Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T09:17:10.430Z Has data issue: false hasContentIssue false

6 - Phenomena of Jet Breakup

Published online by Cambridge University Press:  02 December 2009

S. P. Lin
Affiliation:
Clarkson University, New York
Get access

Summary

A liquid jet emanating from a nozzle or orifice exhibits richly varied phenomena that depend on the orifice geometry, the inlet condition before the jet is emanated, and the environmental situation into which the jet is issued. A liquid jet cannot escape the ultimate fate of breakup because of hydro-dynamic instability. The breakup possesses two major regimes: large drop formation and fine spray formation. These two regimes are controlled by distinctively different physical forces, and between them there exist intermediate regimes. All the regimes arise from a subtle dynamic response of the jet to the disturbances.

Geometry of Liquid Jets

Citing the experiment of Bidone, Rayleigh (1945, p. 355) stated, “Thus in the case of an elliptical aperture, with major axis horizontal, the sections of the jet taken at increasing distances gradually lose their ellipticity until at a certain distance the section is circular. Further out the section again assumes ellipticity, but now with major axis vertical.” This statement is illustrated in Figure 6.1, which was taken from Taylor (1960), who also carried out the experiment. The phenomenon was understood as the vibration of a jet enclosed in an envelope of constant tension about its equilibrium configuration with a circular cross section. However, Taylor (1960) demonstrated that the phenomenon can still be predicted without the surface tension in the absence of gravity. With gravity, if the jet is issued vertically downward, it will accelerate.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Phenomena of Jet Breakup
  • S. P. Lin, Clarkson University, New York
  • Book: Breakup of Liquid Sheets and Jets
  • Online publication: 02 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547096.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Phenomena of Jet Breakup
  • S. P. Lin, Clarkson University, New York
  • Book: Breakup of Liquid Sheets and Jets
  • Online publication: 02 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547096.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Phenomena of Jet Breakup
  • S. P. Lin, Clarkson University, New York
  • Book: Breakup of Liquid Sheets and Jets
  • Online publication: 02 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547096.007
Available formats
×