2013.06.018CrossRefGoogle ScholarPubMed
Nakayasu, T. & Watanabe, E. (2013). Biological motion stimuli are attractive to medaka fish. Animal Cognition, 17(3), 559575. https://doi.org/10.1007/s10071-013-0687-yGoogle Scholar
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior a node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877(1), 242257. https://doi.org/10.1111/j.1749-6632.1999.tb09271.xGoogle Scholar
Nguyen, M. N., Hori, E., Matsumoto, J., Tran, A. H., Ono, T., & Nishijo, H. (2013). Neuronal responses to face-like stimuli in the monkey pulvinar. European Journal of Neuroscience, 37(1), 3551. https://doi.org/10.1111/ejn.12020Google Scholar
Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., … Nishijo, H. (2014). Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00085Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (2001). Dynamic mimicry in an Indo–Malayan octopus. Proceedings of the Royal Society of London B: Biological Sciences, 268(1478), 17551758. https://doi.org/10.1098/rspb.2001.1708CrossRefGoogle Scholar
O’Brien, T. J. & Dunlap, W. P. (1975). Tonic immobility in the blue crab (Callinectes sapidus, Rathbun): Its relation to threat of predation. Journal of Comparative and Physiological Psychology, 89(1), 8694. https://doi.org/10.1037/h0076425CrossRefGoogle ScholarPubMed
O’Connell, L. A. & Hofmann, H. A. (2011). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. The Journal of Comparative Neurology, 519(18), 35993639. https://doi.org/10.1002/cne.22735Google Scholar
Öhman, A. & Soares, J. J. (1993). On the automatic nature of phobic fear: Conditioned electrodermal responses to masked fear-relevant stimuli. Journal of Abnormal Psychology, 102(1), 121132.Google Scholar
Öhman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466478. https://doi.org/10.1037/0096-3445.130.3.466Google Scholar
Öhman, A. (2005). The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology, 30(10), 953958. https://doi.org/10.1016/j.psyneuen.2005.03.019Google Scholar
Oliva, D., Medan, V., & Tomsic, D. (2007). Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). Journal of Experimental Biology, 210(5), 865880. https://doi.org/10.1242/jeb.02707Google Scholar
Pallus, A. C., Fleishman, L. J., & Castonguay, P. M. (2010). Modeling and measuring the visual detection of ecologically relevant motion by an anolis lizard. Journal of Comparative Physiology A, 196(1), 1. https://doi.org/10.1007/s00359-009-0487-7Google Scholar
Pavlova, M. A. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981995. https://doi.org/10.1093/cercor/bhr156Google Scholar
Perry, V. H. & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience, 12(4), 11251137. https://doi.org/10.1016/0306-4522(84)90007-1Google Scholar
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331348. https://doi.org/10.1006/nimg.2002.1087Google Scholar
Premack, D. (1990). The infant’s theory of self-propelled objects. Cognition, 36(1), 116.Google Scholar
Preuss, T., Osei-Bonsu, P. E., Weiss, S. A., Wang, C., & Faber, D. S. (2006). Neural representation of object approach in a decision-making motor circuit. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(13), 34543464. https://doi.org/10.1523/JNEUROSCI.5259-05.2006Google Scholar
Rodieck, R. W. & Watanabe, M. (1993). Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. The Journal of Comparative Neurology, 338(2), 289303. https://doi.org/10.1002/cne.903380211Google Scholar
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2007). Chicks discriminate human gaze with their right hemisphere. Behavioural Brain Research, 177(1), 1521. https://doi.org/10.1016/j.bbr.2006.11.020CrossRefGoogle ScholarPubMed
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2010). Faces are special for newly hatched chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13(4), 565577. https://doi.org/10.1111/j.1467-7687.2009.00914.xGoogle Scholar
Rosa-Salva, O., Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: Evidence from chicks (gallus gallus) and human newborns. PLoS One, 6(4), e18802. https://doi.org/10.1371/journal.pone.0018802CrossRefGoogle ScholarPubMed
Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 228(1), 133143. https://doi.org/10.1016/j.bbr.2011.11.025Google Scholar
Rosa-Salva, O., Mayer, U., & Vallortigara, G. (2015). Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neuroscience & Biobehavioral Reviews, 50, 150168. https://doi.org/10.1016/j.neubiorev.2014.12.015Google Scholar
