Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T12:52:13.848Z Has data issue: false hasContentIssue false

2 - Communication in Ant Societies

from Part I - Communication and Language

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Ants appeared in the Jurassic and diversified into a multitude of new forms during the Cretaceous, around 100 million years ago. Today, ants are ecologically dominant in most terrestrial ecosystems. In tropical rain forest, ant biomass is four times greater than the biomass of all the vertebrates. The trait common to all ant species is sociality: they are all social insects that live in colonies. As in human societies, the size of ant societies varies enormously, from just a few individuals to tens of millions. Ants show extraordinary adaptations. They evolved the ability to build complex nest structures; they cultivate fungi for food and milk aphids, thus practicing agriculture and animal farming; they have nurseries and cemeteries, they cooperate. The key to their evolutionary success is efficient division labour in which the colony behaves as an organism. To achieve this remarkable social organization, ants rely on effective communication. Even though they use several different channels, such as the visual, acoustic and tactile, chemical communication is the most widespread way to exchange messages in an ant colony. Ants have developed multicomponent body odours, a myriad of exocrine glands and refined chemosensory abilities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ache, B. W. & Young, J. M. (2005). Olfaction: Diverse species, conserved principles. Neuron, 48(3), 417430. https://doi.org/10.1016/j.neuron.2005.10.022CrossRefGoogle ScholarPubMed
Agbogba, C. (1991). Observations sur les signaux préparatoires à l’alimentation des larves chez la fourmi ponérine Pachycondyla caffraria (Smith). Insectes Sociaux, 38(4), 439442. https://doi.org/10.1007/BF01241877Google Scholar
Agosti, D. & Johnson, N. F. (Eds.) (2005). Antbase. World Wide Web electronic publication. antbase.org, version (05/2005).Google Scholar
Andel, D. & Wehner, R. (2004). Path integration in desert ants, Cataglyphis: How to make a homing ant run away from home. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 14851489. https://doi.org/10.1098/rspb.2004.2749Google Scholar
Ayasse, M., Paxton, R. J., & Tengö, J. (2001). Mating behaviour and chemical communication in the order Hymenoptera. Ecological Research, 46(1), 3178. https://doi.org/10.1063/1.1420510Google Scholar
Banks, A. N. & Srygley, R. B. (2003). Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology, 109(10), 835846. https://doi.org/10.1046/j.0179-1613.2003.00927.xCrossRefGoogle Scholar
Billen, J. & Šobotník, J. (2015). Insect exocrine glands. Arthropod Structure and Development, 44(5), 399400. https://doi.org/10.1016/j.asd.2015.08.010CrossRefGoogle ScholarPubMed
Blum, M. S. (1985). Alarm Pheromone in Comparative Insect Physiology, Biochemistry and Pharmacology. In Kerkut, G. A. & Gilbert, L. I. (Eds.), Alarm Pheromone (Comparativ, pp. 193224). Oxford: Pergamon.Google Scholar
Bosmia, A. N., Griessenauer, C. J., Haddad, V., & Shane Tubbs, R. (2015). Ritualistic envenomation by bullet ants among the Sateré-Mawé Indians in the Brazilian Amazon. Wilderness and Environmental Medicine, 26(2), 271273. https://doi.org/10.1016/j.wem.2014.09.003CrossRefGoogle ScholarPubMed
Boulay, R., Hefetz, A., Soroker, V., & Lenoir, A. (2000). Camponotus fellah colony integration: Worker individuality necessitates frequent hydrocarbon exchanges. Animal Behaviour, 59(6), 11271133. https://doi.org/10.1006/anbe.2000.1408CrossRefGoogle ScholarPubMed
Bourke, A. F. & Franks, N. R. (1995). Social Evolution in Ants. Princeton, NJ: Princeton University Press.Google Scholar
