Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T02:21:53.709Z Has data issue: false hasContentIssue false

Part I - Systematics, Ecology, and Behavior

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access
Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 3 - 62
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abella, J., Alba, D. M., Robles, J. M., et al. (2012). Kretzoiarctos gen. nov., the oldest member of the giant panda clade. PLoS ONE 7: e48985.Google Scholar
Abrams, J. F., Hoerig, L., Brozovic, R., et al. (2019). Shifting up a gear with iDNA: from mammal detection events to standardized surveys. Journal of Applied Ecology 56: 16371648. https://doi.org/10.1111/1365-2664.13411Google Scholar
Ameghino, F. (1902). L’age des formations sédimentaires de Patagonie. Anales de la Sociedad Científica Argentina 54: 220249.Google Scholar
Ameghino, F. (1903). L’age des formations sédimentaires de Patagonie. Buenos Aires: Imprimerie Coni Frères.Google Scholar
Anijalg, P., Ho, S. Y. W., Davison, J., et al. (2018). Large-scale migrations of brown bears in Eurasia and to North America during the Late Pleistocene. Journal of Biogeography 45: 394405. https://doi.org/10.1111/jbi.13126Google Scholar
Ashrafzadeh, M. R., Kaboli, M. & Naghavi, M. R. (2016). Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology-Zeitschrift für Säugetierkunde 81(1): 19.Google Scholar
Bapteste, E., van Iersel, L., Janke, A., et al. (2013). Networks: expanding evolutionary thinking. Trends in Genetics 29: 439441.Google Scholar
Barlow, A., Cahill, J. A., Hartmann, S., et al. (2018). Partial genomic survival of cave bears in living brown bears. Nature Ecology & Evolution 2: 15631570.Google Scholar
Barlow, A., Sheng, G. L., Lai, X. L., Hofreiter, M. & Paijmans, J. L. (2019). Once lost, twice found: combined analysis of ancient giant panda sequences characterises extinct clade. Journal of Biogeography 46: 251253.CrossRefGoogle Scholar
Barnes, G. L. (1999). The rise of civilization in East Asia: The archaeology of China, Korea and Japan. London: Thames & Hudson.Google Scholar
Barnes, I., Matheus, P., Shapiro, B., Jensen, D. & Cooper, A. (2002): Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295: 22672270.CrossRefGoogle ScholarPubMed
Batsch, A. J. G. C. (1788). Versuch einer Anleitung, zur Kenntniß und Geschichte der Thiere und Mineralien, für akademische Vorlesungen entworfen, und mit den nöthigsten Abbildungen versehen. Jena: Akademische Buchhandlung.Google Scholar
Benazzo, A., Trucchi, E., Cahill, J. A., et al. (2017). Survival and divergence in a small group: the extraordinary genomic history of the endangered Apennine brown bear stragglers. Proceedings of the National Academy of Sciences 114: E9589E9597.Google Scholar
Berta, A., Sumich, J. L. & Kovacs, K. M. (2015). Marine mammals: Evolutionary biology. London: Academic Press.Google Scholar
Bidon, T., Janke, A., Fain, S. R., et al. (2014). Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Molecular Biology and Evolution 31: 13531363. https://doi.org/10.1093/molbev/msu109Google Scholar
Bischof, R. & Swenson, J. E. (2012). Linking noninvasive genetic sampling and traditional monitoring to aid management of a trans‐border carnivore population. Ecological Applications 22(1): 361373.Google Scholar
Bischof, R., Brøseth, H. & Gimenez, O. (2016). Wildlife in a politically divided world: insularism inflates estimates of brown bear abundance. Conservation Letters 9: 122130.Google Scholar
de Bonis, L. (2013). Ursidae (Mammalia, Carnivora) from the Late Oligocene of the “Phosphorites du Quercy” (France) and a reappraisal of the genus Cephalogale Geoffroy, 1862. Geodiversitas 35: 787814.Google Scholar
de Bonis, L., Abella, J., Merceron, G. & Begun, D. R. (2017). A new late Miocene ailuropodine (giant panda) from Rudabánya (north-central Hungary). Geobios 50: 413421.Google Scholar
Bowdich, T. E. (1821). An analysis of the natural classifications of Mammalia, for the use of students and travellers. Paris: J. Smith.Google Scholar
Bryant, H. N. (1996). Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: a case study of the phylogenetic taxonomy of the Carnivora (Mammalia). Systematic Biology 45(2): 174189.Google Scholar
Cahill, J. A., Green, R. E., Fulton, T. L., et al. (2013). Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genetics 9(3): e1003345.CrossRefGoogle ScholarPubMed
Cahill, J. A., Stirling, I., Kistler, L., et al. (2015). Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Molecular Ecology 24: 12051217.CrossRefGoogle ScholarPubMed
Cahill, J. A., Heintzman, P. D., Harris, K., et al. (2018). Genomic evidence of widespread admixture from polar bears into brown bears during the Last Ice Age. Molecular Biology and Evolution 35: 11201129.Google Scholar
Campagna, L., Van Coeverden de Groot, P. J., Saunders, B. L., et al. (2013). Extensive sampling of polar bears (Ursus maritimus) in the Northwest Passage (Canadian Arctic Archipelago) reveals population differentiation across multiple spatial and temporal scales. Ecology and Evolution 3: 31523165.Google Scholar
Chen, Y.-Y., Zhu, Y., Wan, Q.-H., et al. (2013). Patterns of adaptive and neutral diversity identify the Xiaoxiangling Mountains as a refuge for the giant panda. PLoS ONE 8(7): e70229.Google Scholar
Chorn, J. & Hoffmann, R. S. (1978). Ailuropoda melanoleuca. Mammalian Species 110: 16.Google Scholar
Çilingir, F. G., Akın Pekşen, Ç., Ambarlı, H., Beerli, P. & Bilgin, C. C. (2016). Exceptional maternal lineage diversity in brown bears (Ursus arctos) from Turkey. Zoological Journal of the Linnean Society 176: 463477.Google Scholar
Colangelo, P., Loy, A., Huber, D., et al. (2012). Cranial distinctiveness in the Apennine brown bear: genetic drift effect or ecophenotypic adaptation? Biological Journal of the Linnean Society 107: 1526.Google Scholar
Corbet, G. B. & Hill, J. E. (1992). The mammals of the Indomalayan region: A systematic review. London: Natural History Museum Publications and Oxford: Oxford University Press.Google Scholar
Crompton, A. E., Obbard, M. E., Petersen, S. D. & Wilson, P. J. (2008). Population genetic structure in polar bears (Ursus maritimus) from Hudson Bay, Canada: implications of future climate change. Biological Conservation 141: 25282539.Google Scholar
Cronin, M. A., Amstrup, S. C., Garner, G. W. & Vyse, E. R. (1991). Interspecific and intraspecific mitochondrial DNA variation in North American bears (Ursus). Canadian Journal of Zoology 69: 29852992.Google Scholar
Cuvier, F. (1825). Ours des Cordilères du Chili. In: Geoffroy-Saint-Hilaire, É. & Cuvier, F. (Eds.) Histoire naturelle des mammifères, avec des figures originales, coloriées, dessinées d’après des animaux vivans, pt. 3, vol. 5(5), 2 pp. Paris: A. Belin.Google Scholar
Cuvier, G. (1823). Des ossemens d’ours. In Recherches sur les ossemens fossiles, où l’on rétablit les caractères de plusieurs animaux dont les révolutions du globe ont détruit les espèces, vol. 4(3), pp. 311380. Paris: G. Dufour et E. d’Ocagne.Google Scholar
David, A. (1869). Voyage en Chine, troisième partie. Nouvelles archives du Muséum d’histoire naturelle de Paris 5: 313.Google Scholar
Davison, J., Ho, S. Y., Bray, S. C., et al. (2011). Late-Quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quaternary Science Reviews 30: 418430.Google Scholar
De Barba, M., Miquel, C., Lobréaux, S., et al. (2017). High‐throughput microsatellite genotyping in ecology: Improved accuracy, efficiency, standardization and success with low‐quantity and degraded DNA. Molecular Ecology Resources 17: 492507.Google Scholar
Doronina, L., Churakov, G., Shi, J., et al. (2015). Exploring massive incomplete lineage sorting in arctoids (Laurasiatheria, Carnivora). Molecular Biology and Evolution 32: 31943204.Google Scholar
Draheim, H. M., Moore, J. A., Fortin, M. J. & Scribner, K. T. (2018). Beyond the snapshot: landscape genetic analysis of time series data reveal responses of American black bears to landscape change. Evolutionary Applications 11: 12191230.Google Scholar
Dunbar, M. R., Cunningham, M. W., Wooding, J. B. & Roth, R. P. (1996). Cryptorchidism and delayed testicular descent in Florida black bears. Journal of Wildlife Diseases 32: 661664.Google Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (Eds.) (2018). Polar bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 7–11 June 2016, Anchorage, Alaska. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Dutta, T., Sharma, S., Maldonado, J. E., Panwar, H. S. & Seidensticker, J. (2015). Genetic variation, structure, and gene flow in a sloth bear (Melursus ursinus) meta-population in the Satpura-Maikal landscape of Central India. PLoS ONE 10(5): e0123384.Google Scholar
Edwards, C. J., Suchard, M. A, Lemey, P., et al. (2011). Ancient hybridization and an Irish origin for the modern polar bear matriline. Current Biology 21(15): 18.Google Scholar
Eizirik, E., Murphy, W. J., Koepfli, K. P., et al. (2010). Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56: 4963.Google Scholar
