Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T15:00:35.443Z Has data issue: false hasContentIssue false

36 - Decision Making in Animals

Rational Choices and Adaptive Strategies*

from Part VI - Innovation and Problem-Solving

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Humans often appear to defy principles of economic "rationality" when making decisions, by falling prey to a suite of choice biases including over-weighting immediate gratification, avoiding risk, treating identical options differently depending on whether they are perceived as a relative loss or gain, or attaching more value to objects in their possession. Here we examine what animals can tell us about these choice patterns. First, we provide an overview of different theoretical frameworks for rational decision making from psychology, economics, and biology. Next, we review empirical work examining how different species make decisions and discuss how many potentially puzzling patterns of decision making may be biologically adaptive when considering the environment in which they are made. Finally, we propose that integrating various theoretical perspectives with comparative data can elucidate the ultimate origins of variations in decision-making strategies across species and provide a new framework to illuminate the adaptive value of these strategies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addessi, E., Paglieri, F., & Focaroli, V. (2011). The ecological rationality of delay tolerance: Insights from capuchin monkeysCognition119(1), 142147.Google Scholar
Addessi, E., Paglieri, F., Beran, M. J., Evans, T. A., Macchitella, L., De Petrillo, F., & Focaroli, V. (2013). Delay choice versus delay maintenance: Different measures of delayed gratification in capuchin monkeys (Cebus apella). J. Comp. Psychol., 127(4), 392.CrossRefGoogle ScholarPubMed
Ainslie, G. (2001). Breakdown of Will. Cambridge, UK: Cambridge University Press.Google Scholar
Ainslie, G. & Herrnstein, R. J. (1981). Preference reversal and delayed reinforcement. Anim. Learn. Behav., 9(4), 476482.CrossRefGoogle Scholar
Anderson, J. R., Kuroshima, H., & Fujita, K. (2010). Delay of gratification in capuchin monkeys (Cebus apella) and squirrel monkeys (Saimiri sciureus). J. Comp. Psychol., 124(2), 205.CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more.” Biol. Letts, 9(3), 20121092.CrossRefGoogle Scholar
Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assessment. J. Econ. Perspect., 27(1), 173196.Google Scholar
Baron, J. (2000). Thinking and Deciding. Cambridge, UK: Cambridge University Press.Google Scholar
Bateson, M. (2002). Recent advances in our understanding of risk-sensitive foraging preferences. Proc. Nutrit. Soc., 61(4), 509516.Google Scholar
Beran, M. J. (2002). Maintenance of self-imposed delay of gratification by four chimpanzees (Pan troglodytes) and an orangutan (Pongo pygmaeus). J. Gen. Psychol., 129(1), 4966.Google Scholar
Beran, M. J., Savage‐Rumbaugh, E. S., Pate, J. L., & Rumbaugh, D. M. (1999). Delay of gratification in chimpanzees (Pan troglodytes). Dev. Psychobiol., 34(2), 119127Google Scholar
Beran, M. J. & Evans, T. A. (2006). Maintenance of delay of gratification by four chimpanzees (Pan troglodytes): The effects of delayed reward visibility, experimenter presence, and extended delay intervals. Behav. Proc., 73(3), 315324.Google Scholar
Bernoulli, D. (1954). [1738] Exposition of a new theory on the measurement of risk. Econometrica, 22, 2336.Google Scholar
Brewer, S. M. & McGrew, W. C. (1990). Chimpanzee use of a tool-set to get honey. Folia Primatol., 54(1-2), 100104.Google Scholar