Bradbury, J. & Vehrencamp, S. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
Branstetter, M. G., Danforth, B. N., Pitts, J. P., Faircloth, B. C., Ward, P. S., Buffington, M. L., … Brady, S. G. (2017). Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27(7), 10191025. https://doi.org/10.1016/j.cub.2017.03.027Google Scholar
Brunner, E. & Heinze, J. (2009). Worker dominance and policing in the ant Temnothorax unifasciatus. Insectes Sociaux, 56(4), 397404. https://doi.org/10.1007/s00040–009-0037-xGoogle Scholar
Butenandt, A., Beckmann, R., Stamm, D., & Hecker, E. (1959). Über den Sexual-Lockstoff des Seidensspinners Bombyx mori. Naturforsch., 14(b), 283284.Google Scholar
Carter, G. G. & Wilkinson, G. S. (2013). Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society B: Biological Sciences, 280(1753). https://doi.org/10.1098/rspb.2012.2573Google Scholar
Creemers, B., Billen, J., & Gobin, B. (2003). Larval begging behaviour in the ant Myrmica rubra. Ethology Ecology and Evolution, 15(3), 261272. https://doi.org/10.1016/j.tet.2011.12.053Google Scholar
David, M. E. (2009). Trail pheromones of ants. Physiological Entomology, 34(1), 117. https://doi.org/10.1111/j.1365-3032.2008.00658.xCrossRefGoogle Scholar
Dearborn, D. C. (1998). Begging behavior and food acquisition by brown-headed cowbird nestlings. Behavioral Ecology and Sociobiology, 43(4–5), 259270. https://doi.org/10.1007/s002650050490Google Scholar
Denis, D., Chameron, S., Costille, L., Pocheville, A., Châline, N., & Fresneau, D. (2008). Workers agonistic interactions in queenright and queenless nests of a polydomous ant society. Animal Behaviour, 75(3), 791800. https://doi.org/10.1016/j.anbehav.2007.06.016CrossRefGoogle Scholar
di Mauro, G., Perez, M., Lorenzi, M. C., Guerrieri, F. J., Millar, J. G., & d’Ettorre, P. (2015). Ants discriminate between different hydrocarbon concentrations. Frontiers in Ecology and Evolution, 3(November), 111. https://doi.org/10.3389/fevo.2015.00133CrossRefGoogle Scholar
Dorigo, M. & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Bio Systems, 43(2), 7381. https://doi.org/10.1016/S0303-2647(97)01708-5Google Scholar
d’Ettorre, P. (2016). Genomic and brain expansion provide ants with refined sense of smell. Proceedings of the National Academy of Sciences, 113(49), 1394713949. https://doi.org/10.1073/pnas.1617405113CrossRefGoogle ScholarPubMed
d’Ettorre, P. & Heinze, J. (2005). Individual recognition in ant queens. Current Biology, 15(23), 21702174. https://doi.org/10.1016/j.cub.2005.10.067CrossRefGoogle ScholarPubMed
Ferreira, R. S., Cros, E., Fresneau, D., & Rybak, F. (2014). Behavioural contexts of sound production in Pachycondyla ants (Formicidae: Ponerinae). Acta Acustica United with Acustica, 100(4), 739747. https://doi.org/10.3813/AAA.918753Google Scholar
Franks, N. R. & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439(7073), 153. https://doi.org/10.1038/439153aCrossRefGoogle ScholarPubMed
von Frisch, K. (1974). Decoding the language of the bee. Science, 185(4152), 663668. Retrieved from www.jstor.org/stable/1738718Google Scholar
Gibbs, A. (1998). Water-proofing properties of cuticular lipids. American Psychologist, 38, 471482. https://doi.org/https://www.jstor.org/stable/4620168Google Scholar
Giurfa, M. & Sandoz, J.-C. (2012). Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning & Memory, 19(2), 5466. https://doi.org/10.1101/lm.024711.111CrossRefGoogle ScholarPubMed
Golden, T. M. J. & Hill, P. S. M. (2016). The evolution of stridulatory communication in ants, revisited. Insectes Sociaux, 63(2), 309319. https://doi.org/10.1007/s00040-016-0470-6Google Scholar
Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76(12), 579581. https://doi.org/10.1007/BF00462870CrossRefGoogle Scholar
