Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T19:28:06.871Z Has data issue: false hasContentIssue false

2 - How Gene-Environment Interactions Can Influence the Development of Emotion Regulation in Rhesus Monkeys

Published online by Cambridge University Press:  02 July 2009

Sheryl L. Olson
Affiliation:
University of Michigan, Ann Arbor
Arnold J. Sameroff
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

INTRODUCTION

Humans do not have a monopoly on emotionality. More than a century ago, Charles Darwin (1872) provided compelling arguments that some animals, especially mammals, are capable of expressing human-like emotions. Today, an increasing body of research convincingly demonstrates that most nonhuman primates possess the same basic neural circuitry and exhibit the same general patterns of neurochemical change that have been implicated in human emotional expression (cf. Panksepp, 1998). Monkeys and apes routinely display characteristic patterns of emotional expression that seem strikingly similar to, if not homologous with, those routinely exhibited by infants and young children in virtually every human culture studied to date. To be sure, some complex emotions such as shame are most likely exclusively human, but they apparently require cognitive capabilities well beyond those of human infants and nonhuman primates of any age (cf. Lewis, 1992). The more basic emotions, such as fear, interest, surprise, and rage, are clearly expressed soon after birth by human and nonhuman primate infants alike, and their expression is usually obvious to all around; that is, they serve as highly visible and salient social signals (cf. Suomi, 1997b).

Ethologists have long argued that these basic emotions, having been largely conserved over mammalian evolutionary history, serve important adaptive functions (i.e., they are thought to enhance the immediate survival and long-term fitness of the individuals expressing them).

Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, C. S., Newman, T. K., Becker, M. L., Champoux, M., Lesch, K. P., Suomi, S. J., et al. (2003). Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress. Alcoholism: Clinical and Experimental Research, 27, 812–817.CrossRefGoogle ScholarPubMed
Bennett, A. J., Lesch, K. P., Heils, A., & Linnoila, M. (1998). Serotonin transporter gene variation, CSF 5-HIAA concentrations, and alcohol-related aggression in rhesus monkeys (Macaca mulatta). American Journal of Primatology, 45, 168–169.Google Scholar
Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., et al. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry, 7, 118–122.CrossRefGoogle ScholarPubMed
Bennett, A. J., Tsai, T., Hopkins, W. D., Lindell, S. G., Pierre, P. J., Champoux, M., et al. (1999). Early social rearing environment influences acquisition of a computerized joystick task in rhesus monkeys (Macaca mulatta). American Journal of Primatology, 49, 33–34.Google Scholar
Berard, J. (1989). Male life histories. Puerto Rican Health Sciences Journal, 8, 47–58.Google Scholar
Berman, C. M., Rasmussen, K. L. R., & Suomi, S. J. (1994). Responses of free-ranging rhesus monkeys to a natural form of maternal separation: I. Parallels with mother-infant separation in captivity. Child Development, 65, 1028–1041.CrossRefGoogle ScholarPubMed
Bowlby, J. (1969). Attachment. New York: Basic Books.Google Scholar
Bowlby, J. (1973). Separation. New York: Basic Books.Google Scholar
Bowlby, J. (1988). A secure base. New York: Basic Books.Google Scholar
Champoux, M., Bennett, A. J., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 1058–1063.CrossRefGoogle ScholarPubMed
Champoux, M., Suomi, S. J., & Schneider, M. L. (1994). Temperamental differences between captive Indian and Chinese-Indian hybrid rhesus macaque infants. Laboratory Animal Science, 44, 351–357.Google Scholar
Darwin, C. (1872). The expression of emotions in man and animals. New York: D. Appleton.CrossRefGoogle Scholar
Davenport, M. D., Novak, M. A., Meyer, J. S., Tiefanbacher, S., Higley, J. D., Lindell, S. G., et al. (2003). Continuity and change in emotional regulation in rhesus monkeys throughout the prepubertal period. Motivation and Emotion, 27, 57–76.CrossRefGoogle Scholar
Dittus, W. P. J. (1979). The evolution of behaviours regulating density and age-specific sex ratios in a primate population. Behaviour, 69, 265–302.CrossRefGoogle Scholar
Doudet, D., Hommer, D., Higley, J. D., Andreason, P. J., Moneman, R., Suomi, S. J., et al. (1995). Cerebral glucose metabolism, CSF 5-HIAA, and aggressive behavior in rhesus monkeys. American Journal of Psychiatry, 152, 1782–1787.Google ScholarPubMed
Fahlke, C., Lorenz, J. G., Long, J., Champoux, M., Suomi, S. J., & Higley, J. D. (2000). Rearing experiences and stress-induced plasma cortisol as early risk factors for excessive alcohol consumption in nonhuman primates. Alcoholism: Clinical and Experimental Research, 24, 644–650.CrossRefGoogle ScholarPubMed
Fooden, J. (2000). Systematic review of the rhesus macaque Macaca mulatta (Zimmermann, 1780). Feldiana: Zoology, 96, 1–179.Google Scholar
Gunnar, M. R., Gonzalez, C. A., Goodlin, B. L., & Levine, S. (1981). Behavioral and pituitary-adrenal responses during a prolonged separation period in rhesus monkeys. Psychoneuroendocrinology, 6, 65–75.CrossRefGoogle Scholar
Harlow, H. F. (1953). Mice, monkeys, men, and motives. Psychological Review, 60, 23–35.CrossRefGoogle ScholarPubMed
Harlow, H. F. (1958). The nature of love. American Psychologist, 13, 673–685.CrossRefGoogle Scholar
Harlow, H. F. (1969). Age-mate or peer affectional system. In Lehrman, D. S., Hinde, R. A., & Shaw, E. (Eds.), Advances in the study of behaviour: Vol. 2 (pp. 333–383). New York: Academic Press.Google Scholar
Harlow, H. F., & Harlow, M. K. (1969). Effects of various mother-infant relationships on rhesus monkey behaviors. In Foss, B. M. (Ed.), Determinants of infant behaviour: Vol. 4 (pp. 15–36). London: Metheun.Google Scholar
Harlow, H. F., & Lauersdorf, H. E. (1974). Sex differences in passion and play. Perspectives in Biology and Medicine, 17, 348–360.CrossRefGoogle Scholar
Heils, A., Teufel, A., Petri, S., Stober, G., Riederer, P., Bengel, B., et al. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 6, 2621–2624.Google Scholar
Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D., et al. (1998). In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. American Journal of Psychiatry, 155, 1023–1028.CrossRefGoogle ScholarPubMed
Heinz, A., Jones, D. W., Gorey, J. G., Bennet, A. J., Suomi, S. J., Weinberger, D. R., et al. (2003). Serotonin transporter availability correlates with alcohol intake in non-human primates. Molecular Psychiatry, 7, 231–234.CrossRefGoogle Scholar
Higley, J. D., Hasert, M. L., Suomi, S. J., & Linnoila, M. (1991). A new nonhuman primate model of alcohol abuse: Effects of early experience, personality, and stress on alcohol consumption. Proceedings of the National Academy of Sciences, 88, 7261–7265.CrossRefGoogle Scholar