Ellegren, H., Primmer, C. R. & Sheldon, B. C. (1995). Microsatellite evolution: directionality or bias? Nature Genetics 11: 360362.Google Scholar
Ellerman, J. R. & Morrison-Scott, T. C. S. (1951). Checklist of Palaearctic and Indian mammals 1758–1946. London: Trustees of the British Museum.Google Scholar
Erdbrink, D. P. (1953): A review of fossil and recent bears of the Old World with remarks on their phylogeny based on their dentition, 2 vols. Deventer, the Netherlands: Jan de Lange.Google Scholar
Ersmark, E., Baryshnikov, G., Higham, T., et al. (2019). Genetic turnovers and northern survival during the last glacial maximum in European brown bears. Ecology and Evolution 9: 59815905. https://doi.org/10.1002/ece3.5172Google Scholar
Flower, W. H. (1869). On the value of the characters of the base of the cranium in the classification of the order Carnivora, and on the systematic position of Bassaris and other disputed forms. Proceedings of the Zoological Society of London 37(1): 437.Google Scholar
Frosch, C., Dutsov, A., Zlatanova, D., et al. (2014). Noninvasive genetic assessment of brown bear population structure in Bulgarian mountain regions. Mammalian Biology 79: 268276.Google Scholar
Galbreath, G. J., Hunt, M., Clements, T. & Waits, L. P. (2008). An apparent hybrid wild bear from Cambodia. Ursus 19: 8586.Google Scholar
García‐Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42: 85119.Google Scholar
García-Vázquez, A., Pinto Llona, A. C. & Grandal-d’Anglade, A. (2017). Post-glacial colonization of Western Europe brown bears from a cryptic Atlantic refugium out of the Iberian Peninsula. Historical Biology XX: 113.Google Scholar
Gervais, P. (1855). Histoire naturelle des mammifères avec l’indication de leurs moeurs et de leurs rapports avec les arts, le commerce et l’agriculture. Paris: L. Curmer.Google Scholar
Ginsburg, L. & Morales, J. (1998). Les Hemicyoninae (Ursidae, Carnivora, Mammalia) et les formes apparentées du Miocène inférieur et moyen d’Europe occidentale. Annales de Paléontologie 84: 71123.Google Scholar
Goswami, A. (2010). Introduction to Carnivora. In Goswami, A. & Friscia, A. (Eds.), Carnivoran evolution. New views on phylogeny, form and function, pp. 124. Cambridge: Cambridge University Press.Google Scholar
Graves, T., Chandler, R. B., Royle, J. A., Beier, P. & Kendall, K. C. (2014). Estimating landscape resistance to dispersal. Landscape Ecology 29: 12011211.Google Scholar
Grevé, C. (1894). Die geographische Verbreitung der jetzt lebenden Raubthiere. Kaiserlich Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher. Nova Acta 63(1): 7280.Google Scholar
Hailer, F., Kutschera, V. E., Hallström, B. M., et al. (2012). Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336(6079): 344347.Google Scholar
Hall, E. R. (1981): The mammals of North America, Vol. II (2nd edn.). New York, NY: John Wiley.Google Scholar
Hassanin, A. (2015). The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses. Comptes rendus biologies 338: 494501.CrossRefGoogle Scholar
Hendey, Q. B. (1980). Agriotherium (Mammalia, Ursidae) from Langebaanweg, South Africa, and relationships of the genus. Annals of the South African Museum 81: 1109.Google Scholar
Hirata, D., Mano, T., Abramov, A. V., et al. (2017). Paternal phylogeographic structure of the brown bear (Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations. Zoological Letters 3(1): 21.Google Scholar
Hofreiter, M., Serre, D., Rohland, N., et al. (2004). Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences 101: 12,96312,968.Google Scholar
Hu, Y., Qi, D., Wang, H. & Wei, F. (2010a). Genetic evidence of recent population contraction in the southernmost population of giant pandas. Genetica 138: 12971306.Google Scholar
Hu, Y., Zhan, X., Qi, D. & Wei, F. (2010b). Spatial genetic structure and dispersal of giant pandas on a mountain-range scale. Conservation Genetics 11: 21452155.Google Scholar
Hunt, R. M. Jr. (1974). The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. Journal of Morphology 143(1): 2175.Google Scholar
Hunt, R. M. Jr. (1977). Basicranial anatomy of Cynelos Jourdan (Mammalia: Carnivora), an Aquitanian amphicyonid from the Allier Basin, France. Journal of Paleontology 51(4): 826843.Google Scholar
Hunt, R. M. Jr. (1998). Ursidae. In Janis, C. M., Scott, K. M. & Jacobs, L. L. (Eds.), Evolution of Tertiary mammals of North America, pp. 174189. Cambridge: Cambridge University Press.Google Scholar
Hwang, D.-S., Ki, J.-S., Jeong, D.-H., et al. (2008). A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial DNA 19: 418429.Google Scholar
Kadariya, R., Shimozuru, M., Maldonado, J. E., Moustafa, M. A. M., Sashika, M. & Tsubota, T. (2018). High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area, Nepal. PLoS ONE, 13(12): e0207662.Google Scholar
Kamath, P. L., Haroldson, M. A., Luikart, G., et al. (2015). Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Molecular Ecology 24: 55075521.Google Scholar
Kendall, K. C., Stetz, J. B., Boulanger, J., et al. (2009). Demography and genetic structure of a recovering grizzly bear population. The Journal of Wildlife Management 73(1): 316.Google Scholar
Kim, Y. K., Hong, Y. J., Min, M. S., et al. (2011). Genetic status of Asiatic black bear (Ursus thibetanus) reintroduced into South Korea based on mitochondrial DNA and microsatellite loci analysis. Journal of Heredity 102: 165174.Google Scholar
Kitchener, A. C., Breitenmoser-Würsten, Ch., Eizirik, E., et al. (2017). A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue 11: 180.Google Scholar
Koepfli, K.-P., Dragoo, J. W. & Wang, X. (2017). The evolutionary history and molecular systematics of the Musteloidea. In: Macdonald, D. W., Newman, C. & Harrington, L. A. (Eds.), Biology and conservation of the musteloids, pp. 92128. Oxford: Oxford University Press.Google Scholar
Kopatz, A., Eiken, H. G., Schregel, J., et al. (2017). Genetic substructure and admixture as important factors in linkage disequilibrium‐based estimation of effective number of breeders in recovering wildlife populations. Ecology and Evolution 7: 10,72110,732.Google Scholar
Koretsky, I. A., Barnes, L. G. & Rahmat, S. J. (2016). Re-evaluation of morphological characters questions current views of pinniped origins. Vestnik Zoologii 50: 327354.CrossRefGoogle Scholar
Krause, J., Unger, T., Nocon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220.Google Scholar
Kretzoi, M. (1943). Kochitis centennii n. g. n. sp. az egeresi felső oligocénből [in Hungarian]/Kochitis centenii n.g. n.sp., ein altertümlicher Creodonte aus dem Oberoligozän Siebenbürgens [in German]. Földtani Közlöny 73: 1017 [Hungarian] / 190–195 [German].Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.Google Scholar
Kurtén, B. & Anderson, E. (1980). Pleistocene mammals of North America. New York, NY: Columbia University Press.Google Scholar
Kutschera, V. E., Bidon, T., Hailer, F., et al. (2014). Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Molecular Biology and Evolution 31: 20042017.Google Scholar
Kutschera, V. E., Frosch, C., Janke, A., et al. (2016). High genetic variability of vagrant polar bears illustrates importance of population connectivity in fragmented sea ice habitats. Animal Conservation 19: 337349.CrossRefGoogle Scholar
Laikre, L., Andrén, R., Larsson, H. O. & Ryman, N. (1996). Inbreeding depression in brown bear Ursus arctos. Biological Conservation 76: 6972.Google Scholar
Lan, T., Gill, S., Bellemain, E., et al. (2017). Evolutionary history of enigmatic bears in the Tibetan Plateau–Himalaya region and the identity of the yeti. Proceedings of the Royal Society B: Biological Sciences 284(1868): 20171804.Google Scholar
Linnaeus, C. V. (1758). Systema Naturae per regna tria naturae. Secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th edition, Vol. 1. Stockholm: Lars Salvius.Google Scholar
Liu, S., Lorenzen, E. D., Fumagalli, M., et al. (2014). Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157: 785794.Google Scholar
Loy, A., Genov, P., Galfo, M., Jacobone, M. G. & Vigna Taglianti, A. (2008). Cranial morphometrics of the Apennine brown bear (Ursus arctos marsicanus) and preliminary notes on the relationships with other southern European populations. Italian Journal of Zoology 75: 6775.Google Scholar
Luan, P. T., Ryder, O. A., Davis, H., Zhang, Y. P. & Yu, L. (2013). Incorporating indels as phylogenetic characters: impact for interfamilial relationships within Arctoidea (Mammalia: Carnivora). Molecular Phylogenetics and Evolution 66: 748756.Google Scholar
Malenfant, R. M., Davis, C. S., Cullingham, C. I. & Coltman, D. W. (2016). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE 11(3): e0148967.Google Scholar
Margari, V., Skinner, L. C., Tzedakis, P. C., et al. (2010). The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience 3: 127131.Google Scholar
Meijaard, E. (2004): Craniometric differences among Malayan sun bears (Ursus malayanus); evolutionary and taxonomic implications. The Raffles Bulletin of Zoology 52: 665672.Google Scholar