Greenberg, L., Tröger, A. G., Francke, W., McElfresh, J. S., Topoff, H., Aliabadi, A., & Millar, J. G. (2007). Queen sex pheromone of the slave-making ant, Polyergus breviceps. Journal of Chemical Ecology, 33(5), 935945. https://doi.org/10.1007/s10886-007-9269-2Google Scholar
Guerrieri, F. J. & d’Ettorre, P. (2008). The mandible opening response: Quantifying aggression elicited by chemical cues in ants. Journal of Experimental Biology, 211(7), 11091113. https://doi.org/10.1242/jeb.008508Google Scholar
Guerrieri, F. J. & d’Ettorre, P. (2010). Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. Journal of Insect Physiology, 56(1), 8892. https://doi.org/10.1016/j.jinsphys.2009.09.007CrossRefGoogle ScholarPubMed
Hager, F. A., Kirchner, L., & Kirchner, W. H. (2017). Directional vibration sensing in the leafcutter ant Atta sexdens. Biology Open, 6(12), 19491952. https://doi.org/10.1242/bio.029587Google Scholar
Hölldobler, B. (1971). Sex pheromone in the ant Xenomyrmex floridanus. Journal of Insect Physiology, 17(8), 14971499. https://doi.org/10.1016/0022-1910(71)90158-2Google Scholar
Hölldobler, B. (1976). Behavioral ecology of mating in harvester ants. Behavoral &. Ecological Sociobiology, 1, 405423.Google Scholar
Hölldobler, B. & Wilson, E. O. (1990). The Ants. (Belknap, , Ed.). Cambridge, MA: Harvard University Press.Google Scholar
Holman, L., Jørgensen, C. G., Nielsen, J., & d’Ettorre, P. (2010). Identification of an ant queen pheromone regulating worker sterility. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 37933800. https://doi.org/10.1098/rspb.2010.0984Google Scholar
Kaptein, N., Billen, J., & Gobin, B. (2005). Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Animal Behaviour, 69(2), 293299. https://doi.org/10.1016/j.anbehav.2004.04.012Google Scholar
Khalife, A., Keller, R. A., Billen, J. et al. (2018). Skeletomuscular adaptations of head and legs of Melissotarsus ants for tunnelling through living wood. Frontiers in Zoology, 15(30). https://doi.org/10.1186/s12983-018-0277-6Google Scholar
Larabee, F. J., Smith, A. A., & Suarez, A. V. (2018). Snap-jaw morphology is specialized for high-speed power amplification in the Dracula ant, Mystrium camillae. Royal Society Open Science, 5(12). https://doi.org/10.1098/rsos.181447Google Scholar
Larsen, J., Nehring, V., d’Ettorre, P., & Bos, N. (2016). Task specialization influences nestmate recognition ability in ants. Behavioral Ecology and Sociobiology, 70(9), 14331440. https://doi.org/10.1007/s00265-016-2152-9Google Scholar
Leboeuf, A. C., Waridel, P., Brent, C. S., Gonçalves, A. N., Menin, L., Ortiz, D., … Keller, L. (2016). Oral transfer of chemical cues, growth proteins and hormones in social insects. ELife, 5(November 2016), 127. https://doi.org/10.7554/eLife.20375CrossRefGoogle ScholarPubMed
Lenoir, A. & Jaisson, P. (1982). Evolution et rôle des communications antennaires chez les insectes sociaux. In Jaisson, P. (Ed.), Social Insects in the Tropics (pp. 157180). Paris: Université Paris-Nord.Google Scholar
Lenoir, A., Fresneau, D., Errard, C., & Hefetz, A. (1999). Individuality and Colonial Identity in Ants: The Emergence of the Social Representation Concept. In Detrain, C., Deneubourg, J. L., & Pasteels, J. M. (Eds.), Information Processing in Social Insects (pp. 219237). Basel: Birkhäuser. https://doi.org/10.1007/978-3-0348-8739-7_12Google Scholar
Löfqvist, J. (1976). Formic acid and saturated hydrocarbons as alarm pheromones for the ant Formica rufa. Journal of Insect Physiology, 22(10), 13311346. https://doi.org/10.1016/0022-1910(76)90155-4Google Scholar
Macquart, D., Garnier, L., Combe, M. et al. (2006). Ant navigation en route to the goal: Signature routes facilitate way-finding of Gigantiops destructor. Journal of Comparative Physiology A, 192, 221234. https://doi.org/10.1007/s00359-005-0064-7Google Scholar