Rosa-Salva, O., Grassi, M., Lorenzi, E., Regolin, L., & Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition, 157, 4960. https://doi.org/10.1016/j.cognition.2016.08.014Google Scholar
Rosa-Salva, O., Hernik, M., Broseghini, A., & Vallortigara, G. (2018). Visually-naïve chicks prefer agents that move as if constrained by a bilateral body-plan. Cognition, 173, 106114. https://doi.org/10.1016/j.cognition.2018.01.004Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., & Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753756. https://doi.org/10.1126/science.1223082CrossRefGoogle ScholarPubMed
Sahibzada, N., Dean, P., & Redgrave, P. (1986). Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. Journal of Neuroscience, 6(3), 723733. https://doi.org/10.1523/JNEUROSCI.06-03-00723.1986Google Scholar
Scaife, M. (1976a). The response to eye-like shapes by birds. I. The effect of context: A predator and a strange bird. Animal Behaviour, 24(1), 195199. https://doi.org/10.1016/S0003-3472(76)80115-7Google Scholar
Scaife, M. (1976b). The response to eye-like shapes by birds II. The importance of staring, pairedness and shape. Animal Behaviour, 24(1), 200206. https://doi.org/10.1016/S0003-3472(76)80116-9Google Scholar
Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of ‘looming’. Science (New York, N.Y.), 136(3520), 982983.Google Scholar
Schluessel, V., Kortekamp, N., Cortes, J. A. O., Klein, A., & Bleckmann, H. (2015). Perception and discrimination of movement and biological motion patterns in fish. Animal Cognition, 18(5), 10771091. https://doi.org/10.1007/s10071-015-0876-yGoogle Scholar
Schmidt, A. & Bischof, H.-J. (2001). Integration of information from both eyes by single neurons of nucleus rotundus, ectostriatum and lateral neostriatum in the zebra finch (Taeniopygia guttata castanotis Gould). Brain Research, 923(1), 2031. https://doi.org/10.1016/S0006-8993(01)03192-4Google Scholar
Setoh, P., Wu, D., Baillargeon, R., & Gelman, R. (2013). Young infants have biological expectations about animals. Proceedings of the National Academy of Sciences, 110(40), 1593715942. https://doi.org/10.1073/pnas.1314075110Google Scholar
Sewards, T. V. & Sewards, M. A. (2002). The medial pain system: Neural representations of the motivational aspect of pain. Brain Research Bulletin, 59(3), 163180. https://doi.org/10.1016/S0361-9230(02)00864-XGoogle Scholar
Sgadò, P., Rosa-Salva, O., Versace, E., & Vallortigara, G. (2018). Embryonic exposure to valproic acid impairs social predispositions of newly-hatched chicksScientific reports8(1), 5919. https://doi.org/10.1038/s41598-018-24202-8Google Scholar
Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., … Cao, P. (2015). A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 348(6242), 14721477. https://doi.org/10.1126/science.aaa8694Google Scholar
Shang, C., Chen, Z., Liu, A., Li, Y., Zhang, J., Qu, B., … Cao, P. (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nature Communications, 9(1), 1232. https://doi.org/10.1038/s41467-018-03580-7Google Scholar
Sheehan, M. J. & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334(6060), 12721275. https://doi.org/10.1126/science.1211334CrossRefGoogle ScholarPubMed
Shibai, A., Arimoto, T., Yoshinaga, T., Tsuchizawa, Y., Khureltulga, D., Brown, Z. P., … Hosoda, K. (2018). Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish. Scientific Reports, 8(1), 8589. https://doi.org/10.1038/s41598-018-26186-xGoogle Scholar
Shibasaki, M. & Kawai, N. (2009). Rapid detection of snakes by Japanese monkeys (Macaca fuscata): An evolutionarily predisposed visual system. Journal of Comparative Psychology, 123(2), 131135. https://doi.org/10.1037/a0015095Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809813. https://doi.org/10.1073/pnas.0707021105CrossRefGoogle ScholarPubMed
Sokolov, A. A., Erb, M., Gharabaghi, A., Grodd, W., Tatagiba, M. S., & Pavlova, M. A. (2012). Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. NeuroImage, 59(3), 28242830. https://doi.org/10.1016/j.neuroimage.2011.08.039Google Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394398. https://doi.org/10.1073/pnas.0706079105Google Scholar
Sun, H. & Frost, B. J. (1998). Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature Neuroscience, 1(4), 296303. https://doi.org/10.1038/1110Google Scholar
Suomi, S. J. & Leroy, H. A. (1982). In memoriam: Harry F. Harlow (1905–1981). American Journal of Primatology, 2(4), 319342. https://doi.org/10.1002/ajp.1350020402CrossRefGoogle Scholar
