Book contents
- Frontmatter
- Contents
- Notation List
- Preface
- 1 Introduction
- 2 Uniform Inviscid Liquid Sheets
- 3 Nonuniform Inviscid Liquid Sheets
- 4 Viscous Liquid Sheet
- 5 Waves on Liquid Sheets
- 6 Phenomena of Jet Breakup
- 7 Inviscid Jets
- 8 A Viscous Jet
- 9 Roles Played by Interfacial Shear
- 10 Annular Liquid Jets
- 11 Nonlinear Capillary Instability of Liquid Jets and Sheets
- 12 Epilogue
- Appendixes
- Author Index
- Subject Index
12 - Epilogue
Published online by Cambridge University Press: 02 December 2009
- Frontmatter
- Contents
- Notation List
- Preface
- 1 Introduction
- 2 Uniform Inviscid Liquid Sheets
- 3 Nonuniform Inviscid Liquid Sheets
- 4 Viscous Liquid Sheet
- 5 Waves on Liquid Sheets
- 6 Phenomena of Jet Breakup
- 7 Inviscid Jets
- 8 A Viscous Jet
- 9 Roles Played by Interfacial Shear
- 10 Annular Liquid Jets
- 11 Nonlinear Capillary Instability of Liquid Jets and Sheets
- 12 Epilogue
- Appendixes
- Author Index
- Subject Index
Summary
In the previous chapters, we investigated the fairly well studied phenomena of breakup of liquid sheets and liquid jets. The basic flows were assumed to be steady in the continuum theories. Also, they were either of infinite or of semi-infinite extent in the flow direction. Physically such infinite and semi-infinite steady jets or sheets cannot exist, as predicted by stability analysis. The analytical predictions enjoyed fairly good agreement with many known experiments. However, breakup of a liquid body into smaller parts often takes place under an unsteady situation from the beginning. The examples include the formation of satellites and subsatellites from the ligaments after detaching themselves from the main drops, the formation of drops from a dripping faucet, shaped-charge jets, the formation of micro-drops by external forcing, intermittent fuel sprays, and the phenomenon of jet branching induced by external excitation. These are the subjects to be touched upon in this last chapter.
Satellite Formation
When a stretched liquid ligament is relaxed, the capillary force associated with the large surface curvature at both ends of the ligament tends to compress and fragment the ligament into small drops. We saw the formation of the ligament during the last stage of nonlinear evolution of instability. The stretching of a liquid ligament submerged in another fluid can be achieved by pure straining or shearing or a combination of both. Figure 12.1 (Stone et al., 1986) shows how a spherical drop is stretched in two purely straining external flows with two different viscosities.
- Type
- Chapter
- Information
- Breakup of Liquid Sheets and Jets , pp. 223 - 253Publisher: Cambridge University PressPrint publication year: 2003