Brosnan, S. F., Jones, O. D., Lambeth, S. P., Mareno, M. C., Richardson, A. S., & Schapiro, S. J. (2007). Endowment effects in chimpanzees. Curr. Biol., 17(19), 17041707.Google Scholar
Brosnan, S. F., Jones, O. D., Gardner, M., Lambeth, S. P., & Schapiro, S. J. (2012). Evolution and the expression of biases: Situational value changes the endowment effect in chimpanzees. Evol. Hum. Behav., 33(4), 378386.Google Scholar
Camerer, C., Loewenstein, G., & Rabin, M. (2004). Advances in Behavioral Economics. New York: Russell Sage Foundation.CrossRefGoogle Scholar
Caraco, T., Martindale, S., & Whittam, T. S. (1980). An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav., 28, 820830.Google Scholar
Carruthers, P. (2002). The cognitive functions of language. Behav. Brain Sci., 25(6), 657674.Google Scholar
Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theor. Popul. Biol., 9(2), 129136.Google Scholar
Chen, M. K., Lakshminarayanan, V., & Santos, L. R. (2006). How basic are behavioral biases? Evidence from capuchin monkey trading behavior. J. Polit. Econ., 114(3), 517537.Google Scholar
Clutton-Brock, T. H. & Harvey, P. H. (1979). Comparison and adaptation. Proc. R. Soc. Lond. B., 205(1161), 547565.Google Scholar
Csibra, G. & Gergely, G. (2009). Natural pedagogy. Trends Cogn. Sci., 13(4), 148153.Google Scholar
Darwin, C. (1854). Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle round the World, under the Command of Capt. Fitz Roy, R.N. (2nd ed.). London: John Murray.Google Scholar
De Petrillo, F., Ventricelli, M., Ponsi, G., & Addessi, E. (2015). Do tufted capuchin monkeys play the odds? Flexible risk preferences in Sapajus sppAnim. Cogn., 18(1), 119130.Google Scholar
De Petrillo, F. & Rosati, A. G. (2019). Ecological rationality: Convergent decision-making in apes and capuchins. Behav. Proc., 164, 201213.Google Scholar
Drayton, L. A., Brosnan, S. F., Carrigan, J., & Stoinski, T. S. (2013). Endowment effects in gorillas (Gorilla gorilla). J. Comp. Psychol., 127(4), 365.Google Scholar
Dufour, V., Wascher, C. A., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biol. Letters, 8(2), 201204.Google Scholar
Eckert, J., Rakoczy, H., & Call, J. (2017). Are great apes able to reason from multi‐item samples to populations of food items? Am. J. Primatol., 79(10), e22693.CrossRefGoogle ScholarPubMed
Eckert, J., Call, J., Hermes, J., Herrmann, E., & Rakoczy, H. (2018a). Intuitive statistical inferences in chimpanzees and humans follow Weber’s law. Cognition, 180, 99107.Google Scholar
Eckert, J., Rakoczy, H., Call, J., Herrmann, E., & Hanus, D. (2018b). Chimpanzees consider humans’ psychological states when drawing statistical inferences. Curr. Biol., 28(12), 19591963.Google Scholar
Evans, T. A. & Beran, M. J. (2007). Chimpanzees use self-distraction to cope with impulsivity. Biol. Letts, 3(6), 599602.Google Scholar
Evans, T. A., Beran, M. J., Paglieri, F., & Addessi, E. (2012). Delaying gratification for food and tokens in capuchin monkeys (Cebus apella) and chimpanzees (Pan troglodytes): When quantity is salient, symbolic stimuli do not improve performance. Anim. Cogn., 15(4), 539548.Google Scholar
Fawcett, T. W., McNamara, J. M., & Houston, A. I. (2012). When is it adaptive to be patient? A general framework for evaluating delayed rewards. Behav. Processes, 89(2), 128136.CrossRefGoogle Scholar
Flemming, T. M., Jones, O. D., & Mayo, L. (2012). The endowment effect in orangutans. J. Comp. Psychol, 25, 4.Google Scholar
Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The Complete Capuchin: The Biology of the Genus Cebus. Cambridge, UK: Cambridge University Press.Google Scholar
Franciosi, R., Kujal, P., Michelitsch, R., Smith, V., & Deng, G. (1996). Experimental tests of the endowment effect. J. Econ. Behav. Organ., 30(2), 213226.Google Scholar
Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A critical review. J. Econ. Lit., 40, 350401.Google Scholar
Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryu, H., Tokuyama, N., & Morgan, D. (2015). Why do wild bonobos not use tools like chimpanzees do? Behaviour152(3-4), 425460.Google Scholar
Garber, P. A. (1993). Feeding Ecology and Behaviour of the Genus Saguinus. In Rylands, A. B. (Ed.), Marmosets and Tamarins: Systematics, Behaviour, and Ecology (pp. 273295). Oxford: Oxford University Press.CrossRefGoogle Scholar
Gilby, I. C. & Wrangham, R. W. (2007). Risk-prone hunting by chimpanzees (Pan troglodytes schweinfurthii) increases during periods of high diet quality. Behav. Ecol. Sociobio., 61(11), 17711779.Google Scholar
Gilby, I. C., Machanda, Z. P., O’Malley, R. C., Murray, C. M., Lonsdorf, E. V., Walker, K., … & Pusey, A. E. (2017). Predation by female chimpanzees: Toward an understanding of sex differences in meat acquisition in the last common ancestor of Pan and Homo. J. Hum. Evol., 110, 8294.Google Scholar
Green, L., Fristoe, N., & Myerson, J. (1994). Temporal discounting and preference reversals in choice between delayed outcomes. Psychon. B. Rev., 1(3), 383389.Google Scholar
Green, L., Myerson, J., Holt, D. D., Slevin, J. R., & Estle, S. J. (2004). Discounting of delayed food rewards in pigeons and rats: Is there a magnitude effect? J. Exp. Anal. Behav., 81(1), 39-50.Google Scholar
Green, L., Myerson, J., & Calvert, A. L. (2010). Pigeons’ discounting of probabilistic and delayed reinforcers. J. Exp. Anal. Behav., 94(2), 113123.Google Scholar
Haun, D. B., Nawroth, C., & Call, J. (2011). Great apes’ risk-taking strategies in a decision making task. PLoS One, 6, e28801e28801.CrossRefGoogle Scholar
Hayden, B. Y. & Platt, M. L. (2007). Temporal discounting predicts risk sensitivity in rhesus macaques. Curr. Biol., 17, 4953.Google Scholar
Heilbronner, S. R., Rosati, A. G., Stevens, J. R., Hare, B., & Hauser, M. D. (2008). A fruit in the hand or two in the bush? Divergent risk preferences in chimpanzees and bonobos. Biol. Letters, 4, 246249.Google Scholar
Hillemann, F., Bugnyar, T., Kotrschal, K., & Wascher, C. A. (2014). Waiting for better, not for more: Corvids respond to quality in two delay maintenance tasks. Anim. Behav., 90, 110.Google Scholar
Houston, A. I. & McNamara, J. M. (1999). Models of Adaptive Behaviour: An Approach Based on State. Cambridge, UK: Cambridge University Press.Google Scholar
Houston, A. I., McNamara, J. M., & Steer, M. D. (2007). Do we expect natural selection to produce rational behaviour? Phil. Trans. R. Soc. Lond. B, 362(1485), 15311543.Google Scholar
Johnson, E. J., Hershey, J., Meszaros, J., & Kunreuther, H. (1993). Framing, probability distortions, and insurance decisions. J. Risk Uncert., 7(1), 3551.Google Scholar
Kacelnik, A. (2003). The Evolution of Patience. In Loewenstein, G, Read, G, & Baumeister, R. (Eds.), Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice (pp. 115138). New York: Russell Sage Foundation.Google Scholar
Kacelnik, A. (2006). Meanings of Rationality. In Hurley, S. & Nudds, M (Eds.), Rational Animals? (87106), Oxford, UK: Oxford University Press.Google Scholar
Kacelnik, A. & Bateson, M. (1996). Risky theories: The effects of variance on foraging decisions. Am. Zool., 36, 402434.Google Scholar
