Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T06:56:23.887Z Has data issue: false hasContentIssue false

Part II - Sustainable Biomass Resources

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

Forests are important for providing wood for products and energy, and the demand for wood is expected to increase over the next decades. The potential woody biomass supply was estimated for the period 2000–2020 for stem wood as well as residues, taking into account economic, environmental and technical restrictions. Constraints reducing the availability of forest biomass were defined and quantified for three mobilisation scenarios and five wood price scenarios in order to estimate the realisable potentials. The theoretical biomass potential was estimated from Austrian forest inventory data and applying the PROGNAUS forest growth simulator. It lies between 32.7 and 38.4 million m3 equivalents yr-1 over bark for the period 2000–2020. The realisable potential in Austria was estimated in a range between 23.9 and 31.1 million m3 equivalents yr-1 over bark for the period 2000–2020. These potentials represent 73–84% of the theoretical potential. Nutrient sustainability in the context of whole-tree harvesting appeared to be an important constraint when considering how much biomass is realisable from forests. The attitude of private forest owners towards increased harvest of forest biomass is also of major importance for the realisable potential, given the small-scale structure of forest ownership in Austria.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 121 - 196
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amacher, G. S., Conway, M. C. and Sullivan, J. (2003). Econometric analyses of nonindustrial forest landowners: is there anything left to study? Journal of Forest Economics, 9, pp. 137164.Google Scholar
Bauer, R. (2001). Maschinenkostenrechnung nach dem FBVA-Schema. FBVA-Berichte, 124, pp. 3538.Google Scholar
Baumgarten, A. (2012). Richtlinie für den sachgerechten Einsatz von Pflanzenaschen zur Verwertung auf land- und forstwirtschaftlich genutzten Flächen. Fachbeirat für Bodenfruchtbarkeit und Bodenschutz. [online] Available at: https://dx.doi.org/10.2785/388553 [Accessed 15 February 2015]Google Scholar
BFW (2012). The Austrian Forest Inventory 2007/09. [online] Available at: http://bfw.ac.at/rz/wi.home. [Accessed 15 February 2015]Google Scholar
BFW (2015). Ergebnisse der österreichischen Waldinventur (= Results of the Austrian Forest Inventory). [online] Available at: http://bfw.ac.at/rz/wi.home [Accessed 15 February 2015]Google Scholar
Bitterlich, W. (1948). Die Winkelzählprobe. Allgemeine Forst- und Holzwirtschaftliche Zeitung, 59, pp. 45.Google Scholar
Bitterlich, W. (1952). Die Winkelzählprobe. Forstwissenschaftliches Centralblatt, 71, pp. 215225.CrossRefGoogle Scholar
Cambia, M., Certini, G., Neri, F. and Marchi, E. (2015). The impact of heavy traffic on forest soils: a review. Forest Ecology and Management, 338, pp. 124138.CrossRefGoogle Scholar
CEC (1992). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. [online] Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML [Accessed 15 February 2015]Google Scholar
CEC (2009). Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. [online] Available at: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0147 [Accessed 15 February 2015]Google Scholar
CEC (2010). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. [online] Available at: http://ec.europa.eu/energy/renewables/action_plan_en.htm [Accessed 15 February 2015]Google Scholar
De Vries, W., Posch, M., Reinds, G. J. and Kämäri, J. (1993). Critical Loads and Their Exceedance on Forest Soils in Europe. Report 58 (revised version). Wageningen, NL: DLO Winand Staring Centre.Google Scholar
De Vries, W., Reinds, G. J. and Posch, M. (1994). Assessment of critical loads and their exceedances on European forests using a one-layer steady-state model. Water, Air and Soil Pollution, 72, pp. 357394.CrossRefGoogle Scholar
Eckmüllner, O. and Schedl, P. (2009): Neue Ausformung in marktkonforme Sortimente. BFW-Praxisinformation, 18, pp. 89.Google Scholar
Eckmüllner, O., Schedl, P. and Sterba, H. (2007). Neue Schaftkurven für die Hauptbaumarten Österreichs und deren Ausformung in marktkonforme Sortimente. Austrian Journal of Forest Science, 124, pp. 215236.Google Scholar
Egnell, G. and Valinger, E. (2003). Survival, growth, and growth allocation of planted Scots pine trees after different levels of biomass removal in clear felling. Forest Ecology and Management, 177, pp. 6574.CrossRefGoogle Scholar
Eitzinger, J., Haberl, H., Amon, B. et al. (2014). Land- und Forstwirtschaft, Wasser, Ökosysteme und Biodiversität. Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Austrian Panel on Climate Change (APCC). Vienna: Austrian Academy of Sciences, pp. 771856.Google Scholar
Englisch, M. and Reiter, R. (2009). Standörtliche Nährstoff-Nachhaltigkeit der Biomassenutzung. BFW Praxisinformation, 18, pp. 1315.Google Scholar
Erni, V., Lemm, R., Frutig, F., Breitenstein, M., Riechsteiner, D., Oswald, K. and Thees, O. (2003). HeProMo – Produktivitätsmodelle für Holzerntearbeiten. Windows-Software. Version 1.xx. Birmensdorf, Eidg. Forschungsanstalt WSL.Google Scholar
European Union (2015). Eurostat statistical books. Energy balance sheets edition 2015. doi: 10.2785/388553. [Accessed 31 August 2015]CrossRefGoogle Scholar
FBVA (ed.) (1992). Österreichische Waldboden-Zustandsinventur, Ergebnisse. Mitt. FBVA, 168.Google Scholar
Fernholz, K., Bratkovich, S., Bowyer, J. and Lindburg, A. (2009). Energy from Woody Biomass: A Review of Harvesting Guidelines and a Discussion of Related Challenges. Minneapolis: Dovetail Partners.Google Scholar
FHP (Forst Holz Papier) (1996). Holzernte im Schleppergelände 1.3: ÖBf-Schleppertabelle Nadelholz. Vienna: FHP.Google Scholar
ForstG (1975). (= Forstgesetz 1975) BGBl. Nr. 440/1975 as amended on 9.9.2015. [online] Available at: www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen& Gesetzesnummer=10010371 [Accessed 9 September 2015]Google Scholar