Higley, J. D., King, S. T., Hasert, M. F., Champoux, M., Suomi, S. J., & Linnoila, M. (1996). Stability of individual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuro-psychopharmacology, 14, 67–76.CrossRefGoogle Scholar
Higley, J. D., Mehlman, P. T., Taub, D. M., Higley, S., Fernald, B., Vickers, J. H., et al. (1996). Excessive mortality in young free-ranging male nonhuman primates with low CSF 5-HIAA concentrations. Archives of General Psychiatry, 53, 537–543.CrossRefGoogle Scholar
Higley, J. D., Mehlman, P. T., Taub, D. M., Higley, S. B., Vickers, J. H., Suomi, S. J., et al. (1992). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436–444.CrossRefGoogle ScholarPubMed
Higley, J. D., & Suomi, S. J. (1989). Temperamental reactivity in nonhuman primates. In Kohnstamm, G. A., Bates, J. E., & Rothbard, M. K. (Eds.), Handbook of temperament in children (pp. 153–167). New York: Wiley.Google Scholar
Higley, J. D., & Suomi, S. J. (1996). Parental behaviour in primates. In Sluckin, W. & Herbert, M. (Eds.), Parental Behaviour. Oxford: Blackwell, pp. 152–207.Google Scholar
Higley, J. D., Suomi, S. J., & Linnoila, M. (1992). A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127–145.CrossRefGoogle ScholarPubMed
Higley, J. D., Suomi, S. J., & Linnoila, M. (1996). A nonhuman primate model of Type II alcoholism? Part 2: Diminished social competence and excessive aggression correlates with low CSF 5-HIAA concentrations. Alcoholism: Clinical and Experimental Research, 20, 643–650.CrossRefGoogle Scholar
Higley, J. D., Thompson, W. T., Champoux, M., Goldman, D., Hasert, M. F., Kraemer, G. W., et al. (1993). Paternal and maternal genetic and environmental contributions to CSF monoamine metabolites in rhesus monkeys (Macaca mulatta). Archives of General Psychiatry, 50, 615–623.CrossRefGoogle Scholar
Ichise, M., Vines, D. C., Gura, T., Anderson, G. M., Suomi, S. J., Higley, J. D., et al. (2006). Effects of early life stress on [11C] DABS PET imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. Journal of Neuroscience, 26, 4638–4643.CrossRefGoogle Scholar
Laudenslager, M. L., Rasmussen, K. L. R., Berman, C. M., Broussard, C. L., & Suomi, S. J. (1993). Specific antibody levels in free-ranging rhesus monkeys: Relationship to plasma hormones, cardiac parameters, and early behavior. Development Psychobiology, 26, 407–420.CrossRefGoogle ScholarPubMed
Laudenslager, M. L., Rasmussen, K. L. R., Berman, C. J., Lilly, A., Shelton, S. E., Kalin, N. H., et al. (1999). A preliminary analysis of individual differences in rhesus monkeys following brief capture experiences: Endocrine, immune, and health indicators. Brain, Behavior, & Immunology, 13, 124–137.CrossRefGoogle Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.CrossRefGoogle ScholarPubMed
Lesch, L. P., Meyer, J., Glatz, K., Flugge, G., Hinney, A., Hebebrand, J., et al. (1997). The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: Alternative biallelic variation in rhesus monkeys. Journal of Neural Transmission, 104, 1259–1266.CrossRefGoogle ScholarPubMed
Lewis, M. (1992). Shame: The exposed self. New York: Free Press.Google Scholar
Lindburg, D. G. (1971). The rhesus monkey in north India: An ecological and behavioral study. In Rosenblum, L. A. (Ed.), Primate behavior: Developments in field and laboratory research, Vol. 2 (pp. 1–106). New York: Academic Press.Google Scholar
Maestripieri, D., Higley, J. D., Lindell, S. G., Newman, T. K., McCormick, K. M., & Sanchez, M. M. (2006). Early maternal rejection affects the development of mono-amergic systems and adult abusive parenting in rhesus macaques (Macaca mulatta). Behavioral Neuroscience, 120, 1017–1024.CrossRefGoogle Scholar
Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J. H., et al. (1994). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentrations are correlated with severe aggression and reduced impulse control in free-ranging primates. American Journal of Psychiatry, 151, 1485–1491.Google Scholar
Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J. H., et al. (1995). CSF 5-HIAA concentrations are correlated with sociality and the timing of emigration in free-ranging primates. American Journal of Psychiatry, 152, 901–913.Google ScholarPubMed
Mendoza, S. P., Smotherman, W. P., Miner, M., Kaplan, J., & Levine, S. (1978). Pituitary-adrenal response to separation in mother and infant squirrel monkeys. Developmental Psychobiology, 11, 169–175.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
Rasmussen, K. L. R., Fellows, J. R., & Suomi, S. J. (1990). Physiological correlates of emigration behavior and mortality in adolescent male rhesus monkeys on Cayo Santiago. American Journal of Primatology, 20, 224–225.Google Scholar
Rasmussen, K. L. R., Timme, A., & Suomi, S. J. (1997). Comparison of physiological measures of Cayo Santiago rhesus monkey females within and between social groups. Primate Reports, 47, 49–55.Google Scholar