Merriam, J. C. & Stock, C. (1925). Relationships and structure of the shortfaced bear, Arctotherium, from the Pleistocene of California. Contributions to Palaeontology, Carnegie Institution of Washington 347: 135.Google Scholar
Meyer, F. A. (1793). Systematisch-summarische Uebersicht der neuesten zoologischen Entdeckungen in Neuholland und Afrika. Leipzig: Dykischen Buchhandlung.Google Scholar
Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. C. (2016). Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proceedings of the Royal Society of London B 283(1839): 20161467.Google Scholar
Miller, W., Schuster, S. C., Welch, A. J., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past plimate change. Proceedings of the National Academy of Sciences 109: E2382E2390.Google Scholar
Milne-Edwards, A. (1870). Note sur quelques mammifères du Thibet oriental. Annales des Sciences Naturelles, Zoologie et Paléontologie, 5th series, 13, article 10.Google Scholar
Mitchell, K. J., Bray, S. C., Bover, P., et al. (2016). Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biology Letters 12(4): 20160062.CrossRefGoogle ScholarPubMed
Murphy, S. M., Augustine, B. C., Ulrey, W. A., et al. (2017). Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population. PLoS ONE 12(7): e0181849.Google Scholar
Murtskhvaladze, M., Gavashelishvili, A. & Tarkhnishvili, D. (2010). Geographic and genetic boundaries of brown bear (Ursus arctos) population in the Caucasus. Molecular Ecology 19: 18291841.Google Scholar
Norman, A. J., Stronen, A. V., Fuglstad, G. A., et al. (2017). Landscape relatedness: detecting contemporary fine-scale spatial structure in wild populations. Landscape Ecology 32: 181194.Google Scholar
Nyakatura, K. & Bininda-Emonds, O. R. (2012). Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biology 10(1): 12.Google Scholar
Ohnishi, N., Uno, R., Ishibashi, Y., Tamate, H. B. & Oi, T. (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102: 579.Google Scholar
Onuma, M., Suzuki, M. & Ohtaishi, N. (2006). Possible conservation units of the sun bear (Helarctos malayanus) in Sarawak based on variation of mtDNA control region. Japanese Journal of Veterinary Research 54: 135139.Google Scholar
Paetkau, D., Shields, G. F. & Strobeck, C. (1998). Gene flow between insular, coastal and interior populations of brown bears in Alaska. Molecular Ecology 7: 12831292.Google Scholar
Pages, M., Calvignac, S., Klein, C., et al. (2008). Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Molecular Phylogenetics and Evolution 47: 7383.Google Scholar
Pallas, P. S. (1780). Spicilegia zoologica: quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur, fascicle 14, pp. 324. Berlin: Joachim Paul.Google Scholar
Pamilo, P. & Nei, M. (1988). Relationships between gene trees and species trees. Molecular Biology and Evolution 5: 568583.Google Scholar
Pelletier, A., Obbard, M. E., White, B. N., Doyle, C. & Kyle, C. J. (2011). Small-scale genetic structure of American black bears illustrates potential postglacial recolonization routes. Journal of Mammalogy 92: 629644.Google Scholar
Phipps, C. J. (1774). A voyage towards the North Pole undertaken by His Majesty’s command. London: J. Nourse.Google Scholar
Pierson, J. C., Graves, T. A., Banks, S. C., Kendall, K. C. & Lindenmayer, D. B. (2018). Relationship between effective and demographic population size in continuously distributed populations. Evolutionary Applications 11: 11621175.Google Scholar
Puckett, E. E., Etter, P. D., Johnson, E. A. & Eggert, L. S. (2015). Phylogeographic analyses of American black bears (Ursus americanus) suggest four glacial refugia and complex patterns of postglacial admixture. Molecular Biology and Evolution 32: 23382350.Google Scholar
Raffles, T. S. (1821). Descriptive catalogue of a zoological collection, made on account of the Honourable East India Company, in the island of Sumatra and its vicinity, under the direction of Sir Thomas Stamford Raffles, Lieutenant-Governor of Fort Marlborough; with additional notices illustrative of the natural history of those countries. Transactions of the Linnean Society of London 13(1): 239274.Google Scholar
Ren, G. (2000). Decline of the mid- to late Holocene forests in China: climatic change or human impact? Journal of Quaternary Science 15: 273281.Google Scholar
Rose, K. D. (2006). The beginning of the age of mammals. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Rounds, R. C. (1987). Distribution and analysis of colourmorphs of the black bear (Ursus americanus). Journal of Biogeography 14: 521538.Google Scholar
Ruiz-García, M. (2007). Genética de Poblaciones: Teoría y aplicación a la conservación de mamíferos neotropicales (Oso andino y delfín rosado). Boletín de la Real Sociedad Española de Historia Natural 102: 99126.Google Scholar
Ruiz-García, M. (2013). The genetic demography history and phylogeography of the Andean bear (Tremarctos ornatus) by means of microsatellites and mtDNA markers. In: Ruiz-García, M. & Shostell, J.M. (Eds.), Molecular population genetics, evolutionary biology and conservation of Neotropical carnivores (pp. 129158). New York, NY: Nova Science Publishers.Google Scholar
Ruiz-García, M., Orozco-terWengel, P., Payán, E. & Castellanos, A. (2003). Genética de Poblaciones molecular aplicada al estudio de dos grandes carnívoros (Tremarctos ornatus – Oso andino, Panthera onca – jaguar): lecciones de conservación. Boletín de la Real Sociedad Española de Historia Natural 98: 135158.Google Scholar
Ruiz-García, M., Orozco-terWengel, P., Castellanos, A. & Arias, L. (2005). Microsatellite analysis of the spectacled bear (Tremarctos ornatus) across its range distribution. Genes and Genetics Systems 80: 5769.CrossRefGoogle ScholarPubMed
Ruiz-García, M., Arias, J. Y., Castellanos, A., Kolter, L. & Shostell, J. M. (2020a). Molecular evolution (mitochondrial and nuclear microsatellites markers) in the Andean bear (Tremarctos ornatus; Ursidae, Carnivora): How many ESUs are there? In: Ortega, J. & Maldonado, J. E. (Eds.), Mammalian Conservation Genetics (pp. 165–194). Berlin: Springer-Verlag.Google Scholar
Ruiz-García, M., Arias, J. Y., Restrepo, H., Cáceres-Martínez, C. & Shostell, J. M. (2020b). The genetic structure of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Colombia by means of mitochondrial and microsatellite markers. Journal of Mammalogy (in press).Google Scholar
Ruiz-García, M., Castellanos, A., Arias, J.Y. & Shostell, J.M. (2020c). Genetics of the Andean bear (Tremarctos ornatus; Ursidae, Carnivora) in Ecuador: When the Andean Cordilleras are not an obstacle. Mitochondrial DNA Part A 31: 194–212.Google Scholar
Salesa, M. J., Siliceo, G., Antón, M., et al. (2006). Anatomy of the “false thumb” of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geológicos 62: 389394.Google Scholar
Salomashkina, V. V., Kholodova, M. V., Semenov, U. A., Muradov, A. S. & Malkhasyan, A. (2017). Genetic variability of brown bear (Ursus arctos L., 1758). Russian Journal of Genetics 53: 108117.Google Scholar
Schmidt-Kittler, N. (1987). The Carnivora (Fissipedia) from the lower Miocene of East Africa. Palaeontographica. Abteilung A, Paläozoologie, Stratigraphie 197: 85126.Google Scholar
Schwartz, M. K., Luikart, G. & Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 22: 2533.Google Scholar
Shaw, G. (1790). The naturalist’s miscellany, or coloured figures of natural objects, vol. 2. London: Nodder & Co.Google Scholar
Shen, F., Zhang, Z., He, W. E. I., et al. (2009). Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population. Molecular Ecology 18: 10611070.Google Scholar
Skrbinšek, T., Jelenčič, M., Waits, L., et al. (2012). Monitoring the effective population size of a brown bear (Ursus arctos) population using new single‐sample approaches. Molecular Ecology 21: 862875.Google Scholar
Soibelzon, L. H. & Schubert, B. W. (2011). The largest known bear, Arctotherium angustidens, from the Early Pleistocene Pampean Region of Argentina: with a discussion of size and diet trends in bears. Journal of Paleontology 85: 6975.Google Scholar
Soibelzon, L. H., Tonni, E. P. & Bond, M. (2005). The fossil record of South American short-faced bears (Ursidae, Tremarctinae). Journal of South American Earth Sciences 20: 105113.Google Scholar
Talbot, S. L. & Shields, G. F. (1996). A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Molecular Phylogenetics and Evolution 5: 567575.Google Scholar
Tedford, R. H. (1976). Relationships of pinnipeds to other carnivores (Mammalia). Systematic Zoology 25: 363374.Google Scholar
Thenius, E. (1989). Molekulare und adaptive Evolution, Kladistik und Stammesgeschichte1: Ergänzungen zu einer Arbeitshypothese. Journal of Zoological Systematics and Evolutionary Research 27: 94105.Google Scholar
Turner, H. N. (1848). Observations relating to some of the foramina at the base of the skull in Mammalia, and on the classification of the order Carnivora. Proceedings of the Zoological Society of London 16: 6388.Google Scholar