Fürst, A. (2009). Austrian Bioindicator Grid. [online] Available at: http://bfw.ac.at/rz/bfwcms.web?dok=2824 [Accessed 15 February 2015]Google Scholar
Fürst, A. and Kristöfel, F. (2012). Level II online. [online] Available at: http://bfw.ac.at/rz/bfwcms.web?dok=2824 [Accessed 15 February 2015]Google Scholar
Glatzel, G. (1991). The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems. Fertilizer Research, 27, pp. 18.CrossRefGoogle Scholar
Gschwantner, T., Gabler, K. and Schadauer, K. (2010). Austria. In: Tomppo, E. et al. (eds) National Forest Inventories. Dordrecht: Springer Science Business Media B.V., pp. 5771.Google Scholar
Helmisaari, H.-S., Hanssen, K. H., Jacobson, S., Kukkola, M., Luiro, J., Saarsalmi, A., Tamminen, P. and Tveite, B. (2011). Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. Forest Ecology and Management, 261, pp. 19191927.CrossRefGoogle Scholar
Horn, R., Vossbrink, J. and Becker, S. (2004). Modern forestry vehicles and their impacts on soil physical properties. Soil and Tillage Research, 79, pp. 207219.CrossRefGoogle Scholar
Indinger, A., Leutgöb, K., Lutter, E. et al. (2006). Vorstudie für einen nationalen Biomasseaktionsplan für Österreich. Vienna: Austrian Energy Agency.Google Scholar
ISO, 1994. ISO 11260. Soil Quality – Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. Geneva: International Organization for Standardization.Google Scholar
ISO, 1995. ISO 11466. Soil Quality – Extraction of Trace Elements Soluble in Aqua Regia. Geneva: International Organization for Standardization.Google Scholar
ISO, 1998. ISO 13878. Soil Quality – Determination of Total Nitrogen Content by Dry Combustion (‘Elemental Analysis’). Geneva: International Organization for Standardization.Google Scholar
Jacke, H. (2004). Holzernte im Hochlohnland. Forst und Holz, 59, pp. 6974.Google Scholar
Jacobson, S., Kukkola, M., Mälkönen, E., Tveite, B. and Möller, G. (1996). Growth response of coniferous stands to whole-tree harvesting in early thinning. Scandinavian Journal of Forest Research, 11, pp. 5059.CrossRefGoogle Scholar
Kaarakka, L., Tamminen, P., Saarsalmi, A., Kukkola, M., Helmisaari, H.-S. and Burton, A. J. (2014). Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. Forest Ecology and Management, 313, pp. 180187.CrossRefGoogle Scholar
Katzensteiner, K. (2011). Nährstoffbilanzmodelle und forstliche Standortskarten als Basis für eine nachhaltige Biomasseproduktion (Combining nutrient balance models and site maps as a basis for sustaining forest biomass production). In: Gerzabek, M. I. and Glößl, J. (eds) Präsentation von geförderten Projekten der Stiftung ‘120 Jahre Universität für Bodenkultur’. Elektronische Publikation zur Vortragsveranstaltung der Stiftung am 25.10.2011. [online] Available at: www.boku.ac.at/fileadmin/_/H13/Stiftungen_und_Preise/Elektronische_Publikation_120_Jahre_BOKU.pdf [Accessed 15 February 2015]Google Scholar
Katzensteiner, K., Englisch, M. and Nemestothy, K. P. (2013). Impacts of increased biomass utilization on soil sustainability in Austria. In: Helmisaari, H-S. and Vanguelova, E. (eds) Proceedings of the Workshop W6.1 Forestbioenergy and Soil Sustainability at EUROSOIL Congress 2nd July to 6th July 2012, Bari, Italy. [online] Available at: www.helsinki.fi/forestsciences/eurosoil/index.html and www.oecd.org/tad/crp/ [Accessed 15 February 2015]Google Scholar
Kindermann, G. (2010). A climate sensitive refining on the basal area increment model in PROGNAUS. Austrian Journal of Forest Science, 127, pp. 147178.Google Scholar
Kooperationsplattform Forst Holz Papier (2006). Österreichische Holzhandelsusancen 2006 (= Austrian Standard Rules for Timber Classification). Vienna: Service-GmbH der Wirtschaftskammer Österreich.Google Scholar
Krapfenbauer, A. (1983). Von der Streunutzung zur Ganzbaumnutzung. Austrian Journal of Forest Science, 100, pp. 143174.Google Scholar
Krapfenbauer, A. and Buchleitner, E. (1981). Holzernte, Biomassen- und Nährstoffaustrag, Nährstoffbilanz eines Fichtenbestandes. Austrian Journal of Forest Science, 98, pp. 193223.Google Scholar
Kreutzer, K. (1979). Ökologische Fragen zur Vollbaumernte. Forstwissenschaftliches Centralblatt, 98, pp. 298308.CrossRefGoogle Scholar
Ledermann, T. (2002). Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Austrian Journal of Forest Science, 119, pp. 4077.Google Scholar
Ledermann, T. (2006). Description of PROGNAUS for Windows 2.2. In: Hasenauer, H. (ed.) Sustainable Forest Management – Growth Models for Europe. Berlin, Heidelberg, New York: Springer-Verlag, pp. 7178.CrossRefGoogle Scholar
Ledermann, T. and Neumann, M. (2009). Prognose des Waldwachstums und des Nutzungspotentials. BFW Praxisinformation, 18, pp. 57.Google Scholar
Lexer, M. J., Honninger, K. and Englisch, M. (1999): Estimating chemical soil parameters for sample plots of the Austrian Forest Inventory. Forstwissenschaftliches Centralblatt, 118, pp. 212227.CrossRefGoogle Scholar
MCPFE, EC DG Agriculture and Rural Development and UNECE/FAO (2010). Good Practice Guidance on the Sustainable Mobilisation of Wood in Europe. Brussels: EC DG Agriculture and Rural Development.Google Scholar
Meiwes, K. J., Asche, N., Block, J., Kallweit, R., Raben, G. and von Wilpert, K. (2008). Potenziale und Restriktionen der Biomassenutzung im Wald. Allgemeine Forstzeitung, 63, pp. 598604.Google Scholar
Monserud, R. A. and Sterba, H. (1996). A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. Forest Ecology and Management, 80, pp. 5780.CrossRefGoogle Scholar
Monserud, R. A. and Sterba, H. (1999). Modeling individual tree mortality for Austrian forest species. Forest Ecology and Management, 113, pp. 109123.CrossRefGoogle Scholar
Mutsch, F., Leitgeb, E., Hacker, R., Amann, C., Aust, G., Herzberger, E., Pock, H. and Reiter, R. (2013). Projekt BioSoil – Europäisches Waldboden-Monitoring (2006/07) Datenband Österreich Band I: Methodik, Standort- und Bodenbeschreibung, Bodendaten aus Burgenland, Kärnten, Niederösterreich und Oberösterreich Band II: Bodendaten aus Salzburg, Steiermark, Tirol und Vorarlberg, Deskriptive Statistik. BFW-Berichte, 145.Google Scholar