Kacelnik, A. & Marsh, B. (2002). Cost can increase preference in starlings. Anim. Behav., 63(2), 245250.Google Scholar
Kacelnik, A. & El Mouden, C. (2013). Triumphs and trials of the risk paradigm. Anim. Behav., 86, 11171129.CrossRefGoogle Scholar
Kahneman, D. & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263291.Google Scholar
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1990). Experimental tests of the endowment effect and the Coase theorem. J. Polit. Econ., 98(6), 13251348.Google Scholar
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. J. Econ. Perspect., 5(1), 193206.Google Scholar
Kahneman, D. & Tversky, A. (2000). Choices, Values, and Frames. Cambridge University Press, New York: Russell Sage Foundation.CrossRefGoogle Scholar
Kahneman, D. & Thaler, R. H. (2006). Anomalies: Utility maximization and experienced utility. Journal of Economic Perspectives, 20(1), 221234.Google Scholar
Kanngiesser, P., Santos, L. R., Hood, B. M., & Call, J. (2011). The limits of endowment effects in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). J. Comp. Psychol., 125(4), 436.Google Scholar
Krebs, J. R. & Davies, N. B. (1978). Behavioural Ecology: An Evolutionary ApproachOxford, UK: Blackwell Sci.Google Scholar
Krupenye, C., Rosati, A. G., & Hare, B. (2015). Bonobos and chimpanzees exhibit human-like framing effects. Biol. Letters, 11. 20140527.Google Scholar
Lakshminaryanan, V. R., Chen, M. K., & Santos, L. R. (2008). Endowment effect in capuchin monkeys. Phil. Trans. R. Soc. Lond. B, 363(1511), 38373844.Google Scholar
Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. J. Exp. Soc. Psychol., 47(3), 689693.Google Scholar
Leonardi, R. J., Vick, S. J., & Dufour, V. (2012). Waiting for more: The performance of domestic dogs (Canis familiaris) on exchange tasks. Anim. Cogn., 15(1), 107120.Google Scholar
Lerner, J. S., Small, D. A., & Loewenstein, G. (2004). Heart strings and purse strings: Carryover effects of emotions on economic decisions. Psychol. Sci., 15(5), 337341.Google Scholar
MacArthur, R. H. & Pianka, E. R. (1966). On optimal use of a patchy environment. Am. Nat., 100(916), 603609.Google Scholar
MacLean, E. L., Mandalaywala, T. M., & Brannon, E. M. (2012). Variance-sensitive choice in lemurs: Constancy trumps quantity. Anim. Cogn., 15(1), 1525.Google Scholar
Malenky, R. K. & Wrangham, R. W. (1994). A quantitative comparison of terrestrial herbaceous food consumption by Pan paniscus in the Lomako Forest, Zaire, and Pan troglodytes in the Kibale Forest, Uganda. Am. J. Primatol., 32(1), 112.Google Scholar
Marsh, B. & Kacelnik, A. (2002). Framing effects and risky decisions in starlings. PNAS, 99(5), 33523355.Google Scholar
Marsh, B., Schuck-Paim, C., & Kacelnik, A. (2004). Energetic state during learning affects foraging choices in starlings. Behav. Ecol., 15(3), 396399.Google Scholar
Marshall-Pescini, S., Besserdich, I., Kratz, C., & Range, F. (2016). Exploring differences in dogs’ and wolves’ preference for risk in a foraging taskFront. Psychol., 7, 1241.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Cambridge, MA: Harvard University Press.Google Scholar
Mazur, J. E. (1987). An Adjusting Procedure for Studying Delayed Reinforcement. In Commons, M. L., Mazur, J. E., Nevin, J. A., Rachlin, H. (Eds.), Quantitative Analyses of Behavior: The Effect of Delay and of Intervening Events on Reinforcement Value (pp. 5573). Hillsdale, NJ: ErlbaumGoogle Scholar
McCoy, A. N. & Platt, M. L. (2005). Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci., 8, 12201227.Google Scholar