Valdiosera, C. E., García, N., Anderung, C., et al. (2007). Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16: 51405148.Google Scholar
Viengkone, M., Derocher, A. E., Richardson, E. S., et al. (2016). Assessing polar bear (Ursus maritimus) population structure in the Hudson Bay region using SNPs. Ecology and Evolution 6: 84748484.Google Scholar
Von Duyke, A., Bellemain, E., Dejean, T., et al. (2017). The future is now; science in a spoonful of snow. Using eDNA to monitor a polar bear (Ursus maritimus) population in the Chukchi Sea. 22nd Biennial Conference on the Biology of Marine Mammals.Google Scholar
Wagner, J. (2010). Pliocene to early Middle Pleistocene ursine bears in Europe: a taxonomic overview. Journal of the National Museum (Prague), Natural History Series 179(20): 197215.Google Scholar
Waits, L., Paetkau, D. & Strobeck, C. (1999). Genetics of the bears of the world. In: Servheen, C., Herrero, S. & Peyton, B. (Eds.) Bears. Status survey and conservation action plan, pp. 2532. Bern and Cambridge: IUCN.Google Scholar
Wan, Q. H., Fang, S. G., Wu, H. & Fujihara, T. (2003). Genetic differentiation and subspecies development of the giant panda as revealed by DNA fingerprinting. Electrophoresis 24: 13531359.Google Scholar
Wan, Q.-H., Wu, H. & Fang, S.-G. (2005). A new subspecies of giant panda (Ailuropoda melanoleuca) from Shaanxi, China. Journal of Mammalogy 86: 397402.Google Scholar
Wheat, R. E., Allen, J. M., Miller, S. D., Wilmers, C. C. & Levi, T. (2016). Environmental DNA from residual saliva for efficient noninvasive genetic monitoring of brown bears (Ursus arctos). PLoS ONE 11(11): e0165259.Google Scholar
Wilson, D. E. (1976). Cranial variation in polar bears. In Pelton, M. R., Lentfer, J. W. & Folk, G. E. (Eds.) Bears: Their biology and management. A selection of papers from the third international conference on bears, pp. 447453. Morges, Switzerland: IUCN.Google Scholar
Wooding, S. & Ward, R. (1997). Phylogeography and Pleistocene evolution in the North American black bear. Molecular Biology and Evolution 14: 10961105.Google Scholar
Wozencraft, W. C. (1989). The phylogeny of the recent Carnivora. In: Gittleman, J. L. (Ed.) Carnivore behaviour, ecology and evolution (pp. 495535). London: Chapman and Hall.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian black bear (Ursus thibetanus) based on mitochondrial DNA. PLoS ONE 10(9): e0136398.Google Scholar
Yu, L., Li, Q.-W., Ryder, O. A. & Zhang, Y.-P. (2004). Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 32: 480494.Google Scholar
Yu, L., Li, Y. W., Ryder, O. A. & Zhang, Y. P. (2007). Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evolutionary Biology 7(1): 198.Google Scholar
Zedrosser, A., Støen, O. G., Sæbø, S. & Swenson, J. E. (2007). Should I stay or should I go? Natal dispersal in the brown bear. Animal Behaviour 74: 369376.Google Scholar
Zhang, B., Li, M., Zhang, Z., et al. (2007). Genetic viability and population history of the giant panda, putting an end to the “evolutionary dead end”? Molecular Biology and Evolution 24: 18011810.Google Scholar
Zhang, Y. P. & Ryder, O. A. (1993). Mitochondrial DNA sequence evolution in the Arctoidea. Proceedings of the National Academy of Sciences of the United States of America 90: 95579561.Google Scholar
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45(1): 67.Google Scholar
Zuckerkandl, E. & Pauling, L. (1962). Molecular disease, evolution and genetic heterogeneity. In: Horizons in biochemistry (pp. 189225). New York, NY: Academic Press.Google Scholar

References

Adams, M. (1980). Odour-producing organs of mammals. Symposia of the Zoological Society of London 45: 5786.Google Scholar
Amstrup, S. C. & DeMaster, D. P. (2003). Polar bear, Ursus maritimus. Wild Mammals of North America: Biology, Management, and Conservation 2: 587610.Google Scholar
Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.Google Scholar
Appleton, R. D., Van Horn, R. C., Noyce, K. V., et al. (2018). Phenotypic plasticity in the timing of reproduction in Andean bears. Journal of Zoology 305: 196202.Google Scholar
Bellemain, E., Swenson, J. E. & Taberlet, P. (2006a). Mating strategies in relation to sexually selected infanticide in a non-social carnivore: the brown bear. Ethology 112: 238246.Google Scholar
Bellemain, E., Zedrosser, A., Manel, S., et al. (2006b). The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proceedings of the Royal Society B 273: 283291.Google Scholar
Birkhead, T. R. & Møller, A. P. (1993). Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biological Journal of the Linnean Society 50(4): 295311.Google Scholar
Boone, W. R., Catlin, J. C., Casey, K. J., et al. (1998). Bears as induced ovulators: a preliminary study. Ursus 10: 503505.Google Scholar
Boone, W. R., Keck, B. B., Catlin, J. C., et al. (2004). Evidence that bears are induced ovulators. Theriogenology 61: 11631169.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25: 634651.Google Scholar
Castellanos, A. & Vasquez, D. (2017). Kinship relations in a multi-generational Andean bear (Tremarctos ornatus) family in North Ecuador. International Bear News 26: 2425.Google Scholar
Castellanos, A., Ascanta, M. & Jackson, D. (2018). Does Rebecca, a seasoned Andean bear mother, show seasonal birthing patterns? International Bear News 27: 5758.Google Scholar
Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. (2012). A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7: e35404.Google Scholar
Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. (2014). Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Animal Behaviour 94: 107116.Google Scholar
Concannon, P. (2009). Endocrinologic control of normal canine ovarian function. Reproduction in Domestic Animals 44: 315.Google Scholar
Connor, T., Hull, V. & Liu, J. (2016). Telemetry research on elusive wildlife: a synthesis of studies on giant pandas. Integrative Zoology 11: 295307.Google Scholar
Costello, C. M., Creel, S. R., Kalinowski, S. T., Vu, N. V. & Quigley, H. B. (2009). Determinants of male reproductive success in American black bears. Behavioral Ecology and Sociobiology 64: 125.Google Scholar
Craighead, J. J., Sumner, J. S. & Mitchell, J. A. (1995). The grizzly bears of Yellowstone: Their ecology in the Yellowstone Ecosystem, 1959–1992. Washington, DC: Island Press.Google Scholar
Crudge, B., Lees, C., Hunt, M., et al. (2019). Sun bears: Global status review and conservation action plan, 2019–2028. IUCN SSC Bear Specialist Group.Google Scholar
Czetwertynski, S. M., Boyce, M. S. & Schmiegelow, F. K. (2007). Effects of hunting on demographic parameters of American black bears. Ursus 18: 118.Google Scholar
Dahle, B. & Swenson, J. E. (2003). Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. Journal of Animal Ecology 72: 660667.Google Scholar
Davoli, F., Cozzo, M., Angeli, F., Groff, C. & Randi, E. (2018). Infanticide in brown bear: a case-study in the Italian Alps – genetic identification of perpetrator and implications in small populations. Nature Conservation 25: 5575.Google Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears. Journal of Zoology 234: 527536.Google Scholar
Derocher, A. E. & Stirling, I. (1996). Aspects of survival in juvenile polar bears. Canadian Journal of Zoology 74: 12461252.Google Scholar
Derocher, A. E. & Wiig, Ø. (1999a). Infanticide and cannibalism of juvenile polar bears (Ursus maritimus) in Svalbard. Arctic 52: 307310.Google Scholar
Derocher, A. E. & Wiig, Ø. (1999b). Observation of adoption in polar bears (Ursus maritimus). Arctic 52: 413415.Google Scholar
Derocher, A. E., Lunn, N. J. & Stirling, I. (2004). Polar bears in a warming climate. Integrative and Comparative Biology 44: 163176.Google Scholar
Derocher, A. E., Andersen, M., Wiig, Ø. & Aars, J. (2010). Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behavioral Ecology and Sociobiology 64: 939946.Google Scholar
Durrant, B., Czekala, N., Olson, M., et al. (2002). Papanicolaou staining of exfoliated vaginal epithelial cells facilitates the prediction of ovulation in the giant panda. Theriogenology 57: 18551864.Google Scholar
Ebensperger, L. A. (1998). Strategies and counterstrategies to infanticide in mammals. Biological Reviews 73: 321346.Google Scholar
Edwards, M. A. & Derocher, A. E. (2015). Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range. Behavioural Processes 111: 7583.Google Scholar
Elfström, M., Zedrosser, A., Jerina, K., et al. (2014). Does despotic behavior or food search explain the occurrence of problem bears in Europe? Journal of Wildlife Management 78(5): 881893.Google Scholar
Emlen, S. T. & Oring, L. W. (1977). Ecology, sexual selection and the evolution of mating systems. Science 197: 215223.Google Scholar
Enciso, M. A. & Guimarães, M. A. B. V. (2013). Knowing the reproductive endocrinology in the female Andean bear through non-invasive methods. International Bear News 22: 3334.Google Scholar
Erickson, A. W., Nellor, J. & Petrides, G. A. (1964). The black bear in Michigan. Michigan State University Agriculture Experiment Station East Lansing Research Bulletin 4: 1102.Google Scholar