Nachtmann, G. (2006). Height increment models for individual trees in Austria depending on site and competition. Austrian Journal of Forest Science, 123, pp. 199222.Google Scholar
Nemestothy, K. P. (2012). Die Bedeutung von Holz als erneuerbarer Energieträger. BFW Praxisinformation, 28, pp. 58.Google Scholar
Nord-Larsen, T. (2002). Stand and site productivity response following whole tree harvesting in early thinnings of Norway spruce (Picea abies (L.) Karst.). Biomass and Bioenergy, 23, pp. 112.CrossRefGoogle Scholar
Olsson, M., Rosén, K. and Melkerud, P.-A. (1993). Regional modelling of base cation losses from Swedish forest soils due to whole-tree harvesting. Applied Geochemistry, 8, pp. 189194.CrossRefGoogle Scholar
PEFC (Programme for the Endorsement of Forest Certification) (2014). PEFC Leitlinien für die nachhaltige Waldbewirtschaftung in Österreich (Appendix 2). Version 2014. [online] Available at: www.pefc.at/content/downloadcenter/technische_dokumente.php [Accessed 31 August 2015]Google Scholar
Rehfuess, K. E. (1990). Waldböden. Entwicklung, Eigenschaften und Nutzung. Pareys Studientexte 29. Hamburg and Berlin: Verlag Paul Parey.Google Scholar
Schadauer, K. (2009). Naturschutz – Wie können Nutzungseinschränkungen ermittelt werden? BFW Praxisinformation, 18, pp. 1819.Google Scholar
Schneider, J. (1998). Kartierung der nassen Deposition in Österreich. Wien: Umweltbundesamt.Google Scholar
Schubert, G. (ed.) (2003). Hydrogeologische Karte der Republik Österreich im Maßstab 1:500.000. Wien: Geologische Bundesanstalt.Google Scholar
Siemion, J., Burns, D. A., Murdoch, P. S. and Germain, R. H. (2011). The relation of harvesting intensity to changes in soil, soil water, and stream chemistry in a northern hardwood forest, Catskill Mountains, USA. Forest Ecology and Management, 261, pp. 15101519.CrossRefGoogle Scholar
Stampfer, K., Limbeck-Lilienau, B., Kanzian, C. and Viertler, K. (2003). Baumverfahren im Seilgelände -Verfahrensbeispiele: Wanderfalke mit Prozessor Woody 50, Syncrofalke mit Prozessor Wolf 50 B. Wien: Eigenverlag, Kooperationsabkommen Forst-Platte-Papier.Google Scholar
Sterba, H., Brunner, H., Gugganig, H. and Hauser, B. (2003). Stammzahlreduktion ja, aber nicht als Ganzbaumnutzung. Österreichische Forstzeitung, 10, pp. 1819.Google Scholar
Stutter, M., Langan, S. and Cresser, M. (2003). Weathering and atmospheric deposition signatures of base cations in upland soils of NE Scotland: their application to critical load assessment. Geoderma, 116, pp. 301324.CrossRefGoogle Scholar
Sverdrup, H. (1990). The Kinetics of Base Cation Release due to Chemical Weathering. Lund: Lund University Press.Google Scholar
Van der Salm, C., Köhlenberg, L. and De Vries, W. (1998). Assessment of weathering rates in Dutch loess and river-clay soils at pH 3.5, using laboratory experiments. Geoderma, 85, pp. 4162.CrossRefGoogle Scholar
Verkerk, P. J., Anttila, P., Eggers, J., Lindner, M. and Asikainen, A. (2011). The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology and Management, 261, pp. 20072015.CrossRefGoogle Scholar
Von Wilpert, K. (2006). Waldbauliche Steuerung des Stoffhaushalts von Waldökosystemen. FVA-Einblick, 10, pp. 24.Google Scholar
Weinfurter, P. (2013). Waldbau in Österreich auf ökologischer Grundlage. Eine Orientierungshilfe für die Praxis. Wien: Landwirtschaftskammer Österreich, Ländliches Fortbildungsinstitut Österreich.Google Scholar
Weiss, P. (ed.) (2006). Austrian Biomass Functions. Austrian Journal of Forest Science, 123, pp. 1102.Google Scholar

References

AFOCEL (1982). Culture de biomasse ligneuse – taillis à courte rotation. Nangis: AFOCEL (Association Forêt Cellulose).Google Scholar
Anon. (2000). Norme tehnice privind alegerea şi aplicarea tratamentelor 3. București: Ministerul Apelor, Pădurilor şi Protecţiei Mediului.Google Scholar
Anon. (2006). Indicators for the Sustainable Management of French Forests 2005. Nogent-sur-Vernisson: Inventaire Forestier National.Google Scholar
Anon. (2011). Ordin nr. 1540 din 3 iunie 2011 pentru aprobarea Instrucţiunilor privind termenele, modalităţile şi perioadele de colectare, scoatere şi transport al materialului lemnos. București: Monitorul Oficial, no. 430/20.06.2011.Google Scholar
Aubry, S. and Druelle, P. (1987). Histoire du taillis-sous-futaie ou La résurection d’un ‘mort qui reste à tuer’. Nogent-sur-Vernisson: ENITEF (Ecole Nationale des Ingénieurs des Travaux des Eaux et Forêts).Google Scholar
Bacchetta, R. (1984). Le châtaignier à bois et la mise en valeur des taillis de châtaignier. Forêt-entreprise, 22, pp. 1223.Google Scholar
Bagneris, G. (1878). Éléments de Sylviculture. 2ème édition. Nancy: Imprimerie Berger-Levrault et Cie.Google Scholar
Bastien, Y. (1999). Les modes de traitement des forêts. Nancy: Ecole Nationale du Génie Rural, des Eaux et des Forêts.Google Scholar
Berg, Å. (2002). Breeding birds in short-rotation coppices on farmland in central Sweden the importance of Salix height and adjacent habitats. Agriculture, Ecosystems & Environment, 90, pp. 265276.CrossRefGoogle Scholar
Bewa, H. and Bouvot-Mauduit, S. (1999). Short rotation crops in France. In: Christersson, L. and Ledin, S. (eds) Short Rotation Crops for Energy Purposes. Proceedings of the First Meeting of IEA, Bioenergy, Task 17, Uppsala, Sweden, 4–6 June 1998. Uppsala: Department of Short Rotation Forestry, pp. 3136.Google Scholar
Boppe, L. (1889). Traité de Sylviculture. Paris and Nancy: Berger-Levrault et Cie, Libraires-Éditeurs.CrossRefGoogle Scholar
Boudru, M. (1989). Forêt et sylviculture: traitement des forêts. Gembloux: Les Presses Agronomiques de Gembloux.Google Scholar
Bourgeois, C. (1991). Le châtaignier de la montagne sacrée. Forêt-entreprise, 4, p. 40.Google Scholar
Broilliard, Ch. (1881). Le traitement des bois en France à l’usage des particuliers. Paris and Nancy: Berger-Levrault et Cie, Libraires-Éditeurs.Google Scholar
Bruckman, V. J., Yan, S., Hochbichler, E. and Glatzel, G. (2011). Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. Forest Ecology and Management, 262, pp. 18531862.CrossRefGoogle Scholar