Modeling Animal Decisions Group, Fawcett, T. W., Fallenstein, B., Higginson, A. D., Houston, A. I, et al. (2014). The evolution of decision rules in complex environments. Trends Cogn. Sci., 18, 153161.Google Scholar
Morewedge, C. K., Shu, L. L., Gilbert, D. T., & Wilson, T. D. (2009). Bad riddance or good rubbish? Ownership and not loss aversion causes the endowment effect. J. Exp. Soc. Psychol., 45(4), 947951.Google Scholar
Morewedge, C. K. & Giblin, C. E. (2015). Explanations of the endowment effect: An integrative review. Trends Cogn. Sci., 19(6), 339348.Google Scholar
Mühlhoff, N., Stevens, J. R., & Reader, S. M. (2011). Spatial discounting of food and social rewards in guppies (Poecilia reticulata). Front. Psychol., 2, 68.Google Scholar
Parrish, A. E., Perdue, B. M., Stromberg, E. E., Bania, A. E., Evans, T. A., & Beran, M. J. (2014). Delay of gratification by orangutans (Pongo pygmaeus) in the accumulation task. J. Comp. Psychol., 128(2), 209.Google Scholar
Pelé, M., Dufour, V., Micheletta, J., & Thierry, B. (2010). Long-tailed macaques display unexpected waiting abilities in exchange tasks. Anim. Cogn., 13(2), 263271.Google Scholar
Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci., 31(2), 109130.CrossRefGoogle ScholarPubMed
Perry, S. & Rose, L. (1994). Begging and transfer of coati meat by white-faced capuchin monkeys, Cebus capucinusPrimates35(4), 409415.Google Scholar
Platt, M. L., Brannon, E. M., Briese, T. L., & French, J. A. (1996). Differences in feeding ecology predict differences in performance between golden lion tamarins (Leontopithecus rosalia) and Wied’s marmosets (Callithrix kuhli) on spatial and visual memory tasks. Anim. Learn. Behav., 24(4), 384393.Google Scholar
Platt, M. L. & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty. Nat. Neurosci., 11(4), 398.Google Scholar
Pompilio, L. & Kacelnik, A. (2005). State-dependent learning and suboptimal choice: When starlings prefer long over short delays to food. Anim. Behav., 70(3), 571578.Google Scholar
Pompilio, L., Kacelnik, A., & Behmer, S. T. (2006). State-dependent learned valuation drives choice in an invertebrate. Science, 311(5767), 16131615.Google Scholar
Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. PNAS, 104(35), 1386113867.Google Scholar
Proctor, D., Williamson, R. A., Latzman, R. D., de Waal, F. B., & Brosnan, S. F. (2014). Gambling primates: Reactions to a modified Iowa Gambling Task in humans, chimpanzees and capuchin monkeys. Anim. Cogn., 17(4), 983995.Google ScholarPubMed
Rakoczy, H., Clüver, A., Saucke, L., Stoffregen, N., Gräbener, A., Migura, J., & Call, J. (2014). Apes are intuitive statisticiansCognition131(1), 6068.Google Scholar
Richards, J. B., Mitchell, S. H., De Wit, H., & Seiden, L. S. (1997). Determination of discount functions in rats with an adjusting‐amount procedure. J. Exp. Anal. Behav., 67(3), 353366.CrossRefGoogle ScholarPubMed
Rosati, A. G. (2017a). The Evolution of Primate Executive Function: From Response Control to Strategic Decision-Making. In Kaas, J. & Krubitzer, L. (Eds.), Evolution of Nervous Systems Vol. 3 (2nd ed.) (pp. 423437). Amsterdam: Elsevier.Google Scholar
Rosati, A.G. (2017b). Decisions under Uncertainty: Preferences, Biases, and Choice. In Call, J. (Ed.), APA Handbook of Comparative Psychology, Vol. 2 (pp. 329357). Washington, DC: American Psychological Association.Google Scholar
Rosati, A. G. (2017c). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends Cogn. Sci., 21(9), 691702.Google Scholar
Rosati, A. G. (2017d). Ecological Variation in Cognition: Insights from Bonobos and Chimpanzees. In Hare, B. & Yamamoto, S. (Eds.), Bonobos: Unique in Mind, Brain and Behavior (pp. 157170). Oxford: Oxford University Press.Google Scholar