Fernández-Gil, A. (2013). Behavior and conservation of large carnivores in human-dominated landscapes. Brown bears and wolves in the Cantabrian Mountains. PhD thesis, University of Oviedo, Spain.Google Scholar
Fernández-Gil, A., Naves, J. & Delibes, M. (2006). Courtship of brown bears Ursus arctos in northern Spain: phenology, weather, habitat and durable mating areas. Wildlife Biology 12: 367373.Google Scholar
Filipczyková, E., Heitkönig, I. M. A., Castellanos, A., Hantson, W. & Steyaert, S. M. J. G. (2017). Marking behavior of Andean bears in an Ecuadorian cloud forest: a pilot study. Ursus 27(2): 122128.Google Scholar
Fortin, J. K., Rode, K. D., Hilderbrand, G. V., et al. (2016). Impacts of human recreation on brown bears (Ursus arctos): a review and new management tool. PLoS ONE 11: e0141983.Google Scholar
Frederick, C., Kyes, R., Hunt, K., et al. (2010). Methods of estrus detection and correlates of the reproductive cycle in the sun bear (Helarctos malayanus). Theriogenology 74: 11211135.Google Scholar
Frederick, C., Hunt, K. E., Kyes, R., Collins, D. & Wasser, S. K. (2012). Reproductive timing and aseasonality in the sun bear (Helarctos malayanus). Journal of Mammalogy 93: 522531.Google Scholar
Frederick, C., Hunt, K., Kyes, R., et al. (2013). Social influences on the estrous cycle of the captive sun bear (Helarctos Malayanus). Zoo Biology 32: 581591.Google Scholar
Fredriksson, G. M. & Wich, S. A. (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89: 489508.Google Scholar
Fredriksson, G. M., Danielsen, L. S. & Swenson, J. E. (2007). Impacts of El Niño related drought and forest fires on sun bear fruit resources in lowland dipterocarp forest of East Borneo. Biodiversity and Conservation 16: 18231838.Google Scholar
Friebe, A., Evans, A. L., Arnemo, J. M., et al. (2014). Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS ONE 9(7): e101410.Google Scholar
Garcia‐Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42: 85119.Google Scholar
Garshelis, D. L. (2009). Family Ursidae (bears). In: Wilson, D. E. & Mittermeier, R.A. (Eds.), Handbook of the mammals of the world, Vol. 1 – Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. L. & Hellgren, E. C. (1994). Variation in reproductive biology of male black bears. Journal of Mammalogy 75: 175188.Google Scholar
Garshelis, D. L., Joshi, A. R., Smith, J. L. & Rice, C. G. (1999). Sloth bear conservation action plan in bears: Status survey and conservation action plan (pp. 225240). Gland: International Union for the Conservation of Nature and Natural Resources.Google Scholar
Gittleman, J. L. (1994). Are the pandas successful specialists or evolutionary failures? BioScience 44: 456464.Google Scholar
Gopal, R. (1991). Ethological observations on the sloth bear (Melursus ursinus). Indian Forester 117: 915920.Google Scholar
Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. (2015). The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proceedings of the Royal Society B: Biological Sciences 282: 20141840.Google Scholar
Gosselin, J., Leclerc, M., Zedrosser, A., et al. (2017). Hunting promotes sexual conflict in brown bears. Journal of Animal Ecology 86: 3542.Google Scholar
Hamer, D. & Herrero, S. (1990). Courtship and use of mating areas by grizzly bears in the Front Ranges of Banff National Park, Alberta. Canadian Journal of Zoology 68: 26952697.Google Scholar
Hertel, A. G., Bischof, R., Langval, O., et al. (2018). Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos 127(2): 197207.Google Scholar
Himelright, B. M., Moore, J. M., Gonzales, R. L., et al. (2014). Sequential ovulation and fertility of polyoestrus in American black bears (Ursus americanus). Conservation Physiology 2: cou051.Google Scholar
Hrdy, S. B. (1979). Infanticide among animals: a review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology 1: 1340.Google Scholar
Hunter, L. & Barrett, P.. (2019). Carnivores of the world. Second edition. Princeton, NJ: Princeton University Press.Google Scholar
Iibuchi, R., Nakano, N., Nakamura, T., et al. (2009). Change in body weight of mothers and neonates and in milk composition during denning period in captive Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 57: 1322.Google Scholar
Jonkel, C. & Cowan, I. (1971). The black bear in the spruce-fir forest. Wildlife Monographs 27: 357.Google Scholar
Joshi, A. R. (1996). The home range, feeding habits, and social organization of sloth bears (Melursus ursinus) in Royal Chitwan National Park, Nepal. PhD thesis, University of Minnesota, Minneapolis, USA.Google Scholar
Joshi, A. R., Smith, J. L. D. & Garshelis, D. L. (1999). Sociobiology of the myrmecophagous sloth bear in Nepal. Canadian Journal of Zoology 77(11): 16901704.Google Scholar
Kaczensky, P., Knauer, F., Krze, B., et al. (2003). The impact of high speed, high volume traffic axes on brown bears in Slovenia. Biological Conservation 111: 191204.Google Scholar
Katayama, A., Tsubota, T., Yamada, F., Kita, I. & Tiba, T. (1996). Reproductive evaluation of Japanese black bears (Selenarctos thiberanus japonicus) by observation of the ovary and uterus. Japanese Journal of Zoo Wildlife Medicine 1: 2632.Google Scholar
Kleiner, J. D., Van Horn, R. C., Swenson, J. E. & Steyaert, S. M. J. G. (2018). Rub-tree selection by Andean bears in the Peruvian dry forest. Ursus 29(1): 5866.Google Scholar
Kolenosky, G. B. (1990). Reproductive biology of black bears in east-central Ontario. Bears: Their Biology and Management 8: 385392.Google Scholar
Komatsu, T., Tsubota, T., Kishimoto, M., Amasaki, S. & Tiba, T. (1994). Puberty and stem cell for the initiation and resumption of spermatogenesis in the male Japanese black bear (Selenarctos thibetanus japonicus). Journal of Reproduction and Development 40: j65j71.Google Scholar
Kovach, A. I. & Powell, R. A. (2003). Effects of body size on male mating tactics and paternity in black bears, Ursus americanus. Canadian Journal of Zoology 81: 12571268.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2013). Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hardmast availability. Journal of Mammalogy 94: 351360.Google Scholar
Krofel, M., Filacorda, S. & Jerina, K. (2010). Mating-related movements of male brown bears on the periphery of an expanding population. Ursus 21: 2330.Google Scholar
Kurt, F. & Jayasuriya, A. (1968). Notes on a dead bear. Loris 11: 182183.Google Scholar
Lamb, C. T., Mowat, G., Gilbert, S. L., et al. (2017). Density-dependent signaling: an alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12: e0184176.Google Scholar
Larivière, S. (2001). Ursus americanus. Mammalian Species 647: 111.Google Scholar
Laurie, A. & Seidensticker, J. (1977). Behavioural ecology of the sloth bear (Melursus ursinus). Journal of Zoology 182(2): 187204.Google Scholar
Leclerc, M., Frank, S. C., Zedrosser, A., Swenson, J. E. & Pelletier, F. (2017). Hunting promotes spatial reorganization and sexually selected infanticide. Scientific Reports 7: 45222.Google Scholar
LeCount, A. L. (1987). Causes of black bear cub mortality. Bears: Their Biology and Management 7: 7582.Google Scholar
Liu, D., Wei, R., Zhang, G., et al. (2008). Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chinese Science Bulletin 53: 27932800.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2015). Free mate choice enhances conservation breeding in the endangered giant panda. Nature Communications 6: 10125.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2017). Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biological Conservation 207: 2737.CrossRefGoogle Scholar
Mauritzen, M., Derocher, A. E. & Wiig, Ø. (2001). Space-use strategies of female polar bears in a dynamic sea ice habitat. Canadian Journal of Zoology 79: 17041713.Google Scholar
McLellan, B. N. (2005). Sexually selected infanticide in grizzly bears: the effects of hunting on cub survival. Ursus 16(2): 141156.Google Scholar
McLellan, B. N. (2015). Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. Journal of Wildlife Management 79: 749765.Google Scholar
McLoughlin, P. D., Ferguson, S. H. & Messier, F. (2000). Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evolutionary Ecology 14: 3960.Google Scholar
Mead, R. A. (1993). Embryonic diapause in vertebrates. Journal of Experimental Zoology 266: 629641.Google Scholar
Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. (2008). Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proceedings of the Royal Society B – Biological Sciences 275: 217226.Google Scholar
Moore, J. A., Xu, R., Frank, K., Draheim, H. & Scribner, K. T. (2015). Social network analysis of mating patterns in American black bears (Ursus americanus). Molecular Ecology 24: 40104022.Google Scholar
Muller-Schwarze, D. (2006). Chemical ecology of vertebrates. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nakamura, S., Yokoyama, M., Katayama, A., Morimitsu, Y. & Saita, E. (2011). Growth pattern and its characteristics of outer morphology of Asiatic black bear. Wildlife Monograph of Hyogo 3: 107116.Google Scholar
