Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T16:10:21.795Z Has data issue: false hasContentIssue false

Chapter Seventeen - Insufficient adaptation to climate change alters avian habitat quality and thereby changes habitat selection

Published online by Cambridge University Press:  05 December 2012

Christiaan Both
Affiliation:
University of Groningen
Robert J. Fuller
Affiliation:
British Trust for Ornithology, Norfolk
Get access

Summary

Before approaching the main theme of this chapter I want to start with some intriguing field observations that, by accident, set me on the track of investigating the effects of climate change on avian ecology. Checking nest-boxes is like having a birthday party: opening boxes is always a surprise. While tramping from box to box, my mind works in overdrive to find patterns. One such pattern that started to fascinate me was that pied flycatchers Ficedula hypoleuca seem to prefer nest-boxes occupied by tits. Flycatchers are long-distance migrants that normally arrive when the tits already have started nest-building, and often have started egg-laying as well. Upon the flycatcher’s arrival, many boxes are still empty, whereas others are occupied by various tit species. Still, flycatchers consistently prefer the boxes containing nest material of tits. I have recorded this pattern over many years and in several areas (unpublished data), so I truly believe this pattern is real. This is not just a minor fact of life, but a potentially deadly adventure for a pied flycatcher. Each year we find – mostly male – flycatchers killed in nest-boxes, and often these nest-boxes had been occupied by great tits Parus major (Slagsvold, 1975; Ahola et al., 2007). It occasionally happens that great tits are incubating on extremely smelly nests, because a decomposing pied flycatcher had been included in the nest material. A closer look at the killed flycatchers further reveals that – more often than not – the brain has been eaten, a high-energy meal for an egg-laying bird early in the season. The attraction of already occupied nest-boxes for arriving pied flycatchers must have an enormous advantage, given its frequency and potentially lethal outcome.

Type
Chapter
Information
Birds and Habitat
Relationships in Changing Landscapes
, pp. 432 - 452
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahola, M.Laaksonen, T.Sippola, K. 2004 Variation in climate warming along the migration route uncouples arrival and breeding dateGlob. Change Biol. 10 1CrossRefGoogle Scholar
Ahola, M. P.Laaksonen, T.Eeva, T.Lehikoinen, E. 2007 Climate change can alter competitive relationships between resident and migratory birdsJ. Anim. Ecol. 76 1045CrossRefGoogle ScholarPubMed
Altwegg, R.Ringsby, T. H.Saether, B. E. 2000 Phenotypic correlates and consequences of dispersal in a metapopulation of house sparrows J. Anim. Ecol. 69 762CrossRefGoogle Scholar
Bauer, Z.Trnka, M.Bauerova, J. 2010 Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central EuropeInt. J. Biometeorol. 54 99CrossRefGoogle ScholarPubMed
Bell, C. P. 1996 Seasonality and time allocation as causes of leap-frog migration in the Yellow Wagtail J. Avian Biol. 27 334CrossRefGoogle Scholar
Bensch, S.Hasselquist, D.Nielsen, B.Hansson, B. 1998 Higher fitness for philopatric than for immigrant males in a semi-isolated population of great reed warblersEvolution 52 877CrossRefGoogle Scholar
Böhning-Gaese, K.Lemoine, N. 2004 Importance of climate change for the ranges, communities and conservation of birdsAdv. Ecol. Res. 35 211CrossRefGoogle Scholar
Both, C. 2010 Flexibility of timing of avian migration to climate change masked by environmental constraints en routeCurr. Biol. 20 243CrossRefGoogle ScholarPubMed
Both, C. 2010 Food availability, mistiming and climatic changeEffects of Climate Change on BirdsMøller, A. P.Fiedler, W.Berthold, P.129OxfordOxford University PressGoogle Scholar
Both, C.Artemyev, A. A.Blaauw, B. 2004 Large-scale geographical variation confirms that climate change causes birds to lay earlierProc. R. Soc. B 271 1657CrossRefGoogle ScholarPubMed