Tamietto, M. & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697709. https://doi.org/10.1038/nrn2889CrossRefGoogle ScholarPubMed
Taubert, J., Wardle, S. G., Flessert, M., Leopold, D. A., & Ungerleider, L. G. (2017). Face pareidolia in the rhesus monkey. Current Biology, 27(16), 25052509.e2. https://doi.org/10.1016/j.cub.2017.06.075Google Scholar
Topál, J. & Csányi, V. (1994). The effect of eye-like schema on shuttling activity of wild house mice (Mus musculus domesticus): Context-dependent threatening aspects of the eyespot patterns. Animal Learning & Behavior, 22(1), 96102. https://doi.org/10.3758/BF03199961Google Scholar
Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256271. https://doi.org/10.1162/089892901564306Google Scholar
Tsutsumi, S., Ushitani, T., Tomonaga, M., & Fujita, K. (2012). Infant monkeys’ concept of animacy: The role of eyes and fluffiness. Primates; Journal of Primatology, 53(2), 113119. https://doi.org/10.1007/s10329-011-0289-8Google Scholar
Turati, C., Simion, F., Milani, I., & Umiltà, C. (2002). Newborns’ preference for faces: What is crucial? Developmental Psychology, 38(6), 875882. https://doi.org/10.1037/0012-1649.38.6.875Google Scholar
Vallortigara, G. & Zanforlin, M. (1988). Open-field behavior of young chicks (Gallus gallus): Antipredatory responses, social reinstatement motivation, and gender effects. Animal Learning & Behavior, 16(3), 359362. https://doi.org/10.3758/BF03209088Google Scholar
Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3(7), e208. https://doi.org/10.1371/journal.pbio.0030208Google Scholar
Vallortigara, G. & Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 16, 279280.Google Scholar
Vallortigara, G., Versace, E. (2018). Filial Imprinting. In Vonk, J. & Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 14). Cham, Switzerland: Springer International Publishing. ISBN 978-3-319-47829-6Google Scholar
Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., … Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences, 110(47), 1900019005. https://doi.org/10.1073/pnas.1312648110Google Scholar
Verhaal, J. & Luksch, H. (2016). Neuronal responses to motion and apparent motion in the optic tectum of chickens. Brain Research, 1635, 190200. https://doi.org/10.1016/j.brainres.2016.01.022Google Scholar
Versace, E. (2017). Precocial. In Vonk, J. & Shackelford, T. (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 13). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_459–1Google Scholar
Versace, E. & Vallortigara, G. (2015). Origins of knowledge: Insights from precocial species. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00338Google Scholar
Versace, E., Schill, J., Nencini, A. M., & Vallortigara, G. (2016). Naïve chicks prefer hollow objects. PLoS One, 11(11), e0166425. https://doi.org/10.1371/journal.pone.0166425Google Scholar
Versace, E., Fracasso, I., Baldan, G., Zotte, A. D., & Vallortigara, G. (2017). Newborn chicks show inherited variability in early social predispositions for hen-like stimuli. Scientific Reports, 7, 40296. https://doi.org/10.1038/srep40296Google Scholar
Versace, E., Damini, S., Caffini, M., & Stancher, G. (2018). Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Animal Behaviour, 138, 187192. https://doi.org/10.1016/j.anbehav.2018.02.012Google Scholar
Weerasuriya, A. & Ewert, J.-P. (1981). Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology, 144(4), 429434. https://doi.org/10.1007/BF01326828Google Scholar
Westhoff, G., Tzschätzsch, K., & Bleckmann, H. (2005). The spitting behavior of two species of spitting cobras. Journal of Comparative Physiology A, 191(10), 873881. https://doi.org/10.1007/s00359-005-0010-8CrossRefGoogle ScholarPubMed
Wylie, D., Gutierrez-Ibanez, C., Pakan, J. M., & Iwaniuk, A. N. (2009). The optic tectum of birds: Mapping our way to understanding visual processing. Canadian Journal of Experimental Psychology = Revue Canadienne de Psychologie Experimentale, 63(4), 328338. https://doi.org/10.1037/a0016826Google Scholar
Yilmaz, M. & Meister, M. (2013). Rapid innate defensive responses of mice to looming visual stimuli. Current Biology, 23(20), 20112015. https://doi.org/10.1016/j.cub.2013.08.015Google Scholar
Zhao, X., Liu, M., & Cang, J. (2014). Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron, 84(1), 202213. https://doi.org/10.1016/j.neuron.2014.08.037Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×