Bruckman, V. J., Terada, T., Fukuda, K., Yamamoto, H. and Hochbichler, E. (2016). Overmature periurban Quercus-Carpinus coppice forests in Austria and Japan: a comparison of carbon stocks, stand characteristics and conversion to high forest. European Journal of Forest Research (online first). doi:10.1007/s10342-016-0979-2.CrossRefGoogle Scholar
Buckley, G. P. (1992). Ecology and Management of Coppice Woodlands. London and New York: Chapman & Hall.CrossRefGoogle Scholar
Buckley, P. and Mills, J. (2015). Coppice silviculture: from the Mesolithic to the 21st century. In: Kirby, K. J. and Watkins, C. (eds) Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes. Wallingford and Boston: The Centre for Agriculture and Bioscience International, pp. 7792.CrossRefGoogle Scholar
Cannell, M. G. R. (2004). Short rotation forestry for biomass production. In: Burley, J., Evans, J. and Youngquist, Y. A. (eds) Encyclopedia of Forest Sciences, vol. 2. Amsterdam, Boston, Heidelberg: Elsevier and Academic Press, pp. 872877.CrossRefGoogle Scholar
Carbonnière, T., Debenne, J-N., Merzeau, D. and Rault, M. (2007). Le robinier en Aquitaine. Forêt-entreprise, 177, pp. 1317.Google Scholar
Chivulescu, T. (1886). Catehismul silvicultorului. Noţiuni de silvicultură (generalităţi). București: Tipografia proprietari F. Göbl şi Fii.Google Scholar
Christersson, L. (1998). Theoretical background to and practical utilization of short-rotation and energy forestry. In: Christersson, L. and Ledin, S. (eds) IEA, Bioenergy Task 17 Short Rotation Crops for Energy Purposes. Proceedings of the First Meeting of IEA, Bioenergy Task 17, Uppsala, Sweden, 4–6 June 1998. Rapport 64. Uppsala: Swedish University of Agricultural Sciences, pp. 519.Google Scholar
Cochet, P. (1971). Étude et culture de la forêt. 3ème édition. Nancy: Ecole Nationale du Génie Rural, des Eaux et des Forêts.Google Scholar
Coppini, M. and Hermanin, L. (2007). Restoration of selective beech coppices: a case study in the Appenines (Italy). Forest Ecology and Management, 249, pp. 1827.CrossRefGoogle Scholar
Cotta, H. (1841). Principes fundamentaux de la science forestière. 2ème édition corrigée. Paris: Bouchard-Huzard and Nancy: George-Grimblot, Thomas et Raybois.Google Scholar
CREFF (Cost Reduction and Efficiency Improvement of Short Rotation Coppice) (2012). Technical Guide. Short rotation coppice. [online] Available at: www.creff.eu [Accessed 10 July 2013]Google Scholar
Crowther, R. E. and Evans, J. (1984). Coppice. Forestry Commission Leaflet 83. London: Her Majesty’s Stationery Office (HMSO).Google Scholar
Dawson, W. M. (1991). Short rotation coppice willow: the Northern Ireland experience. In: Aldhous, J. R. (ed.) Wood for Energy: The Implications for Harvesting, Utilisation and Marketing. Edinburgh: Institute of Chartered Foresters, pp. 235247.Google Scholar
Dengler, A. (1935). Waldbau auf ökologischer Grundlage. Ein Lehr- und Handbuch. Berlin: Verlag von Julius Springer.CrossRefGoogle Scholar
Diaci, J., Govedar, Z., Krstić, M. and Motta, R. (2012). Importance and perspectives of silviculture for the science and practice of forestry. In: Govedar, Z. and Dukić, V. (eds) Proceedings, International Conference ‘Forestry Science and Practice for the Purpose of Sustainable Development of Forestry – 20 Years of the Faculty of Forestry in Banja Luka’. Banja Luka, 1–4 November 2012, pp. 2340.Google Scholar
Dimitriou, I. (2009). Short rotation coppice with willow for energy and phytoremediation in Sweden. In: Proceedings, International Conference ‘Forestry in Achieving Millenium Goals’. Novi Sad, pp. 8792.Google Scholar
Drăcea, M. (1923). Silvicultură. Bucharest: Şcoala Politehnică.Google Scholar
Drăcea, M. D. (1942). Curs de Silvicultură. Vol. I. Regime şi tratamente. Bucharest: Editura Politehnicei.Google Scholar
Dubourdieu, J. (1997). Manuel d’aménagement forestier. Technique & Documentation, Paris: Lavoisier.Google Scholar
Evans, J. (1992). Coppice forestry – an overview. In: Buckley, G. P. (ed.) Ecology and Management of Coppice Woodlands. New York, Tokyo, Melbourne, Madras: Chapman & Hall, pp. 1827.CrossRefGoogle Scholar
Evans, J. and Turnbull, J. (2004). Plantation Forestry in the Tropics. 3rd Edition. Oxford: Oxford University Press.CrossRefGoogle Scholar
Evelyn, J. (1664). Silva, or a Discourse of Forest Trees and the Propagation of Timber in His Majesty’s Dominions. Ed. Guy de la Bédoyère (Internet Edition, 1995).Google Scholar
Fankhauser, F. (1921). Guide pratique de Sylviculture. Troisième édition. Lausanne and Geneva: Librairie Payot et Cie.Google Scholar
Ford-Robertson, J. B., Watters, M. P. and Mitchell, C. P. (1991). Short rotation coppice willows for energy. In: Aldhous, J. R. (ed.) Wood for Energy: The Implications for Harvesting, Utilisation and Marketing. Edinburgh: Institute of Chartered Foresters, pp. 218234.Google Scholar
FOREST EUROPE (2015). State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe. Madrid: FOREST EUROPE Liaison Unit Madrid.Google Scholar
Frank, J. (1937). Der Hochleithenwald, Einführung zur Wälderschau des NÖ Forstvereins in das Rudolf Graf von Abensperg – Traun´sche Forstrevier Wolkersdorf. St. Pölten: Selbstverlag NÖ Forstverein.Google Scholar
Garfitt, J. E. (1995). Natural Management of Woods: Continuous Cover Forestry. New York, Chichester, Toronto, Brisbane, Singapore: Research Studies Ltd. Taunton, England: John Wiley & Sons.Google Scholar
Guidi, W., Pitre, F. E. and Labreque, M. (2013). Short-rotation coppice of willows for the production of biomass in eastern Canada. In: Matovic, M. D. (ed.) Biomass Now – Sustainable Growth and Use. Rijeka: InTech. doi: 10.5772/2583, pp. 421448.Google Scholar
Hamilton, L. (2000). Managing Coppice in Eucalypt Plantations. Agriculture Notes no. 0814. Kingston: State of Victoria, Department of Primary Industries.Google Scholar
Hamm, J. (1900). Leitsätze für den Mittelwaldbetrieb. Forstwissenschaftliches Centralblatt, 8, pp. 392404.CrossRefGoogle Scholar
Harmer, R. (1995). Management of Coppice Stools. Research Information Note 259. Wrecclesham, Alice Holt Lodge: The Forestry Authority Research Division.Google Scholar