Manser, M. B., Madden, J. R., Kunc, H. P., English, S., & Clutton-Brock, T. (2008). Signals of need in a cooperatively breeding mammal with mobile offspring. Animal Behaviour, 76(6), 18051813. https://doi.org/10.1016/j.anbehav.2008.07.027CrossRefGoogle Scholar
Markl, H. (1973). The Evolution of Stridulatory Communication in Ants. In International Union for the Study of Social Insect (pp. 258265), Congress 1973. Proceedings IUSSI VIIth International Congress, London, 10–15 September, 1973. Southampton: University of Southampton.Google Scholar
McElligott, A., Gammell, M., Harty, H. et al. (2001). Sexual size dimorphism in fallow deer (Dama dama): Do larger, heavier males gain greater mating success? Behavioral & Ecological Sociobiology, 49, 266272. https://doi.org/10.1007/s002650000293Google Scholar
Mercier, J. L., Lenoir, J. C., Eberhardt, A., Frohschammer, S., Williams, C., & Heinze, J. (2007). Hammering, mauling, and kissing: Stereotyped courtship behavior in Cardiocondyla ants. Insectes Sociaux, 54(4), 403411. https://doi.org/10.1007/s00040-007-0960-7Google Scholar
Monnin, T. & Peeters, C. (1999). Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behavioral Ecology, 10(3), 323332. https://doi.org/10.1093/beheco/10.3.323Google Scholar
Monnin, T., Ratnieks, F. L. W., Jones, G. R., & Beard, R. (2002). Pretender punishment induced by chemical signalling in a queenless ant. Nature, 419(6902), 6165. https://doi.org/10.1038/nature00932Google Scholar
Nash, D. R., Als, T. D., Maile, R., Jones, G. R., & Boomsma, J. J. (2008). A mosaic of chemical coevolution in a large blue butterfly. Science, 319(5859), 8890. https://doi.org/10.1126/science.1149180Google Scholar
Penick, C. A., Prager, S. S., & Liebig, J. (2012). Juvenile hormone induces queen development in late-stage larvae of the ant Harpegnathos saltator. Journal of Insect Physiology, 58(12), 16431649. https://doi.org/10.1016/j.jinsphys.2012.10.004Google Scholar
Perez, M., Rolland, U., Giurfa, M., & D’Ettorre, P. (2013). Sucrose responsiveness, learning success, and task specialization in ants. Learning and Memory, 20(8), 417420. https://doi.org/10.1101/lm.031427.113Google Scholar
Perez, M., Giurfa, M. & d’Ettorre, P. (2015). The scent of mixtures: Rules of odour processing in ants. Science Reports, 5, 8659. DOI:10.1038/srep08659Google Scholar
Pintea, C. M., Pop, P. C., & Chira, C. (2017). The generalized traveling salesman problem solved with ant algorithms. Complex Adaptive Systems Modeling, 5(8). https://doi.org/10.1186/s40294-017-0048-9Google Scholar
Piqueret, B., Sandoz, J. C., & d’Ettorre, P. (2019). Ants learn fast and do not forget: Associative olfactory learning, memory and extinction in Formica fusca. Royal Society Open Science, 6. https://doi.org/10.1098/rsos.190778Google Scholar
Provecho, Y. & Josens, R. (2009). Olfactory memory established during trophallaxis affects food search behaviour in ants. Journal of Experimental Biology, 212(20), 32213227. https://doi.org/10.1242/jeb.033506Google Scholar
Rossi, N., Baracchi, D., Giurfa, M., & d’Ettorre, P. (2018). Pheromone-induced accuracy of nestmate recognition in carpenter ants: Simultaneous decrease in type I and type II errors. The American Naturalist, 193(2), 267278. https://doi.org/10.1086/701123Google Scholar
Sala, M., Casacci, L. Pietro, Balletto, E., Bonelli, S., & Barbero, F. (2014). Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS One, 9(4), 2023. https://doi.org/10.1371/journal.pone.0094341Google Scholar
Sandoz, J. C. (2011). Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in Systems Neuroscience, 5. https://doi.org/10.3389/fnsys.2011.00098Google Scholar
