Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T16:02:50.598Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

4 - Delightful Theorems

Martin Erickson
Affiliation:
Truman State University
Get access

Summary

Mathematics is like looking at a house from different angles.

Thomas F. Storer (1938–2006)

Mathematicians prove theorems. Once a theorem is proved, it is true for all time. The theorems proved by the ancient Greeks are as true today as they were over two thousand years ago, and the theorems proved today will be true even if, after millions of years, humans evolve into another species. In this chapter we present some delightful and sometimes surprising theorems.

A Square inside Every Triangle

Given any triangle, is it always possible to inscribe a square in it? We require that the square has a side on one of the sides of the triangle, with the other two corners touching the other sides of the triangle.

The answer is yes, by similarity. Put the triangle on top of a square, as ΔABC is placed in Figure 4.1. Now extend the other two sides of ΔABC so that they meet the line that the square sits on. This results in a triangle similar to the given triangle and circumscribing the square. Finally, change the scale of the whole diagram so that the circumscribing triangle is the same size as our given triangle—and we are done. Note that the side of the triangle we place on the square must be chosen so that the altitude to that side lies inside the triangle. We have proved the theorem.

Type
Chapter
Information
Publisher: Mathematical Association of America
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Delightful Theorems
  • Martin Erickson, Truman State University
  • Book: Beautiful Mathematics
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.5948/UPO9781614445098.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Delightful Theorems
  • Martin Erickson, Truman State University
  • Book: Beautiful Mathematics
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.5948/UPO9781614445098.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Delightful Theorems
  • Martin Erickson, Truman State University
  • Book: Beautiful Mathematics
  • Online publication: 05 January 2012
  • Chapter DOI: https://doi.org/10.5948/UPO9781614445098.005
Available formats
×