Harmer, R. (2004). Coppice silviculture practiced in temperate regions. In: Burley, J., Evans, J. and Youngquist, Y. A. (eds) Encyclopedia of Forest Sciences, vol. 3. Amsterdam, Boston, Heidelberg: Elsevier and Academic Press, pp. 10451052.CrossRefGoogle Scholar
Harmer, R., and Howe, J. (2003). The Silviculture and Management of Coppice Woodlands. Edinburgh: Forestry Commission.Google Scholar
Hart, C. (1994). Practical Forestry for the Agent and Surveyor. Stroud: Alan Sutton Publishing.Google Scholar
Hartig, G. L. (1805). Instruction sur la culture du bois à l’usage des forestiers. Paris: L’Imprimerie de C.F. Patris.Google Scholar
Hartig, G. (1877). Lehrbuch für Förster. II Band. Stuttgart: J.G. Cott’sche Buchhandlung.Google Scholar
Hinton-Jones, M. and Valentine, J. (2008). Variety and altitude effects on yield and other characters of SRC willow in Wales. Aspects of Applied Biology, 90, pp. 6773.Google Scholar
Hochbichler, E. (1993). Methods of oak silviculture in Austria. Annales des Sciences Forestières, 50, pp. 591593.CrossRefGoogle Scholar
Hochbichler, E. (1997). Waldbaustrategien und betriebswirtschaftliche Aspekte für die Waldbewirtschaftung im sommerwarmen Osten Österreichs. In: Müller, F. (ed.) Waldbau an der unteren Waldgrenze. FBVA – Berichte 95, pp. 105110.Google Scholar
Hochbichler, E. (2008). Fallstudien zur Struktur, Produktion und Bewirtschaftung von Mittelwäldern im Osten Österreichs (Weinviertel). Forstliche Schriftenreihe, 20. Vienna: Österr. Gesellschaft für Waldökosystemforschung und experimentelle Baumforschung an der Universität für Bodenkultur.Google Scholar
Hochbichler, E. (2009). Coppice forestry in Austria. In: Marusak, R., Kratochvilova, Z., Trnkova, E. and Hajnala, M. (eds) Forest, Wildlife and Wood Sciences for Society Development – Conference Proceedings. Prague: Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, pp. 1935.Google Scholar
Hochbichler, E., Bellos, N., Diwold, G., Hofmann, H., Zeitlhofer, C. and Liebhard, P. (2011). Produktionsmodelle und Bewirtschaftung – Biomassefunktionen für Pappel und Weide zur Ermittlung von Ertragsleitung und Produktivität von Kurzumtriebsflächen [16. Österreichischer Biomasse – Tag – Kurzumtriebstagung, Wieselburg, 16.-18.11.2011]. In: Schuster, K. (ed.) Innovative Energiepflanzen – Erzeugung und Verwendung von Kurzumtriebsholz. Wieselburg: NÖ-Landeslandwirtschaftskammer, BLT Francisco Josephinum.Google Scholar
Huffel, G. (1907). Economie forestière. Tome troisième. Paris: Lucien Laveur, Éditeur.Google Scholar
IUFRO (2005). Multilingual Pocket Glossary of Forest Terms and Definitions. IUFRO SilvaVoc Terminology Project. Vienna: IUFRO (International Union of Forest Research Organizations).Google Scholar
James, N. D. G. (1991). An Historical Dictionary of Forestry and Woodland Terms. Oxford, UK and Cambridge, MA: Basil Blackwell.Google Scholar
Jansen, P. and Kuiper, L. (2004). Double green energy from traditional coppice stands in the Netherlands. Biomass and Bioenergy, 26, pp. 401402.CrossRefGoogle Scholar
Johnson, J. D. (1999). Hybrid poplar production in the Pacific Northwest and the United States. In: Proceedings, Joint Meeting on Short Rotation Forestry, IUFRO and International Energy Agency (IEA), University of Philippines Los Baños College, Laguna, Philippines, 3–7 March 1999, pp. 103108.Google Scholar
Jolyet, A. (1916). Traité pratique de Sylviculture. 2nd Edition. Paris: Librairie J.-B. Baillière et Fils.Google Scholar
Kilian, W., Müller, F. and Starlinger, F. (1994). Die forstlichen Wuchsgebiete Österreichs – Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. FBVA Berichte 82, Forstliche Bundesversuchsanstalt, Vienna.Google Scholar
Kneifl, M., Kadavy, J. and Knott, R. (2011). Gross value yield potential of coppice, high forest and model conversion of high forest to coppice on best sites. Journal of Forest Science, 57, pp. 536546.CrossRefGoogle Scholar
Krausmann, F. (2013). A city and its hinterland: Vienna’s energy metabolism 1800–2006. In: Singh, S. J., Haberl, H., Chertow, M., Mirtl, M. and Schmid, M. (eds.) Long Term Socio-Ecological Research: Studies in Society-Nature Interactions Across Spatial and Temporal Scales. New York: Springer, pp. 247268.CrossRefGoogle Scholar
Krissl, W. and Müller, F. (1989). Waldbauliche Bewirtschaftungsrichtlinien für das Eichenmischwaldgebiet Österreichs. FBVA-Berichte, 40.Google Scholar
Kuusela, K. (1994). Forest Resources in Europe. EFI Research Report 1, Cambridge: Cambridge University Press.Google Scholar
Lafouge, R. (1964). Les taillis-sous-futaie et ses problèmes. Ameliorations et transformations. Nancy: Ecole Nationale des Eaux et Forêts.Google Scholar
Lorentz, B. and Parade, A. (1867). Cours élémentaire de culture des bois. 5th Edition. Paris: Mme Ve Bouchard-Huzard and Nancy: Nicolas Grosjean.Google Scholar
Machar, I. (2009). Coppice-with-standards in floodplain forests – a new subject for nature protection. Journal of Forest Science, 55, pp. 306311.CrossRefGoogle Scholar
Maryan, P. S. (1991). The potential for short rotation fuel wood crops. In: Aldhous, J. R. (ed.) Wood for Energy: The Implications for Harvesting, Utilisation and Marketing. Edinburgh: Institute of Chartered Foresters, pp. 178182.Google Scholar
Mathey, A. (1929). Traité théorique & pratique des taillis. Le Mans: Imprimerie M. Vilaire.Google Scholar
Matthews, J. D. (1991). Silvicultural Systems. Oxford: Clarendon Press.CrossRefGoogle Scholar
Matula, R., Svátek, M., Kůrová, J., Úradniček, L., Kadavý, J. and Kneifl., M. (2012). The sprouting ability of the main tree species in Central European coppices: implications for coppice restoration. European Journal of Forest Research, 131, pp. 15011511.CrossRefGoogle Scholar
Muel, E. (1884). Notions de Sylviculture. Paris: Ducher et Cie, Editeurs.Google Scholar
Nagaike, T., Yoshida, T., Miguchi, H., Kamitani, T. and Nakashizuka, T. (2005). Rehabilitation for species enrichment in abandoned coppice forests in Japan. In: Stanturf, J. A. and Madsen, P. (eds) Restoration of Boreal and Temperate Forests. Boca Raton, FL, London, New York, Washington, DC: CRC Press, pp. 371381.Google Scholar
Nyland, R. D. (1996). Silviculture: Concepts and Applications. New York: McGraw-Hill.Google Scholar