Ngoprasert, D., Reed, D. H., Steinmetz, R. & Gale, G. A. (2012). Density estimation of Asian bears using photographic capture–recapture sampling based on chest marks. Ursus 23(2): 117133.Google Scholar
Nie, Y.-G., Zhang, Z.-J., Swaisgood, R. R. & Wei, F.-W. (2012a). Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58: 235241.Google Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wie, F. (2012b). Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66: 721730.Google Scholar
Nie, Y., Speakman, J. R., Wu, Q., et al. (2015). Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349: 171174.CrossRefGoogle ScholarPubMed
Norris, T. (1969). Ceylon sloth bear. International Wildlife 12: 300303.Google Scholar
Oi, T., Ohnishi, N., Yamada, F. & Kitahara, E. (2008). Characteristics of sex-age composition of Asian black bears killed as nuisances in Kyoto. Mammalian Science 48: 1724.Google Scholar
Okano, T., Nakamura, S., Nakashita, R., et al. (2006). Incidence of ovulation without coital stimuli in captive Japanese black bears (Ursus thibetanus japonicus) based on serum progesterone profiles. Journal of Veterinary Medical Science 68: 11331137.Google Scholar
Ombrello, T. A., Chinnici, N. L. & Huffman, J.E. (2016). Multiple paternities in American black bears from New Jersey. Journal of the Pennsylvania Academy of Science 90: 2124.Google Scholar
Owen, M. A., Swaisgood, R. R., Slocomb, C., et al. (2015). An experimental investigation of chemical communication in the polar bear. Journal of Zoology 295: 3643.Google Scholar
Pan, W. (2014). A chance for lasting survival: Ecology and behavior of wild giant pandas. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Penteriani, V., López-Bao, J. V., Bettega, C., et al. (2017). Consequences of brown bear viewing tourism: a review. Biological Conservation 206: 169180.CrossRefGoogle Scholar
Penteriani, V., Delgado, M. D. M., Krofel, M., et al. (2018). Evolutionary and ecological traps for brown bears Ursus arctos in human-modified landscapes. Mammal Review 48: 180193.CrossRefGoogle Scholar
Peyton, B. (1980). Ecology, distribution, and food habits of spectacled bears, Tremarctos ornatus, in Peru. Journal of Mammalogy 61: 639652.Google Scholar
Phillips, W. W. A. (1984). Manual of the mammals of Sri Lanka (pp. 290296). Wildlife and Nature Protection Society of Sri Lanka.Google Scholar
Prater, S. H. (1965). The book of Indian animals. Bombay: Bombay Natural History Society.Google Scholar
Puschmann, V. W., Schuppel, K. F. & Kronberger, H. (1977). Detection of blastocyst in uterine lumen of Indian bear (Melursus u. ursinus). In: Ippen, R. & Schrader, H. D. (Eds.) Sickness in zoos (pp. 389391). Berlin: Akademie Verlag.Google Scholar
Ramsay, M. A. & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology 64: 21422151.Google Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology 214: 601634.Google Scholar
Ratnayeke, S., van Manen, F. T. & Padmalal, U. (2007). Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka. Wildlife Biology 13: 272284.Google Scholar
Richardson, E. S. (2014). The mating system and life history of the polar bear. PhD dissertation, University of Alberta, Edmonton.Google Scholar
Rosell, F., Jojola, S. M., Ingdal, K., et al. (2011). Brown bears possess anal sacs and secretions may code for sex. Journal of Zoology 283: 143152.Google Scholar
Rosenthal, M. & Haggerty, C. (1989). Proceedings of the first international symposium on the spectacled bear. Chicago: Lincoln Park Zoo.Google Scholar
Rosenthal, R. A. (1999). International studbook for the spectacled bear (Tremarctos ornatus). Chicago: The Lincoln Park Zoological Society.Google Scholar
Rosing-Asvid, A., Born, E. W. & Kingsley, M. C. S. (2002). Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biology 25: 878883.Google Scholar
Schaller, G. B., Hu, J., Pan, W. & Zhu, J. (1985). The giant pandas of wolong. Chicago: University of Chicago Press.Google Scholar
Schwartz, C. C., Keating, K. A., Reynolds, H. V., et al. (2003). Reproductive maturation and senescence in the female brown bear. Ursus 14(2): 109119.Google Scholar
Schwartz, C. C., Haroldson, M. A., White, G. C., et al. (2006). Temporal, spatial, and environmental influences on the demographics of grizzly bears in the greater Yellowstone Ecosystem. Wildlife Monographs 161: 168.Google Scholar
Schwarzenberger, F., Fredriksson, G., Schaller, K. & Kolter, L. (2004). Fecal steroid analysis for monitoring reproduction in the sun bear (Helarctos malayanus). Theriogenology 62: 16771692.Google Scholar
Sergiel, A., Naves, J., Kujawski, P., et al. (2017). Histological, chemical and behavioural evidence of pedal communication in brown bears. Scientific Reports 7: 1052.Google Scholar
Shimozuru, M., Shirane, Y., Tsuruga, H., et al. (2019). Incidence of multiple paternity and inbreeding in high-density brown bear populations on the Shiretoko Peninsula, Hokkaido, Japan. Journal of Heredity 110(3): 321331.CrossRefGoogle ScholarPubMed
Smith, T. G. & Aars, J. (2015). Polar bears (Ursus maritimus) mating during late June on the pack ice of northern Svalbard, Norway. Polar Research 34: 25786.CrossRefGoogle Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37: 2153.Google Scholar
Stenhouse, G., Boulanger, J., Lee, J., et al. (2005). Grizzly bear associations along the eastern slopes of Alberta. Ursus 16(1): 3140.Google Scholar
Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. (2012). The mating system of the brown bear Ursus arctos. Mammal Review 42: 1234.Google Scholar
Steyaert, S. M. J. G., Swenson, J. E. & Zedrosser, A. (2014). Litter loss triggers estrus in a nonsocial seasonal breeder. Ecology and Evolution 4: 300310.Google Scholar
Steyaert, S. M. J. G., Leclerc, M., Pelletier, F., et al. (2016). Human shields mediate sexual conflict in a top predator. Proceedings of the Royal Society B: Biological Sciences 283: 20160906.Google Scholar
Stirling, I., Spencer, C. & Andriashek, D. (2016). Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Marine Mammal Science 32: 1337.Google Scholar
Stone, I. R. & Derocher, A. E. (2007). An incident of polar bear infanticide and cannibalism on Phippsoya, Svalbard. Polar Record 43: 171173.Google Scholar
Swaisgood, R. R., Lindburg, D. G. & Zhang, H. (2002). Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. Journal of Zoology 257: 381386.Google Scholar
Swenson, J. E., Sandegren, F., Söderberg, A., et al. (1997). Infanticide caused by hunting of male bears. Nature 386: 450451.Google Scholar
Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. (2015). Patterns in the use of rub trees by the Eurasian brown bear. Hystrix, the Italian Journal of Mammalogy 26: 118124.Google Scholar
Tibbetts, E. A. & Dale, J. (2007). Individual recognition: it is good to be different. Trends in Ecology and Evolution 22: 529537.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In: Campbell, B. G. (Ed.), Sexual selection and the descent of man 1871–1971 (pp. 136179). Chicago: Aldine.Google Scholar
Tsubota, T. & Kanagawa, H. (1993). Morphological characteristics of the ovary, uterus and embryo during the delayed implantation period in the Hokkaido brown bear (Ursus arctos yesoensis). Journal of Reproduction and Development 39: 325331.Google Scholar
Tsubota, T., Howell-Skalla, L., Boone, W. R., Garshelis, D. L. & Bahr, J. M. (1998). Serum progesterone, oestradiol, luteinizing hormone and prolactin profiles in the female black bear (Ursus americanus). Animal Reproduction Science 53: 107118.CrossRefGoogle ScholarPubMed
Vaisefeld, M. A. & Chestin, I. E. (1993). Bears: brown bear, polar bear, Asian black bear. Distribution, ecology, use and protection. Moscow: Nauka.Google Scholar
Wei, W., Swaisgood, R. R., Owen, M. A., et al. (2019). The role of den quality in giant panda conservation. Biological Conservation 231: 1892196.Google Scholar
Wiig, Ø., Gjertz, I., Hansson, R. & Thomassen, J. (1992). Breeding behaviour of polar bears in Hornsund, Svalbard. Polar Record 28: 157159.CrossRefGoogle Scholar
Wong, S., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21: 627639.CrossRefGoogle Scholar
Yamamoto, K., Tsubota, T. & Kita, I. (1998). Observation of sexual behavior of captive Japanese black bears, Ursus tibetanus japonicus. Journal of Reproduction and Development 44: j13j18.Google Scholar
Yamamoto, T., Tamatani, H., Tanaka, J., et al. (2012). Multiple paternity in Asian black bear Ursus thibetanus (Ursidae, Carnivora) determined by microsatellite analysis. Mammalia 77: 215217.Google Scholar
Yamane, M., Yamamoto, Y., Tsujimoto, T. & Osawa, T. (2009). Relationship between uterine morphology and peripheral concentrations of sex steroid hormone in wild Japanese black bears (Ursus thibetanus japonicus). Animal Reproduction Science 113: 251262.CrossRefGoogle ScholarPubMed
Yamazaki, K. (2017). Challenges in management and conservation of Asian black bears in Japan. Tokyo: University of Tokyo Press.Google Scholar