Both, C.Bijlsma, R. G.Visser, M. E. 2005 Climatic effects on spring migration and breeding in a long distance migrantJ.Avian Biol. 36 368CrossRefGoogle Scholar
Both, C.Bouwhuis, S.Lessells, C. M.Visser, M. E. 2006 Climate change and population declines in a long distance migratory birdNature 441 81CrossRefGoogle Scholar
Both, C.Marvelde, te 2007 Climate change and timing of avian breeding and migration throughout EuropeClimate Res. 35 93CrossRefGoogle Scholar
Both, C.van Asch, M.Bijlsma, R. G.van den Burg, A. B.Visser, M. E. 2009 Climate change and unequal phenological changes across four trophic levels: constraints or adaptationsJ. Anim. Ecol. 78 73CrossRefGoogle ScholarPubMed
Both, C.van Turnhout, C. A. M.Bijlsma, R. G. 2010 Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitatsProc. R. Soc. B 277 1259CrossRefGoogle ScholarPubMed
Both, C.Visser, M. E. 2001 Adjustment to climate change is constrained by arrival date in a long-distance migrant birdNature 411 296CrossRefGoogle Scholar
Brotons, L.Jiguet, F. 2010 Bird communities and climate changeEffects of Climate Change on BirdsMøller, A. P.Fiedler, W.Berthold, P.275OxfordOxford University PressGoogle Scholar
Brown, C. R.Brown, M. B. 2000 Weather-mediated natural selection on arrival time in cliff swallows ()Behav. Ecol. Sociobiol. 47 339CrossRefGoogle Scholar
Burger, C.Both, C. 2011 Translocation as a novel approach to study effects of (dispersal to) a new breeding habitat on reproductive output in wild birdsPlos One 6 e18143CrossRefGoogle ScholarPubMed
Charmantier, A.McCleery, R. H.Cole, L. R. 2008 Adaptive phenotypic plasticity in response to climate change in a wild bird populationScience 320 800CrossRefGoogle Scholar
Coppack, T.Pulido, F.Berthold, P. 2001 Photoperiod response to early hatching in a migratory bird speciesOecologia 128 181CrossRefGoogle Scholar
Cresswell, W.McCleery, R. H. 2003 How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperatureJ. Anim. Ecol. 72 356CrossRefGoogle Scholar
Doligez, B.Gustafsson, L.Pärt, T. 2009 Heritability’ of dispersal propensity in a patchy populationProc. R. Soc. B 276 2829CrossRefGoogle Scholar
Doligez, B.Pärt, T. 2008 Estimating fitness consequences of dispersal: a road to ‘know-where’? Non-random dispersal and the underestimation of dispersers’ fitnessJ. Anim. Ecol. 77 1199CrossRefGoogle ScholarPubMed
Drent, R. H. 2006 The timing of birds’ breeding seasons: the Perrins hypothesis revisited especially for migrantsArdea 94 305Google Scholar
Forsman, J. T.Seppanen, J.-T.Mönkkönen, M. 2002 Positive fitness consequences of interspecific interaction with a potential competitorProc. R. Soc. B 269 1619CrossRefGoogle ScholarPubMed
Gwinner, E. 1996 Circannual clocks in avian reproduction and migrationIbis 138 47CrossRefGoogle Scholar
Gwinner, E.Helm, B. 2003 Circannual and circadian contribution to the timing of avian migrationAvian MigrationBerthold, P.Gwinner, E.Sonnenschein, E.81BerlinSpringer-VerlagCrossRefGoogle Scholar
Hansson, B.Bensch, S.Hasselquist, D. 2002 Predictors of natal dispersal in great reed warblers: results from small and large census areasJ. Avian Biol. 33 311CrossRefGoogle Scholar
Hobson, K. A. 2005 Using stable isotopes to trace long-distance dispersal in birds and other taxaDivers. Distrib. 11 157CrossRefGoogle Scholar
Hobson, K. A.Wassenaar, L. I.Bayne, E. 2004 Using isotopic variance to detect long-distance dispersal and philopatry in birds: an example with Ovenbirds and American RedstartsCondor 106 732CrossRefGoogle Scholar
Hüppop, O.Winkel, W. 2006 Climate change and timing of spring migration in the long-distance migrant in central Europe: the role of spatially different temperature changes along migration routesJ. Ornithol. 147 326CrossRefGoogle Scholar
Jonzén, N.Lindén, A.Ergon, T. 2006 Rapid advance of spring arrival dates in long-distance migratory birdsScience 312 1959CrossRefGoogle ScholarPubMed
Lack, D. 1966 Population Studies of BirdsOxfordOxford University PressGoogle Scholar
Langin, K. M.Marra, P. P.Nemeth, Z. 2009 Breeding latitude and timing of spring migration in songbirds crossing the Gulf of MexicoJ. Avian Biol. 40 309CrossRefGoogle Scholar