Nyland, R. D. (2002). Silviculture: Concepts and Applications. 2nd Edition. New York: McGraw-Hill.Google Scholar
Paris, P., Todaro, L., Saccheti, R., Mugnozza, G. S., Pisanelli, A. and Cannata, P. (2006). La robinia per le piantagioni da biomasa in zone marginali. Alberi e Territorio, 10/11, pp. 2227.Google Scholar
Peterken, G. F. (2001). Natural Woodland. Ecology and Conservation in Northern Temperate Regions. New York: Cambridge University Press.Google Scholar
Pliny the Elder (2002). Naturalis Historia. Enciclopedia cunoştinţelor din antichitate. Vol. III Botanica. Iași: Editura Polirom.Google Scholar
Pyttel, P. L., Köhn, M. and Bauhus, J. (2015). Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests. Forest Ecology and Management, 349, pp. 94105.CrossRefGoogle Scholar
Rădulescu, A. and Vlad, I. (1955). Regime şi tratamente. In: Manualul Inginerului Forestier 80 – Cultura pădurilor şi Bazele naturalistice. Bucharest: Editura Tehnică, pp. 471511.Google Scholar
Rédei, K., Veperdi, I., Osváth-Bujtás, Z., Bagaméry, G. and Barna, T. (2007). La gestion du robinier en Hongrie. Forêt-entreprise, 177, pp. 4449.Google Scholar
Rietbergen, S. (2001). The history and impact of forest management. In: Evans, J. (ed.) The Forests Handbook. Vol. 2. Applying Forest Science for Sustainable Management. Oxford, London: Blackwell Science, pp. 125.Google Scholar
Rollinson, T. J. D. and Evans, J. (1987). The Yield of Sweet Chestnut Coppice. Forestry Commission Bulletin, 64. London: HMSO.Google Scholar
Savill, P. (2013). The Silviculture of Trees used in British Forestry. 2nd Edition. Wallingford and Boston: CAB International.CrossRefGoogle Scholar
Savill, P. S. (1993). Coppice and Coppice-with-Standards. Oxford: Oxford Forestry Institute.Google Scholar
Savill, P. S. and Evans, J. (1986). Plantation Silviculture in Temperate Regions. Oxford: Clarendon Press.Google Scholar
Schöfberger, H. (2006). Waldbauliche Untersuchungenim Mittelwald unter Berücksichtigung der energetischen Verwertung von Biomasse. Vienna: Diplomarbeit Universität für Bodenkultur. (Unpublished.)Google Scholar
Schwappach, A. (1904). Forestry. London: The Temple Primers.CrossRefGoogle Scholar
Schwappach, A., Eckstein, K., Herrmann, E. and Borgmann, W. (1914). Manual silvic. Partea a V-a Cultura pădurilor. Bucharest: Alfred Baer.Google Scholar
Schweier, J. and Becker, G. (2012). Harvesting of short-rotation coppice – harvesting trials with a cut and storage system in Germany. Silva Fennica, 46, pp. 287299.CrossRefGoogle Scholar
Sjölund, M. J. and Jump, A. S. (2013). The benefits and hazards of exploiting vegetative regeneration for forest conservation management in a warming world. Forestry, 86, pp. 503513.CrossRefGoogle Scholar
Spinelli, R., Ebone, A. and Gianella, M. (2014). Biomass production from traditional coppice management in northern Italy. Biomass and Bioenergy, 62, pp. 6873.CrossRefGoogle Scholar
Stähr, F. (2013). Renaissance and global utilisation of the coppice system – Is the historical silvicultural system ‘coppice forest’ topical again? [online] Available at: www.hnee.de/_obj/FB563809-E403-4728-84C1-D15C000385A9/outline/StaehrVortrag_EKonferenz_englisch_Konferenzband.pdf [Accessed 10 September 2013]Google Scholar
Stajic, B., Zlatanov, T., Velichkov, I., Dubravac, T. and Trajkov, P. (2009). Past and recent coppice forest management in some regions of south eastern Europe. Silva Balcanica, 10, pp. 919.Google Scholar
Starr, C. (2008). Woodland Management. A Practical Guide. Ramsbury: The Crowood Press.Google Scholar
Stolarski, M. J., Szczukowski, S., Tworkowski, J., Wróblewska, H. and Krzyżaniak, M. (2011). Short rotation willow coppice biomass as an industrial and energy feedstock. Industrial Crops and Products, 1, pp. 217223.CrossRefGoogle Scholar
Terada, T., Yokohari, M., Bolthouse, J. and Tanaka, N. (2010). Refueling Satoyama woodland restoration in Japan: enhancing restoration practice and experiences through woodfuel utilization. Nature and Culture, 5, pp. 251276.CrossRefGoogle Scholar
Tiefenbacher, H. (1996). Waldbau – Strategie angesichts eines ‘Eichensterbens’. Centralblatt für das gesamte Forstwesen, 113, pp. 8396.Google Scholar
Troup, R. S. (1928). Silvicultural Systems. Oxford: Clarendon Press.Google Scholar
Troup, R. S. and Jones, E. W. (1952). Silvicultural Systems. 2nd Edition. Oxford: Clarendon Press.Google Scholar
Tubby, I. and Armstrong, A. (2002). Establishment and Management of Short Rotation Coppice. Forestry Commisison Practice Note no. 7. Edinburgh: Forestry Commission.Google Scholar
UN ECE-FAO (United Nations Economic Commission for Europe/Food and Agriculture Organization of the United Nations) (2000). Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand. Main Report. Geneva Timber and Forest Study Papers, 17.Google Scholar
Vacik, H., Zlatanov, T., Trajkov, P. and Dekanic, S. (2009). Role of coppice forest in maintaining forest biodiversity. Silva Balcanica, 10, pp. 3545.Google Scholar
Verwijst, T., Lundkvist, A., Edelfeldt, S. and Albertsson, J. (2013). Development of sustainable willow short rotation forestry in northern Europe. In: Matovic, M. D. (ed.) Biomass Now – Sustainable Growth and Use. Rijeka: InTech. doi: 10.5772/2583, pp. 479502.Google Scholar
Zlatanov, T. and Lexer, M. J. (2009). Coppice forestry in south-eastern Europe: problems and future prospects. Silva Balcanica, 10, pp. 58.Google Scholar

References

AIM (2011). National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry. Selangor: Agensi Inovasi Malaysia (AIM).Google Scholar
AIM (2013). National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Biomass Industry. Selangor: Agensi Inovasi Malaysia (AIM).Google Scholar
Arpah, A. R. (2013). Solid waste management in Malaysia: a way forward. Paper presented at the International Solid Waste Association World Congress, Vienna. Austria: Vienna, October 2013.Google Scholar
Chan, C. W. and Cho, M. C. (2012). Country report: Malaysia. Paper presented at the Asia Pacific Economic Cooperation (APEC) Workshop on Food Security, Tokyo. Japan: Tokyo, 17–19 January 2012.Google Scholar