Rosati, A. G., Stevens, J. R., & Hauser, M. D. (2006). The effect of handling time on temporal discounting in two New World primatesAnim. Behav., 71(6), 13791387.Google Scholar
Rosati, A. G., Stevensen, J. R., Hare, B. & Hauser, M. D. (2007). The evolutionary origins of human patience: Temporal preferences in chimpanzees, bonobos, and human adults. Curr. Biol., 17, 16631668.Google Scholar
Rosati, A. G. & Stevens, J. R. (2009). The Adaptive Nature of Context-Dependent Choice. In Watanabe, S., Young, A., Huber, L., Blaisdell, A. & Yamazaki, Y. (Eds.), Rational Animal, Irrational Human (pp. 101117). Tokyo: Keio University Press.Google Scholar
Rosati, A. G. & Hare, B. (2011). Chimpanzees and bonobos distinguish between risk and ambiguity. Biol. Lett., 7, 1518.Google Scholar
Rosati, A. G. & Hare, B. (2012). Decision making across social contexts: Competition increases preferences for risk in chimpanzees and bonobos. Anim. Behav., 84, 869879.Google Scholar
Rosati, A. G. & Hare, B. (2013). Chimpanzees and bonobos exhibit emotional responses to decision outcomes. PLoS One, 8, e63058.Google Scholar
Rosati, A. G. & Hare, B. (2016). Reward type modulates human risk preferences. Evol. Hum. Behav., 37, 159168.Google Scholar
Rossano, F., Rakoczy, H., & Tomasello, M. (2011). Young children’s understanding of violations of property rights. Cognition, 121(2), 219227.Google Scholar
Rylands, A. B. & de Faria, D. S. (1993). Habitats, Feeding Ecology and Range Size in the Genus Callithrix. In Rylands, A. B. (Ed.), Marmosets and Tamarins: Systematics, Behaviour, and Ecology (pp. 262272). Oxford: Oxford University Press.CrossRefGoogle Scholar
Santos, L. R. & Rosati, A. G. (2015). The evolutionary roots of human decision making. Ann. Rev. Psychol., 66, 321347.Google Scholar
Schuck-Paim, C., Pompilio, L., & Kacelnik, A. (2004). State-dependent decisions cause apparent violations of rationality in animal choice. PLoS Biol, 2(12), e402.Google Scholar
Spagnoletti, N., Visalberghi, E., Verderane, M. P., Ottoni, E., Izar, P., & Fragaszy, D. (2012). Stone tool use in wild bearded capuchin monkeys, Cebus libidinosus. Is it a strategy to overcome food scarcity? Anim. Behav., 83, 12851294.Google Scholar
Spelke, E. S. (2002). Developing knowledge of space: Core systems and new combinations| 5. Lang. Bra., 6, 239.Google Scholar
Stanford, C. B. (1999). The Hunting Apes: Meat Eating and the Origins of Human Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Stanford, C. B. & Wrangham, R. W. (1998). Chimpanzee and Red Colobus: The Ecology of Predator and Prey. Cambridge, MA: Harvard University Press.Google Scholar
Stephens, D. W. (1981). The logic of risk-sensitive foraging preferences. Anim. Behav., 29, 628629.Google Scholar
Stephens, D. W. (2002). Discrimination, discounting and impulsivity: A role for an informational constraint. Phil. Trans. R. Soc. Lond. B, 357(1427), 15271537.CrossRefGoogle ScholarPubMed
Stephens, D. W. & Krebs, J. R. (1986). Foraging Theory, Vol. 1. Princeton, NJ: Princeton University Press.Google Scholar
Stephens, D. W., Kerr, B., & Fernández-Juricic, E. (2004). Impulsiveness without discounting: The ecological rationality hypothesisProc. R. Soc. Lond. B., 271(1556), 24592465.Google Scholar
Stevens, J. R. (2008). The Evolutionary Biology of Decision Making. In Platt, M. L & Ghazanfar, A. A (Eds.), Primate Neuroethology (pp. 96116). Oxford, UK: Oxford University Press.Google Scholar