Yoganand, K. (2005). Behavioural ecology of sloth bear (Melursus ursinus) in Panna National Park, Central India. PhD Thesis. Saurashtra University, India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2013). Sloth bear: Melursus ursinus. In: Johnsingh, A. J. T. & Manjrekar, N. (Eds.), Mammals of South Asia (pp. 438456). Telangana, India: Orient Blackswan pvt. Ltd.Google Scholar
Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. (2007). Genetic estimates of annual reproductive success in male brown bears: the effects of body size, age, internal relatedness and population density. Journal of Animal Ecology 76: 368375.Google Scholar
Zeyl, E., Aars, J., Ehrich, D., Bachmann, L. & Wiig, Ø. (2009). The mating system of polar bears: a genetic approach. Canadian Journal of Zoology 87: 11951209.CrossRefGoogle Scholar
Zhang, H., Li, D., Wang, C. & Hull, V. (2009). Delayed implantation in giant pandas: the first comprehensive empirical evidence. Reproduction 138: 979986.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters 7(3): 403406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9: 4660.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences 108: 1771417719.Google Scholar
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas: infant growth and development and mother-infant relationships. Journal of Zoology 253: 141155.Google Scholar

References

Allen, M. L., Elbroch, L. M., Wilmers, C. C. & Wittmer, H. U. (2015). The comparative effects of large carnivores on the acquisition of carrion by scavengers. The American Naturalist 185: 822833.Google Scholar
Apps, C. D., McLellan, B. N. & Woods, J. G. (2006). Landscape partitioning and spatial inferences of competition between black and grizzly bears. Ecography 29: 561572.Google Scholar
Arthur, S.M. & Vecchio, P.A. Del. (2017). Effects of grizzly bear predation on muskoxen in northeastern Alaska. Ursus 28: 8191.Google Scholar
Ballard, W., Carbyn, L. N. & Smith, D. (2003). Wolf interactions with non-prey. In: Mech, L. D. & Boitani, L. (Eds.), Wolves: Behavior, ecology, and conservation (pp. 259271). Chicago, IL: University of Chicago Press.Google Scholar
Boertje, R., Keech, M. & Paragi, T. (2010). Science and values influencing predator control for Alaska moose management. Journal of Wildlife Management 74: 917928.Google Scholar
Boertje, R. D., Gasaway, W. C., Grangaard, D. V. & Kelleyhouse, D. G. (1988). Predation on moose and caribou by radio-collared grizzly bears in east central Alaska. Canadian Journal of Zoology 66: 24922499.Google Scholar
Bruskotter, J. T. & Shelby, L. B. (2010). Human dimensions of large carnivore conservation and management. Human Dimensions of Wildlife 15: 311314.Google Scholar
Caro, T. M. & Stoner, C .J. (2003). The potential for interspecific competition among African carnivores. Biological Conservation 110: 6775.Google Scholar
Chapron, G., Kaczensky, P., von Arx, M., et al. (2014). Recovery of large carnivores in Europe’s modern human‐dominated landscapes. Science 346: 15171519.Google Scholar
Dahle, B., Wallin, K., Cederlund, G., et al. (2013). Predation on adult moose Alces alces by European brown bears. Wildlife Biology 19: 165169.CrossRefGoogle Scholar
Derocher, A. E., Wiig, Ø. & Bangjord, G. (2000). Predation of Svalbard reindeer by polar bears. Polar Biology 23: 675678.Google Scholar
DeVault, T. L., Rhodes, O. E. & Shivik, J. A. (2003). Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102: 225234.Google Scholar
Elbroch, L. M., Lendrum, P. E., Allen, M. L. & Wittmer, H. U. (2015). Nowhere to hide: pumas, black bears, and competition refuges. Behavioral Ecology 26: 247254.Google Scholar
Frank, J., Støen, O. G., Segerström, P., et al. (2017). Kalvning i hägn och områdesriktad jakt på björn som åtgärder för att minska björnars predation på ren. Rapport från Viltskadecenter 7. Sveriges Lantbruksuniversitet SLU, Grimsø forskningsstation, Riddarhyttan, Sweden. [In Swedish.] https://pub.epsilon.slu.se/15369/7/frank_j_et_al_180425.pdf.Google Scholar
Garrott, R. A., White, P. J. & Watson, F. G. R. (2009). The ecology of large mammals in central Yellowstone: Sixteen years of integrated field studies. Terrestrial Ecology Series Volume 3. San Diego, CA: Academic Press.Google Scholar
Gervasi, V., Nilsen, E. B., Sand, H., et al. (2012). Predicting the potential demographic impact of predators on their prey: a comparative analysis of two carnivore–ungulate systems in Scandinavia. Journal of Animal Ecology 81: 443454.Google Scholar
Gorokhov, G. F. (1997). The abundance and structure of the Amur tiger population in southern Sikhote-Alin, in Redkie vidy mlekopitayushchikh i ikh okhrana. In: Proceedings 2nd All-Union Conf. “Rare Species of Mammals and Their Conservation (pp. 119120). Moscow: Nauka.Google Scholar
Griffin, K. A., Hebblewhite, M., Robinson, H. S., et al. (2011). Neonatal mortality of elk driven by climate, predator phenology and predator community composition. Journal of Animal Ecology 80: 12461257.Google Scholar
Heptner, V. G. & Sludskii, A. A. (1972). Mlekopitayushchiye Sovetskogo Soyuza. In Mammals of the Soviet Union, Carnivora. Moscow: Vysshaya Shkola/Google Scholar
Huygens, O. C., Miyashita, T., Dahle, B., Carr, M. & Izumiyama, S. (2003). Diet and feeding habits of Asiatic black bears in the Northern Japanese Alps. Ursus 14: 236245.Google Scholar
Hwang, M.-H., Garshelis, D. L. & Wang, Y. (2002). Diets of Asiatic black bears in Taiwan, with methodological and geographical comparisons. Ursus 13: 111125.Google Scholar
Jonzén, N., Sand, H., Wabakken, P., et al. (2013). Sharing the bounty – adjusting harvest to predator return in the Scandinavian human–wolf–bear–moose system. Ecological Modelling 265: 140148.Google Scholar
Kaczensky, P. (1999). Large carnivore depredation on livestock in Europe. Ursus 11: 5972.Google Scholar
Karlsson, J., Støen, O. G., Segerström, P., et al. (2012). Björnpredation på ren och potentiella effekter av tre förebyggande åtgärder. Rapport från Viltskadecenter 6. Sveriges Lantbruksuniversitet SLU, Grimsø forskningsstation, Riddarhyttan, Sweden. [In Swedish.]Google Scholar
Keech, M. A., Bowyer, R. T., Hoef, J. M. Ver, et al. (2000). Life-history consequences of maternal condition in Alaskan moose. The Journal of Wildlife Management 64: 450462.Google Scholar
Kindberg, J., Swenson, J. E., Ericsson, G., et al. (2011). Estimating population size and trends of the Swedish brown bear Ursus arctos population. Wildlife Biology 17: 114123.Google Scholar
Knight, R. R. & Judd, S. (1979). Grizzly bears that kill livestock. International Conference on Bear Research and Management 5: 186190.Google Scholar
Kostoglod, V. E. (1981). The experience of prolonged tracking of the brown bear in Sikhote-Alin. Bulletin of Moscow Society of Naturalists. Biological series 86: 312.Google Scholar
Krofel, M. & Jerina, K. (2016). Mind the cat: conservation management of a protected dominant scavenger indirectly affects an endangered apex predator. Biological Conservation 197: 4046.Google Scholar
Krofel, M. & Kos, I. (2007). Evidence of the brown bear (Ursus arctos) tracking the Eurasian lynx (Lynx lynx) on the Snežnik plateau, Slovenia. Natura Sloveniae 9: 4546.Google Scholar
Krofel, M., Kos, I. & Jerina, K. (2012). The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behavioral Ecology and Sociobiology 66: 12971304.Google Scholar
Lewis, T. M. & Lafferty, D. J. R. (2014). Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25: 813.Google Scholar
MacNulty, D., Varley, N. & Smith, D. (2001). Grizzly bear, Ursus arctos, usurps bison calf, Bison bison, captured by wolves, Canis lupus, in Yellowstone National Park, Wyoming. Canadian Journal of Zoology 115: 495498.Google Scholar
Mattisson, J., Persson, J., Andrén, H. & Segerström, P. (2011). Temporal and spatial interactions between an obligate predator, the Eurasian lynx (Lynx lynx), and a facultative scavenger, the wolverine (Gulo gulo). Canadian Journal of Zoology 89: 7989.Google Scholar
Milleret, C. (2011). Estimating wolves (Canis lupus) and brown bear (Ursus arctos) interactions in Central Sweden. Does the emergence of brown bears affect wolf predation patterns? Masters thesis, Université Joseph Fourier–Grenoble.Google Scholar
Milleret, C., Ordiz, A., Chapron, G., et al. (2018). Habitat segregation between brown bears and gray wolves in a human-dominated landscape. Ecology and Evolution 8: 117.Google Scholar
Monteith, K. L., Bleich, V. C., Stephenson, T. R. & Pierce, B. M. (2014). Life-history characteristics of mule deer: effects of nutrition in a variable environment. Wildlife Monographs 186: 164.Google Scholar
Mosolov, V. & Valentsev, A. (2003). Lynx of Eurasia. The Kamchatka. In: The lynx. Regional features of ecology, use and protection (pp. 408423). Moscow: Nauka.Google Scholar
Murphy, K., Felzien, G., Hornocker, M. & Ruth, T. (1998). Encounter competition between bears and cougars: some ecological implications. Ursus 10: 5560.Google Scholar
Ordiz, A., Bischof, R. & Swenson, J. E. (2013). Saving large carnivores, but losing the apex predator? Biological Conservation 168: 128133.Google Scholar
