Published online by Cambridge University Press: 13 March 2010
In this chapter we establish the uniqueness of the Kerr metric amongst the stationary black hole solutions of self–gravitating harmonic mappings (scalar fields) with arbitrary Riemannian target manifolds. As in the vacuum and the electrovac cases, the uniqueness proof consists of three main parts: First, taking advantage of the strong rigidity theorem (see section 6.2), one establishes staticity for the nonrotating case, and circularity for the rotating case. One then separately proves the uniqueness of the Schwarzschild metric amongst all static configurations, and the uniqueness of the Kerr metric amongst all circular black hole solutions.
The three problems mentioned above are treated in the first section and the last two sections, respectively: The staticity and circularity theorems are derived from the symmetry properties of the scalar fields and the general theorems given in sections 8.1 and 8.2. The static uniqueness theorem is then proven along the same lines as in the vacuum case, that is, by means of conformal techniques and the positive energy theorem. The uniqueness theorem for rotating configurations turns out to be a consequence of the corresponding vacuum theorem (see chapter 10) and an additional integral identity for stationary and axisymmetric harmonic mappings.
Besides dealing with general harmonic mappings, we shall also pay some attention to ordinary scalar (Higgs) fields. By this, we mean harmonic mappings into linear target spaces with an additional potential term in the Lagrangian. By 1972, Bekenstein had already established the static no–hair theorem for ordinary massive scalar fields, by means of a divergence identity.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.