Stevens, J. R. (2010). Rational Decision Making in Primates: The Bounded and the Ecological. In Platt, M. L. & Ghazanfar, A. A. (Eds.), Primate Neuroethology (pp. 96116). Oxford, UK: Oxford University Press.Google Scholar
Stevens, J. R. (2014). Evolutionary pressures on primate intertemporal choiceProc. R. Soc. Lond. B, 281(1786), 20140499.Google Scholar
Stevens, J. R., Hallinan, E. V., & Hauser, M. D. (2005a). The ecology and evolution of patience in two New World monkeysBiol. Letts1(2), 223226.Google Scholar
Stevens, J. R., Rosati, A. G., Ross, K. R., & Hauser, M. D. (2005b). Will travel for food: Spatial discounting in two new world monkeysCurr. Biol., 15(20), 18551860.Google Scholar
Stevens, J. R. & Stephens, D. W. (2008). PatienceCurr. Biol., 18(1), R11R12.Google Scholar
Stevens, J. R. & Stephens, D. W. (2010). The Adaptive Nature of Impulsivity. In Medden, G. J. & Bickel, W. K. (Eds.), Impulsivity: The Behavioral and Neurological Science of Discounting (pp. 361387). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Stevens, J. R. & Mühlhoff, N. (2012). Intertemporal choice in lemurs. Behav. Proc., 89(2), 121127.CrossRefGoogle ScholarPubMed
Surbeck, M. & Hohmann, G. (2008). Primate hunting by bonobos at LuiKotale, Salonga National ParkCurr. Biol., 18(19), R906R907.Google Scholar
Tecwyn, E. C., Denison, S., Messer, E. J., & Buchsbaum, D. (2017). Intuitive probabilistic inference in capuchin monkeysAnim. Cogn., 20(2), 243256.Google Scholar
Thaler, R. (1980). Toward a positive theory of consumer choice. J. Econ. Behav. Organ., 1(1), 3960.Google Scholar
Thaler, R. (1981). Some empirical evidence on dynamic inconsistency. Econ. Lett., 8(3), 201207.Google Scholar
Thom, J. M. & Clayton, N. S. (2014). No evidence of temporal preferences in caching by Western scrub-jays (Aphelocoma californica). Behav. Proc., 103, 173179.Google Scholar
Tobin, H. & Logue, A. W. (1994). Self-control across species. J. Comp. Psychol., 108, 126133.Google Scholar
Tobin, H., Logue, A. W., Chelonis, J. J., Ackerman, K. T., & May, J. G. (1996). Self-control in the monkey Macaca fascicularis. Anim. Learn. Behav., 24(2), 168174.Google Scholar
Tversky, A. & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncert., 5, 297323.Google Scholar
Vick, S. J., Bovet, D., & Anderson, J. R. (2010). How do African Grey parrots (Psittacus erithacus) perform on a delay of gratification task? Anim. Cogn., 13(2), 351358.Google Scholar
Völter, C. J. & Call, J. (2017). Causal and Inferential Reasoning in Animals. In Call, J., Burkhardt, G. M., Pepperberg, I. M, Snowdon, C. T., & Zentall, T (Eds.), APA Handbook of Comparative Psychology (pp. 643671). Washington, DC: American Psychological Association.Google Scholar
von Neumann, J. & Morgenstern, O. (1947). Theory of Games and Economic Behavior (2nd ed.). Princeton, NJ: Princeton University Press.Google Scholar
Weber, E. U. & Johnson, E. J. (2008). Decisions Under Uncertainty: Psychological, Economic, and Euroeconomic Explanations of Risk Preference. In Glimcher, P., Camerer, C., Fehr, E., & Poldrack, R. (Eds.), Neuroeconomics: Decision Making and the Brain (pp. 127144). New YorkElsevier.Google Scholar
Weiner, J. (2014). The Beak of the Finch: A Story of Evolution in Our Time. New York: Vintage.Google Scholar
Wrangham, R. W., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Phil. Trans. R. Soc. Lond. B., 334(1270), 171178.Google Scholar
Wrangham, R. W., Conklin, N. L., Etot, G., Obua, J., Hunt, K. D., Hauser, M. D., & Clark, A. P. (1993). The value of figs to chimpanzees. Int. J. Primatol., 14(2), 243256.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×