Reite, M., Short, R., Selier, C., & Pauley, J. D. (1981). Attachment, loss, and depression. Journal of Child Psychology and Psychiatry, 22, 141–169.CrossRefGoogle ScholarPubMed
Ruppenthal, G. C., Harlow, M. K., Eisele, C. D., Harlow, H. F., & Suomi, S. J. (1974). Development of peer interactions of monkeys reared in a nuclear family environment. Child Development, 45, 670–682.CrossRefGoogle Scholar
Rutter, M. (2007). Proceeding from observed correlation to causal inference. Perspectives on Psychological Science, 2, 377–395.CrossRefGoogle ScholarPubMed
Sade, D. S. (1967). Determinants of dominance in a group of free-ranging rhesus monkeys. In Altmann, S. A. (Ed.), Social communication among primates. Chicago: University of Chicago Press, pp. 99–111.Google Scholar
Sameroff, A. J., & Suomi, S. J. (1996). Primates and persons: A comparative developmental understanding of social organization. In Cairns, R. B., Elder, G. H., & Costello, E. J. (Eds.), Developmental science (pp. 97–120). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shannon, C., Schwandt, M. L., Champoux, M., Shoaf, S. E., Suomi, S. J., Linnoila, M., et al. (2005). Maternal absence and stability of individual differences in CSF 5-HIAA concentrations in rhesus monkey infants. American Journal of Psychiatry, 162, 1658–1664.CrossRefGoogle ScholarPubMed
Suomi, S. J. (1986). Anxiety-like disorders in young primates. In Gittelman, R. (Ed.), Anxiety disorders of childhood (pp. 1–23). New York: Guilford Press.Google Scholar
Suomi, S. J. (1991a). Up-tight and laid-back monkeys: Individual differences in the response to social challenges. In Brauth, S., Hall, W., & Dooling, R. (Eds.), Plasticity of development (pp. 27–56). Cambridge, MA: MIT Press.Google Scholar
Suomi, S. J. (1991b). Primate separation models of affective disorders. In Madden, J. (Ed.), Neurobiology of learning, emotion, and affect (pp. 195–214). New York: Raven Press.Google Scholar
Suomi, S. J. (1995). Influence of Bowlby's attachment theory on research on nonhuman primate biobehavioral development. In Goldberg, S., Muir, R., & Kerr, J. (Eds.), Attachment theory: Social, developmental, and clinical perspectives (pp. 185–201). Hillsdale, NJ: Analytic Press.Google Scholar
Suomi, S. J. (1997a). Early determinants of behaviour: Evidence from primate studies. British Medical Bulletin, 53, 170–184.CrossRefGoogle ScholarPubMed
Suomi, S. J. (1997b). Nonverbal communication in nonhuman primates: Implications for the emergence of culture. In Molnar, P. & Segerstrale, U. (Eds.), Where nature meets culture: Nonverbal communication in social interaction (pp. 131–150). Hillsdale, NJ: Erlbaum.Google Scholar
Suomi, S. J. (1998). Conflict and cohesion in rhesus monkey family life. In Cox, M. & Brooks-Gunn, J. (Eds.), Conflict and cohesion in families (pp. 283–296). Mahwah, NJ: Erlbaum.Google Scholar
Suomi, S. J. (1999). Attachment in rhesus monkeys. In Cassidy, J. & Shaver, P. R. (Eds.), Handbook of attachment: Theory, research, and clinical applications (pp. 181–197). New York: Guilford Press.Google Scholar
Suomi, S. J. (2000a). A biobehavioral perspective on developmental psychopathology: Excessive aggression and serotonergic dysfunction in monkeys. In Sameroff, A. J., Lewis, M., & Miller, S. (Eds.), Handbook of developmental psychopathology (pp. 237–256). New York: Plenum Press.CrossRefGoogle Scholar
Suomi, S. J. (2000b). Behavioral inhibition and impulsive aggressiveness: Insights from studies with rhesus monkeys. In Balter, L. & Tamis-Lamode, C. (Eds.), Child psychology: A handbook of contemporary issues (pp. 510–525). New York: Taylor & Francis.Google Scholar
Suomi, S. J., & Harlow, H. F. (1975). The role and reason of peer friendships. In Lewis, M. & Rosenblum, L. A. (Eds.), Friendships and peer relations (pp. 310–334). New York: Basic Books.Google Scholar
Suomi, S. J., & Harlow, H. F. (1976). The facts and functions of fear. In Zuckerman, M. & Spielberger, C. D. (Eds.), Emotions and anxiety: New concepts, methods, and applications (pp. 3–34). Hillsdale, NJ: Erlbaum.Google Scholar
Suomi, S. J., & Ripp, C. (1983). A history of motherless mother monkey mothering at the University of Wisconsin Primate Laboratory. In Reite, M. & Caine, N. (Eds.), Child abuse: The nonhuman primate data (pp. 49–77). New York: Alan R. Liss.Google Scholar
Symons, D. (1978). Play and aggression: A study of rhesus monkeys. New York: Columbia University Press.Google Scholar
Wendland, J. R., Lesch, K. P., Newman, T. K., Timme, A., Gachot-Neveu, , H., Thierry, B., & Suomi, S. J. (2006). Differential functional variability of serotonin transporter and monoamine oxidase A genes in macaque species displaying contrasting levels of aggression-related behavior. Behavior Genetics, 36, 163–172.CrossRefGoogle ScholarPubMed
Williamson, D. E., Coleman, K., Bacanu, S. A., Devlin, B. J., Rogers, J., Ryan, N. D., & Cameron, J. (2003). Heritability of fearful-anxious endophenotypes in infant rhesus macaques: A preliminary study. Biological Psychiatry, 53, 284–291.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×