Santos, J. C., Korndörfer, A. P., & Del-Claro, K. (2005). Defensive behavior of the weaver ant Camponotus (Myrmobrachys) senex (Formicidae: Formicinae): Drumming and mimicry. Sociobiology, 46(2), 279288. https://doi.org/www.csuchico.edu/biol/Sociobiology/sociobiologyindex.htmlGoogle Scholar
Schiappa, J. & Van Hee, R. (2012). From ants to staples: History and ideas concerning suturing techniques. Acta Chirurgica Belgica, 112(5), 395402. https://doi.org/10.1080/00015458.2012.11680861Google Scholar
Schultz, T. R. (2000). In search of ant ancestors. Proceedings of the National Academy of Sciences, 97(26), 1402814029. https://doi.org/10.1073/pnas.011513798CrossRefGoogle ScholarPubMed
Shokouhi, M., Shadab Mehr, H., Mafi, E., & Rahnama, M. (2016). Optimization of main public transport paths based on accessibility – case study: Mashhad, Iran. Journal of Public Transportation, 19(1), 114128. https://doi.org/10.5038/2375-0901.19.1.8Google Scholar
Soroker, V., Vienne, C., Hefetz, A., & Nowbahari, E. (1994). The postpharyngeal gland as a “gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften, 81(11), 510513. https://doi.org/10.1007/BF01132686Google Scholar
Topoff, H. & Greenberg, L. (1988). Mating behavior of the socially-parasitic ant Polyergus breviceps: The role of the mandibular glands. Psyche (New York), 95(1–2), 8187. https://doi.org/10.1155/1988/62921Google Scholar
Tumlinson, J. H., Silverstein, R. M., Moser, J. C., Brownlee, R. G., & Ruth, J. M. (1971). Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature, 234(5328), 348349. https://doi.org/10.1038/234348b0Google Scholar
Walter, F., Fletcher, D. J. C., Chautems, D., Cherix, D., Keller, L., Francke, W., … Vargo, E. L. (1993). Identification of the sex pheromone of an ant, Formica lugubris (Hymenoptera, Formicidae). Naturwissenschaften, 80(1), 3034. https://doi.org/10.1007/BF01139755Google Scholar
Wenseleers, T., Helanterä, H., Hart, A., & Ratnieks, F. L. W. (2004). Worker reproduction and policing in insect societies: An ESS analysis. Journal of Evolutionary Biology, 17(5), 10351047. https://doi.org/10.1111/j.1420-9101.2004.00751.xGoogle Scholar
Wheeler, D. E. (1986). Developmental and physiological determinants of caste in social hymenoptera: Evolutionary implications. The American Naturalist, 128(1), 1334. https://doi.org/10.1086/284536Google Scholar
Wheeler, D. E. & Buck, N. A. (1992). Protein, lipid and carbohydrate use during metamorphosis in the fire ant, Solenopsis xyloni. Physiological Entomology, 17(4), 397403. https://doi.org/10.1111/j.1365-3032.1992.tb01038.xGoogle Scholar
Wyatt, T. D. (2014). Pheromones and Animal Behavior. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139030748Google Scholar
Zahavi, A. (2008). The Handicap Principle and Signalling in Collaborative Systems. In d’Ettorre, P. & Hughes, D. P. (Eds.), Sociobiology of Commmunication: An Interdisciplinary Perspective (pp. 19). Oxford: Oxford University Press.Google Scholar
Van Zweden, J. S., Fürst, M. A., Heinze, J., & d’Ettorre, P. (2007). Specialization in policing behaviour among workers in the ant Pachycondyla inversa. Proceedings of the Royal Society B: Biological Sciences, 274(1616), 14211428. https://doi.org/10.1098/rspb.2007.0113Google Scholar
van Zweden, J. S. & d’Ettorre, P. (2010). Nestmate Recognition in Social Insects and the Role of Hydrocarbons. In Blomquist, G. & Bagnères, A. (Eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Communication (pp. 222243). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511711909Google Scholar
Ziegelbecker, A., Richter, F., & Sefc, K. M. (2018). Colour pattern predicts outcome of female contest competition in a sexually monomorphic fish. Biological Letters, 1420180480. http://doi.org/10.1098/rsbl.2018.0480Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×