Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Black holes, entropy, and information
- Gravitational waves from black-hole mergers
- Out-of-this-world physics: Black holes at future colliders
- Black holes in globular clusters
- Evolution of massive black holes
- Supermassive black holes in deep multiwavelength surveys
- Black-hole masses from reverberation mapping
- Black-hole masses from gas dynamics
- Evolution of supermassive black holes
- Black-hole masses of distant quasars
- The accretion history of supermassive black holes
- Strong field gravity and spin of black holes from broad iron lines
- Birth of massive black-hole binaries
- Dynamics around supermassive black holes
- Black-hole formation and growth: Simulations in general relativity
- Estimating the spins of stellar-mass black holes
- Stellar relaxation processes near the Galactic massive black hole
- Tidal disruptions of stars by supermassive black holes
- Where to look for radiatively inefficient accrection flows in low-luminosity AGN
- Making black holes visible: Accretion, radiation, and jets
Evolution of massive black holes
Published online by Cambridge University Press: 11 April 2011
- Frontmatter
- Contents
- Participants
- Preface
- Black holes, entropy, and information
- Gravitational waves from black-hole mergers
- Out-of-this-world physics: Black holes at future colliders
- Black holes in globular clusters
- Evolution of massive black holes
- Supermassive black holes in deep multiwavelength surveys
- Black-hole masses from reverberation mapping
- Black-hole masses from gas dynamics
- Evolution of supermassive black holes
- Black-hole masses of distant quasars
- The accretion history of supermassive black holes
- Strong field gravity and spin of black holes from broad iron lines
- Birth of massive black-hole binaries
- Dynamics around supermassive black holes
- Black-hole formation and growth: Simulations in general relativity
- Estimating the spins of stellar-mass black holes
- Stellar relaxation processes near the Galactic massive black hole
- Tidal disruptions of stars by supermassive black holes
- Where to look for radiatively inefficient accrection flows in low-luminosity AGN
- Making black holes visible: Accretion, radiation, and jets
Summary
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black-hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black-hole population. I'll discuss black-hole formation processes that are likely to place at early cosmic epochs, and how massive black holes evolve in a hierarchical universe. The mass of the black holes that we detect today in nearby galaxy has mostly been accumulated by accretion of gas. While black-hole–black-hole mergers do not contribute substantially to the final mass of massive black holes, they influence the occupancy of galaxy centers by black hole, owing to the chance of merging black holes being kicked from their dwellings due to the “gravitational recoil.” Similarly, accretion leaves a deeper imprint on the distribution of black-hole spins than black-hole mergers do. The differences in accretion histories for black holes hosted in elliptical or disk galaxies may reflect on different spin distributions.
Introduction
Black holes (BHs), as physical entities, span the full range of masses, from tiny BHs predicted by string theory, to monsters weighing by themselves almost as much as a dwarf galaxy (massive black holes, MBHs). Notwithstanding the several orders of magnitude difference between the smallest and the largest BH known, we believe that all of them can be described by only three parameters: mass, spin, and charge.
- Type
- Chapter
- Information
- Black Holes , pp. 62 - 79Publisher: Cambridge University PressPrint publication year: 2011
- 1
- Cited by