Chan, K. W. (2009). Biomass production and uses in oil palm industry. In: Singh, G. et al. (eds.) Sustainable Production of Palm Oil: A Malaysian Perspective. Kuala Lumpur: Malaysian Palm Oil Association, pp. 133161.Google Scholar
Chen, S. S., Isnazunita, I., Abdul Nasir, A. and Puvaneswari, R. (2011). Refuse derived fuel – case study of waste as renewable resource. International Journal for Sustainable Innovations, 1, pp. 8186.Google Scholar
Chew, P. S., Kee, K. K. and Goh, K. J. (2009). Cultural practices and their impact. In: Singh, G. et al. (eds.) Sustainable Production of Palm Oil: A Malaysian Perspective. Kuala Lumpur: Malaysian Palm Oil Association, pp. 163198.Google Scholar
Gadde, B., Bonnet, S., Menke, C. and Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157, pp. 15541558.CrossRefGoogle ScholarPubMed
Gan, K. S, Lim, S. C. and Rahim, S. (2013). Forest Products R&D at FRIM: Yesterday and Today. Kepong: Forest Research Institute Malaysia (FRIM).Google Scholar
ITN Source (2009). Malaysian charcoal industry thrives as Japan demand for it rises. [online] Available at: www.itnsource.com/shotlist//RTV/2009/03/09/RTV412009/ [Accessed 2 November 2015].Google Scholar
Kong, S. H., Loh, S. K., Bachmann, R. T., Rahim, S. A. and Salimon, J. (2014). Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 39, pp. 729739.CrossRefGoogle Scholar
LGM (2016). Natural rubber statistics 2016. Lembaga Getah Malaysia (LGM, Malaysian Rubber Board). [online] Available at: www.lgm.gov.my/nrstat/nrstats.pdf [Accessed 15 November 2015].Google Scholar
Mahmudin, S., Wan Asma, I. and Puad, E. (2007). Processing of oil palm lignocellulosic residues. In: Wan Asma, I. et al. (eds.) Turning Oil Palm Residues into Products. FRIM Research Pamphlet, 127, pp 1125.Google Scholar
MBIC (2015). Malaysia Biomass Industries Review 2015/2016. Putrajava: Malaysia Biomass Industries Confederation Putrajava.Google Scholar
MIGHT (2013). Malaysian Biomass Industry Action Plan 2020: Driving SMEs Towards Sustainable Future. Selangor: Malaysian Industry–Government Group for High Technology (MIGHT).Google Scholar
Milbrandt, A. and Overend, R. P. (2008). Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies. Report of the Asia-Pacific Economic Cooperation (APEC) Energy Working Group. Singapore: APEC Secretariat.CrossRefGoogle Scholar
Noguera, D., Rondon, M., Laossi, K. R. et al. (2010). Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 42, pp. 10171027.CrossRefGoogle Scholar
Puad, E., Mahanim, S. and Rafidah, J. (2007). Opportunities and challenges in the charcoal industry in Malaysia and South East Asia. In: Proceedings of the Seminar on Energy from Biomass 2006, Kuala Lumpur: FRIM.Google Scholar
Richards, T. (2015). Profile: Bandar Utama – A history of biochar application in Malaysia. [online] Available at: www.biochar-international.org/profile_Malaysia. [Accessed 2 November 2015].Google Scholar
Rosenani, A. B., Ahmad, S. H, Nurul, A. S., Khairunissa, M. Y., Tan, W. I. and Lee, S. C. K. (2012). Biochar as a soil amendment to improve crop yield, soil health and carbon sequestration for climate change mitigation. In: Wan Rasidah, K. et al. (eds.) Proceedings of the Soil Science Conference of Malaysia 2012. Soil Quality Towards Sustainable Agriculture Production. 10–12 April 2012, Kota Bharu, Kelantan. Kuala Lumpur: Malaysian Society of Soil Science, pp. 514.Google Scholar
SEDA (2015). Statistics and monitoring – CO2 avoidance. [online] Available at: www.seda.gov.my [Accessed 2 November 2015].Google Scholar
Singh, G., Low, D. L., Lee, K. H., Lim, K. C. and Loong, S. G. (2009). Empty fruit bunches as mulch. In: Singh, G. et al. (eds.) Sustainable Production of Palm Oil: A Malaysian Perspective. Kuala Lumpur: Malaysian Palm Oil Association, pp. 301315.Google Scholar
SIRIM (1997). Specification for Oil Palm Empty Fruit Bunch Fibre. Malaysian Standard MS1408:1997. Kuala Lumpur: Institut Piawaian dan Penyelidikan Perindustrian Malaysia (SIRIM).Google Scholar
Smith, J. L., Collins, H. P. and Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 42, pp. 23452347.CrossRefGoogle Scholar
Wan Asma, I., Wan Rasidah, K. and Mohd Nor, M. Y. (2007). Turning Oil Palm Residues into Products. FRIM Reasearch Pamphlet No. 127. Kepong: Forest Research Institute Malaysia (FRIM).Google Scholar
Wan Asma, I., Wan Rasidah, K., Rafidah, J. and Khairul, A. J. (2012). As Good as Wood. Kepong: Forest Research Institute Malaysia (FRIM).Google Scholar
Wan Rasidah, K. and Wan Asma, I. (2007). Oil palm residues as organic mulch and soil conditioner. In: Wan Asma, I. et al. (eds.) Turning Oil Palm Residues into Products. FRIM Research Pamphlet, 127. Kepong: Forest Research Institute Malaysia (FRIM), pp. 99111.Google Scholar
Wu, T. Y., Mohammad, A. W., Jahim, J. M. and Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91, pp. 14671490.CrossRefGoogle ScholarPubMed

References

Ahmad, A., Mirza, S. N. and Nizami, S. M. (2014). Assessment of biomass and carbon stocks in coniferous forest of Dir Kohistan, KPK. Pakistan Journal of Agricultural Sciences, 51, pp. 335340.Google Scholar
Anandarajah, G. and Strachan, N. (2010). Interactions and implications of renewable and climate change policy on UK energy scenarios. Energy Policy, 38, pp. 67246735.CrossRefGoogle Scholar
Beyazıt, M. F. (2004). Türkiye Ekonomisi ve Büyüme Oranının Sürdürülebilirliği (Turkish economy and sustainability of growth rate). Doğuş Üniversitesi Dergisi, 5, pp. 8999.CrossRefGoogle Scholar
Biringer, J. (2003). Forest ecosystems threatened by climate change: promoting long-term forest resilience. In: Hansen, L. J., Biringer, J. L. and Hoffman, J. R. (eds.) Buying Time: A User’s Manual for Building Resistance and Resilience to Climate Change in Natural Systems. WWF Climate Change Program.Google Scholar
Bouyer, O. and Serengil, Y. (2014). Cost and Benefit Assessment of Implementing LULUCF Accounting Rules in Turkey. Istanbul: OGM.Google Scholar
Bouyer, O. and Serengil, Y. (2016). Carbon stored in harvested wood products in Turkey and projections for 2020. Journal of the Faculty of Forestry Istanbul University (JFFIU), 66, pp. 295302.Google Scholar