Lehikoinen, E.Sparks, T. H.Zalakevicius, M. 2004 Arrival and departure datesAdv. Ecol. Res. 35 1CrossRefGoogle Scholar
Lehikoinen, E.Sparks, T. H. 2010 Changes in migrationEffects of Climate Change on BirdsMøller, A. P.Fiedler, W.Berthold, P.89OxfordOxford University PressGoogle Scholar
Lundberg, A.Alatalo, R. V. 1992 The Pied FlycatcherLondonPoyserGoogle Scholar
Marr, A. B.Keller, L. F.Arcese, P. 2002 Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows ()Evolution 56 131CrossRefGoogle Scholar
Marra, P. P.Francis, C. M.Mulvihill, R. S.Moore, F. R. 2005 The influence of climate on the timing and rate of spring bird migrationOecologia 142 307CrossRefGoogle ScholarPubMed
Martin, T. E. 1995 Avian life-history evolution in relation to nest sites, nest predation, and foodEcol. Monogr. 65 101CrossRefGoogle Scholar
McCleery, R. H.Perrins, C. M. 1998 . . . temperature and egg-laying trendsNature 391 30CrossRefGoogle Scholar
Merino, S.Møller, A. P. 2010 Host-parasite interactions and climate changeEffects of Climate Change on BirdsMøller, A. P.Fiedler, W.Berthold, P.213OxfordOxford University PressGoogle Scholar
Møller, A. P. 1994 Phenotype-dependent arrival time and its consequences in a migratory birdBehav. Ecol. Sociobiol. 35 115CrossRefGoogle Scholar
Møller, A. P.Flensted-Jensen, E.Mardal, W. 2006 Dispersal and climate change: a case study of the Arctic tern Glob. Change Biol. 12 2005CrossRefGoogle Scholar
Møller, A. P.Rubolini, D.Lehikoinen, A. 2008 Populations of migratory bird species that did not show a phenological response to climate change are decliningP. Natl. Acad. Sci. USA 105 16195CrossRefGoogle Scholar
Newton, I. 2007 Weather-related mass-mortality events in migrantsIbis 149 453CrossRefGoogle Scholar
Norris, D. R.Marra, P. P.Kyser, T. K.Sherry, T. W.Ratcliffe, L. M. 2004 Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory birdProc. R. Soc. B 271 59CrossRefGoogle Scholar
Overgaard, R.Gemmel, P.Karlsson, M. 2007 Effects of weather conditions on mast year frequency in beech ( L.) in SwedenForestry 80 553CrossRefGoogle Scholar
Parn, H.Jensen, H.Ringsby, T. H.Saether, B. E. 2009 Sex-specific fitness correlates of dispersal in a house sparrow metapopulationJ. Anim. Ecol. 78 1216CrossRefGoogle Scholar
Pärt, T. 1990 Natal dispersal in the Collared Flycatcher: possible causes and reproductive consequencesOrnis Scand. 21 83CrossRefGoogle Scholar
Perrins, C. M. 1970 The timing of birds’ breeding seasonsIbis 112 242CrossRefGoogle Scholar
Pulido, F. 2007 Phenotypic changes in spring arrival: evolution, phenotypic plasticity, effects of weather and conditionClimate Res. 35 5CrossRefGoogle Scholar
Pulido, F.Berthold, P. 2004 Microevolutionary response to climate changeAdv. Ecol. Res. 35 151CrossRefGoogle Scholar
Pulido, F.Berthold, P.Mohr, G.Querner, U. 2001 Heritability of the timing of autumn migration in a natural bird populationProc. R. Soc. B 268 953CrossRefGoogle Scholar
Robinson, R. A.Baillie, S. R.Crick, H. Q. 2007 Weather-dependent survival: implications of climate change for passerine population processesIbis 149 357CrossRefGoogle Scholar
Root, T. L.Price, J. T.Hall, K. R. 2003 Fingerprints of global warming on wild animals and plantsNature 421 57CrossRefGoogle ScholarPubMed
Rubolini, D.Møller, A. P.Rainio, K.Lehikoinen, E. 2007 Assessing intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird speciesClimate Res. 35 135CrossRefGoogle Scholar
Sandberg, R.Moore, F. R. 1996 Fat stores and arrival on the breeding grounds: reproductive consequences for passerine migrantsOikos 77 577CrossRefGoogle Scholar
Sanz, J. J. 1997 Geographic variation in breeding parameters of the Pied Flycatcher Ibis 139 107CrossRefGoogle Scholar
Sanz, J. J. 1998 Effect of habitat and latitude on nestling diet of Pied Flycatchers Ardea 86 81Google Scholar
Sanz, J. J.Potti, J.Moreno, J.Merino, S.Frias, O. 2003 Climate change and fitness components of a migratory bird breeding in the Mediterranean regionGlob. Change Biol. 9 461CrossRefGoogle Scholar
Schmidt, K. A.Ostfeld, R. S. 2008 Numerical and behavioral effects within a pulse-driven system: Consequences for shared preyEcology 89 635CrossRefGoogle ScholarPubMed
