Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T23:12:08.243Z Has data issue: false hasContentIssue false

9 - Uniqueness theorems for nonrotating holes

Published online by Cambridge University Press:  13 March 2010

Markus Heusler
Affiliation:
Universität Zürich
Get access

Summary

In this chapter we present the arguments which establish that the Schwarzschild metric describes the only static, asymptotically flat vacuum spacetime with regular (not necessarily connected) event horizon (Israel 1967, Müller zum Hagen et al. 1973, Robinson 1977, Bunting and Masood–ul–Alam 1987). We then discuss the generalization of this result to the situation with electric fields; that is, we demonstrate the uniqueness of the 2–parameter Reissner–Nordström solution amongst all asymptotically flat, static electrovac black hole configurations with nondegenerate horizon (Israel 1968, Müller zum Hagen et al. 1974, Simon 1985, Ruback 1988, Masood–ul–Alam 1992). Taking magnetic fields into account as well, we finally establish the uniqueness of the 3–parameter Reissner–Nordström metric. We conclude this chapter with a brief discussion of the Papapetrou-Majumdar metric, representing a static configuration with M = |Q| and an arbitrary number of extreme black holes (Papapetrou 1945, Majumdar 1947). This metric is not covered by the static uniqueness theorems, since the latter apply exclusively to electrovac solutions which are subject to the inequality M > |Q|.

Throughout this chapter the domain of outer communications is assumed to be static. In the vacuum or the electrovac case staticity is, as we have argued in the previous chapter, a consequence of the symmetry conditions for the matter fields.

Our main objective in this chapter concerns the “modern” approach to the static uniqueness theorem, which is based on conformal transformations and the positive energy theorem. We shall, however, start this chapter with some comments on the traditional line of reasoning, which is due to Israel, Müller zum Hagen, Robinson and others.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×