Brown, S. (1996). Present and potential roles of forests in the global climate change debate. [online] Available at: www.fao.org/docrep/w0312e/w0312e03.htm#TopOfPage [Accessed 1 January 2015]Google Scholar
Christiansen, A. C. (2002). New renewable energy developments and the climate change issue: a case study of Norwegian politics. Energy Policy, 30, pp. 235243.CrossRefGoogle Scholar
Demirbaş, A. (2004). The importance of biomass. Energy Sources, 26, pp. 361366. doi. 10.1080/0090831049077406.CrossRefGoogle Scholar
Demirbaş, A. (2008). Importance of biomass energy sources for Turkey. Energy Policy, 36, pp. 834842.CrossRefGoogle Scholar
Demirbaş, A., Pehlivan, E. and Turkan, A. (2006). Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy, 31, pp. 613620.CrossRefGoogle Scholar
Dixon, R. K., Solomon, A. M., Brown, S., Houghton, R. A., Trexier, M. C. and Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, pp. 185190. doi:10.1126/science.263.5144.185.CrossRefGoogle ScholarPubMed
DPT, (2001). VIII. Bes yıllık kalkınma planı, ormancılık özel ihtisas komisyonu raporu, Silvikültür ve Enerji Ormanları. DPT: 2531-ÖİK, 547, pp. 255278.Google Scholar
Ediger, V. S. and Kentel, E. (1999). Renewable energy potential as an alternative to fossil fuels in Turkey. Energy Conservation and Management, 40, pp. 743755.CrossRefGoogle Scholar
Geray, A. U. and Okan, T. (2008). Yenilenebilir enerji kaynağı olarak ormanlar. [online] Available at: www.foresteconomics.org/ugeray2.pdf [Accessed 17 February 2015]Google Scholar
IPCC. (1995). Climate change 1995: IPCC second assessment report. A report of the Intergovernmental Panel on Climate Change. [online] Available at: www.ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf [Accessed 07 January 2015]Google Scholar
Jandl, R., Lindner, M., Vesterdal, L., et al. (2007a). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, pp. 253268.CrossRefGoogle Scholar
Jandl, R., Vesterdal, L., Olsson, M., Bens, O., Badeck, F. and Rock, J. (2007b). Carbon sequestration and forest management. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, doi: 10.1079/ PAVSNNR20072017.Google Scholar
Johnson, D. W. and Curtis, P. S. (2001). Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 140, pp. 227238.CrossRefGoogle Scholar
Johnson, D. W., Knoepp, J. D., Swank, W. T. et al. (2002). Effects of forest management on soil carbon: results of some long-term resampling studies. Environmental Pollution, 116, pp. 201208.CrossRefGoogle ScholarPubMed
Kaya, Z. and Raynal, D. J. (2001). Biodiversity and conservation of Turkish forests. Biological Conservation, 97, pp. 131141.CrossRefGoogle Scholar
Kaygusuz, K. and Türker, A. (2002). Biomass energy potential in Turkey. Renewable Energy, 26, pp. 661678.CrossRefGoogle Scholar
Kaygusuz, K. and Sarı, A. (2003). Renewable energy potential and utilization in Turkey. Energy Conversion and Management, 44, pp. 459478.CrossRefGoogle Scholar
Lehmann, J., Gaunt, J. and Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems – a review. Mitigation and Adaptation Strategies for Global Change, 11, pp. 403427. doi: 10.1007/s11027-005-9006-5.CrossRefGoogle Scholar
Lehmann, J. (2007). A handful of carbon. Nature, 447, pp. 143144.CrossRefGoogle ScholarPubMed
Ministry of Energy and Natural Resources (2014). Türkiye Ulusal Yenilenebilir Enerji Eylem Planı. [online] Available at: www.eie.gov.tr/duyurular_haberler/document/Turkiye_Ulusal_Yenilenebilir_Enerji_Eylem_Plani.PDF [Accessed 8 August 2016]Google Scholar
Morrison, T., Matthews, R., Miller, G. et al. (2012). Understanding the carbon and greenhouse gas balance of forests in Britain. Forestry Commission Research Report, pp. 6869. [online] Available at: www.forestry.gov.uk/pdf/FCRP018.pdf/$FILE/FCRP018.pdf [Accessed 4 July 2016]Google Scholar
NIR (2014). National Greenhouse Gas Inventory Report 1990–2012. Annual report submission under the framework convention on climate change. Ankara: TurkStat (Turkish Statistical Institute).Google Scholar
Paoletti, E., De Vries, W., Mikkelsen, T. N. et al. (2013). Key indicators of air pollution and climate change impacts at forest supersites. Climate change, air pollution and global changes: understanding and perspectives from forest research. In: Matyssek, R., Clarke, N., Cudlin, P., Mikkelsen, T. N., Tuovinen, J. P., Wieser, G. and Paoletti, E. (eds.) Developments in Environmental Science, 13, pp. 497518.Google Scholar
Sapkota, A., Lu, Z., Yang, H. and Wang, J. (2015). Role of renewable energy technologies in rural communities’ adaptation to climate change in Nepal. Renewable Energy, 68, pp. 793800.CrossRefGoogle Scholar
Saraçoğlu, N. (2008). Biyokütleden enerji üretiminde enerji ormancılığının önemi. VII. Ulusal Temiz Enerji Sempozyumu, UTES. 17–19 Aralık 2008, İstanbul.Google Scholar
Swift, K. and Cuzner, D. (2012). Natural disturbance effects on forest carbon dynamics, and the role of forest management in the process. Climate-induced changes to natural disturbance regimes and management responses in British Columbia: impacts on natural and human systems. FORREX Series 28.Google Scholar
Taşkıran, D. (2009). Yenilenebilir enerjide orman biyokütlesinin durumu ve Orman Genel Müdürlüğü’ nde biyoenerji konusunda yapılan çalışmalar. [online] Available at: www.slideserve.com/alton/ekim-2009-ogm-tr# [Accessed 22 December 2014]Google Scholar
Tolunay, D. (2011). Total carbon stocks and carbon accumulation in living biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35, pp. 265279. doi: 10.3906/tar-0909-369.Google Scholar
TUIK (Türkiye İstatistik Kurumu, Turkish Statistical Institute) (2014) [online] Available at: www.tuik.gov.tr/UstMenu.do?metod=temelist [Accessed 27 November 2014]Google Scholar
UNFCCC (2015). Greenhouse Gas Inventory Data. [online] Available at: http://unfccc.int/ghg_data/items/3800.php [Accessed 05 January 2015]Google Scholar
Wang, H. (2010). Biochar for climate change mitigation: the role of forest industry. [online] Available at: www.biochar-international.org/sites/default/files/Hailong_Wang.pdf [Accessed 21 January 2015]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×