Schmidt, K. A.Rush, S. A.Ostfeld, R. S. 2008 Wood thrush nest success and post-fledging survival across a temporal pulse of small mammal abundance in an oak forestJ.Anim. Ecol. 77 830CrossRefGoogle Scholar
Seppanen, J. T.Forsman, J. T. 2007 Interspecific social learning: novel preference can be acquired from a competing speciesCurr. Biol. 17 1248CrossRefGoogle ScholarPubMed
Sheldon, B. C.Kruuk, L. E. B.Merila, J. 2003 Natural selection and inheritance of breeding time and clutch size in the collared flycatcherEvolution 57 406CrossRefGoogle ScholarPubMed
Siikamäki, P. 1995 Habitat quality and reproductive traits in the pied flycatcher – an experimentEcology 76 308CrossRefGoogle Scholar
Siikamäki, P. 1998 Limitation of reproductive success by food availability and breeding time in pied flycatchersEcology 79 1789CrossRefGoogle Scholar
Silverin, B.Massa, R.Stokkan, K. A. 1993 Photoperiodic adaptation to breeding at different latitudes in Great TitsGen. Comp. Endocr. 90 14CrossRefGoogle ScholarPubMed
Slagsvold, T. 1975 Competition between the great tit and the pied flycatcher in the breeding seasonOrnis Scand. 6 179CrossRefGoogle Scholar
Slater, F. M. 1999 First-egg date fluctuations for the Pied Flycatcher in the woodlands of mid-Wales in the twentieth centuryIbis 141 497CrossRefGoogle Scholar
Smith, R. J.Moore, F. R. 2005 Arrival timing and seasonal reproductive performance in a long-distance migratory landbirdBehav. Ecol. Sociobiol. 57 231CrossRefGoogle Scholar
Spitzer, G. 1972 Jahreszeitliche Aspekte der Biologie der Bartmeise ()J.Ornithol. 113 241CrossRefGoogle Scholar
Studds, C. E.Kyser, T. K.Marra, P. P. 2008 Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbirdP. Natl. Acad. Sci. USA 105 2929CrossRefGoogle ScholarPubMed
Thackeray, S. J.Sparks, T. H.Frederiksen, M. 2010 Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environmentsGlob. Change Biol. 16 3304CrossRefGoogle Scholar
Tilgar, V.Mand, R.Kilgas, P.Magi, M. 2010 Long-term consequences of early ontogeny in free-living Great Tits J. Ornithol. 151 61CrossRefGoogle Scholar
Tinbergen, J. M. 2005 Biased estimates of fitness consequences of brood size manipulation through correlated effects on natal dispersalJ. Anim. Ecol. 74 1112CrossRefGoogle Scholar
van Noordwijk, A. J. 1984 Quantitative genetics in natural populations of birds illustrated with examples from the Great Tit, Population Biology and EvolutionWoehrmann, K.Loeschke, V.67HeidelbergSpringerCrossRefGoogle Scholar
Verhulst, S.Nilsson, J. A. 2008 The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breedingPhil. Trans. R. Soc. B 363 399CrossRefGoogle ScholarPubMed
Verhulst, S.Perrins, C. M.Riddington, R. 1997 Natal dispersal of great tits in a patchy environmentEcology 78 864CrossRefGoogle Scholar
Visser, M. E.Adriaensen, F.van Balen, J. H. 2003 Variable responses to large-scale climate change in European populationsProc. R. Soc. B 270 367Google Scholar
Visser, M. E.Both, C. 2005 Shifts in phenology due to global climate change: the need for a yardstickProc. R. Soc. B 272 2561CrossRefGoogle ScholarPubMed
Visser, M. E.Both, C.Lambrechts, M. M. 2004 Global climate change leads to mistimed avian reproductionAdv. Ecol. Res. 35 89CrossRefGoogle Scholar
Visser, M. E.Holleman, L. J. M.Gienapp, P. 2006 Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous birdOecologia 147 167CrossRefGoogle ScholarPubMed
Visser, M. E.van Noordwijk, A. J.Tinbergen, J. M.Lessells, C. M. 1998 Warmer springs lead to mistimed reproduction in great tits ()Proc. R. Soc. B 265 1867CrossRefGoogle Scholar
Wesołowski, T.Maziarz, M. 2009 Changes in breeding phenology and performance of Wood Warblers in a primeval forest: a thirty-year perspectiveActa Ornithol. 44 69CrossRefGoogle Scholar
Wesołowski, T.Rowiński, P.Maziarz, M. 2009 Wood Warbler : a nomadic insectivore in search of safe breeding groundsBird Study 56 26CrossRefGoogle Scholar
Winkel, W.Hudde, H. 1997 Long-term trends in reproductive traits of tits () and Pied flycatchers J. Avian Biol. 28 187CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×