Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T11:51:19.926Z Has data issue: false hasContentIssue false

5 - Fibres: time-dependent behaviour

Published online by Cambridge University Press:  05 June 2012

Cees Oomens
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Marcel Brekelmans
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Frank Baaijens
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Get access

Summary

Introduction

In the previous chapter on fibres the material behaviour was constantly considered to be elastic, meaning that a unique relation exists between the extensional force and the deformation of the fibre. This implies that the force versus stretch curves for the loading and unloading path are indentical. There is no history dependency and all energy that is stored into the fibre during deformation is regained during the unloading phase. This also implies that the rate of loading or unloading does not affect the force versus stretch curves. However, most biological materials do not behave elastically!

An example of a loading history and a typical response of a biological material is shown in Figures 5.1(a) and (b). In Fig. 5.1(a) a deformation history is given that might be used in an experiment to mechanically characterize some material specimen. The specimen is stretched fast to a certain value, then the deformation is fixed and after a certain time restored to zero. After a short resting period, the stretch is applied again but to a higher value of the stretch. This deformation cycle is repeated several times. In this case the length change is prescribed and the associated force is measured. Fig. 5.1(b) shows the result of such a measurement. When the length of the fibre is kept constant, the force decreases in time. This phenomenon is called relaxation. Reversely, if a constant load is applied, the length of the fibre will increase. This is called creep.

Type
Chapter
Information
Biomechanics
Concepts and Computation
, pp. 69 - 98
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×