Ordiz, A., Milleret, C., Kindberg, J., et al. (2015). Wolves, people, and brown bears influence the expansion of the recolonizing wolf population in Scandinavia. Ecosphere 6: 114.Google Scholar
Ordiz, A., Sæbø, S., Kindberg, J., Swenson, J. E. & Støen, O. G. (2017). Seasonality and human disturbance alter brown bear activity patterns: implications for circumpolar carnivore conservation? Animal Conservation 20: 5160.Google Scholar
Palomares, F. & Caro, T. M. (1999). Interspecific killing among mammalian carnivores. The American Naturalist 153: 492508.Google Scholar
Périquet, S., Fritz, H. & Revilla, E. (2015). The lion king and the hyaena queen: large carnivore interactions and coexistence. Biological Reviews 90: 11971214.Google Scholar
Pikunov, D. G. & Korkishko, V. G. (1992). Leopard of Far East. Moscow: Nauka [in Russian].Google Scholar
Rakov, N. V. (1965). The current distribution of the tiger in the Amur-Ussuri region. Zoologicheskii Zhurnal 44: 433441.Google Scholar
Ruong, I. (1982). Samerna i historien och nutiden. Stockholm: BonnierFakta.Google Scholar
Sand, H., Wabakken, P., Zimmermann, B., et al. (2008). Summer kill rates and predation pattern in a wolf–moose system: can we rely on winter estimates? Oecologia 156: 5364.Google Scholar
Sanz-Pérez, A., Ordiz, A., Sand, H., et al. (2018). No place like home? A test of the natal habitat-biased dispersal hypothesis in Scandinavian wolves. Royal Society Open Science 5: 181379.Google Scholar
Sato, Y., Mano, T. & Takatsuki, S. (2005). Stomach contents of brown bears (Ursus arctos) in Hokkaido, Japan. Wildlife Biology 11: 133144.Google Scholar
Schoener, T. W. (1983). Field experiments on interspecific competition. The American Naturalist 122: 240285.Google Scholar
Schwartz, C. C., Cain, S. L., Podruzny, S., Cherry, S. & Frattaroli, L. (2010). Contrasting activity patterns of sympatric and allopatric black and grizzly bears. Journal of Wildlife Management 74: 16281638.Google Scholar
Seryodkin, I. V., Miquelle, D. G., Goodrich, J. M., Kostyria, A. V. & Petrunenko, Y. K. (2018). Interspecific relationships between the Amur tiger (Panthera tigris altaica) and brown (Ursus arctos) and Asiatic black (Ursus thibetanus) bears. Biology Bulletin 45: 853864.Google Scholar
Sinclair, A. R. E. & Krebs, C. J. (2002). Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philosophical Transactions of the Royal Society of London B 357: 12211231.Google Scholar
Sivertsen, T. R. (2017). Risk of brown bear predation on semi-domesticated reindeer calves interactions and landscape heterogeneity. Doctoral thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Smith, D. W., Peterson, R. O. & Houston, D. B. (2003). Yellowstone after wolves. BioScience 53: 330340.Google Scholar
Stirling, I. & Derocher, A. (1990). Factors affecting the evolution and behavioral ecology of the modern bears. Bears: Their Biology and Management 8: 189204.Google Scholar
Swenson, J. E., Wabakken, P., Sandegren, F., et al. (1995). The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildlife Biology 1: 1125.Google Scholar
Swenson, J., Dahle, B., Busk, H., et al. (2007). Predation on moose calves by European brown bears. Journal of Wildlife Management 71: 19931997.Google Scholar
Swenson, J. E., Schneider, M., Zedrosser, A., et al. (2017). Challenges of managing a European brown bear population; lessons from Sweden, 1943–2013. Wildlife Biology 1: wlb.00251.Google Scholar
Tallian, A., Ordiz, A., Metz, M. C., et al. (2017). Competition between apex predators? Brown bears decrease wolf kill rate on two continents. Proceedings of the Royal Society B: Biological Sciences 284: 20162368.Google Scholar
Tkachenko, K. N. (2012). Specific features of feeding of the Amur tiger Panthera tigris altaica (Carnivora, Felidae) in a densely populated locality (with reference to Bol’shekhekhtsirskii Reserve and its environs). Biology Bulletin 39: 279287.Google Scholar
Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. (2013). Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS One 8: e77373.Google Scholar
Wilmers, C. C. & Getz, W. M. (2005). Gray wolves as climate change buffers in Yellowstone. PLoS Biology 3: e92.Google Scholar
Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Wayne, M. (2003). Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology 72: 909916.Google Scholar
Wisz, M. S., Pottier, J., Kissling, W. D., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 1530.Google Scholar
Wyman, C. (2002). Grizzly on a bull bison in Yellowstone National Park. Ursus 13: 375377.Google Scholar
Zabel, A. & Holm-Müller, K. H. (2008). Conservation performance payments for carnivore conservation in Sweden. Conservation Biology 22: 247251.Google Scholar
Zager, P. & Beecham, J. (2006). The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17: 95108.Google Scholar
Zhiryakov, V. A. & Baidavletov, R. Z. (2003). Lynx of Eurasia. Kazakhstan. In: The lynx. Regional features of ecology, use and protection (pp. 344367). Moscow: Nauka.Google Scholar

References

Akhtar, N., Singh Bargali, H. & Chauhan, N. P. S. (2004). Sloth bear habitat use in disturbed and unprotected areas of Madhya Pradesh, India. Ursus 15(2): 203211.Google Scholar
Bacon, A. M., Demeter, F., Duringer, P., et al. (2008). The Late Pleistocene Duoi U’Oi cave in northern Vietnam: palaeontology, sedimentology, taphonomy and palaeoenvironments. Quaternary Science Reviews 27(15–16): 16271654.Google Scholar
Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature 402(6759): 286288.Google Scholar
Choudhury, A. U. (2001). Devastating flood in Kaziranga National Park. Tiger Paper 28(3): 2426.Google Scholar
Choudhury, A. U. (2011). Records of Sloth Bear and Malayan Sun Bear in North East India. Final report to International Association for Bear Research & Management (IBA). The Rhino Foundation for Nature in NE India, Guwahati, Assam, India.Google Scholar
Collins, N. M. (1980). The distribution of soil macrofauna on the west ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44: 263275.Google Scholar
Christiansen, P. (2008). Feeding ecology and morphology of the upper canines in bears (Carnivora: Ursidae). Journal of Morphology 269(7): 896908.Google Scholar
Erdbrink, D. P. (1953). A review of fossil and recent bears of the Old World: with remarks on their phylogeny, based upon their dentition (Vol. 1). Deventer: Drukkerij Jan de De Lange.Google Scholar
Ferrar, P. (1982). Termites of a South African savanna. II. Densities and populations of smaller mounds, and seasonality of breeding. Oecologia 52(1): 133138.Google Scholar
Fredriksson, G. M. (2012). Effects of El Niño and large-scale forest fires on the ecology and conservation of Malayan sun bears (Helarctos malayanus) in East Kalimantan, Indonesian Borneo. Doctoral dissertation, University of Amsterdam.Google Scholar
Fredriksson, G. M., Wich, S. A. & Trisno, . (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89(3): 489508.Google Scholar
Futuyma, D. J. & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics 19(1): 207233.Google Scholar
Garshelis, D. L. (2004). Variation in ursid life histories: is there an outlier? In: Giant pandas: Biology and conservation (pp. 5373). Berkeley, CA: University of California Press.Google Scholar
Garshelis, D. L., Joshi, A. R., Smith, J. L. D. & Rice, C. G. (1999) Conservation action plan for sloth bears. In: Servheen, C., Herrero, C. & Peyton, S., B. (Eds.), Bears: Status survey and conservation action plan (pp. 225240). Gland, Switzerland and Cambridge, UK: IUCN/SSC Bear and Polar Bear Specialist Groups.Google Scholar
Garshelis, D. L., Dhariaya, N. A., Sharp, T. R., et al. (2015). Sloth bears at the northern edge of their range: status of the transboundary population linking northeastern India to Bhutan. Final Report to International Association for Bear Research and Management.Google Scholar
Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences 106(Supplement 2): 19,65919,665.Google Scholar
Huygens, O. C., Miyashita, T., Dahle, B., et al. (2003). Diet and feeding habits of Asiatic black bears in the Northern Japanese Alps. Ursus 14(2): 236245.Google Scholar
Hwang, M. H., Garshelis, D. L. & Wang, Y. (2002). Diets of Asiatic black bears in Taiwan, with methodological and geographical comparisons. Ursus 13: 111125.Google Scholar
Joshi, A. R., Garshelis, D. L. & Smith, J. L. (1997). Seasonal and habitat-related diets of sloth bears in Nepal. Journal of Mammalogy 78(2): 584597.Google Scholar
Koike, S. (2010). Long-term trends in food habits of Asiatic black bears in the Misaka Mountains on the Pacific coast of central Japan. Mammalian Biology 75(1): 1728.CrossRefGoogle Scholar
Krause, J., Unger, T., Noçon, A., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene–Pliocene boundary. BMC Evolutionary Biology 8(1): 220, DOI:10.1186/1471-2148-8-220.Google Scholar
Linkie, M., Dinata, Y., Nugroho, A. & Haidir, I.A. (2007). Estimating occupancy of a data deficient mammalian species living in tropical rainforests: sun bears in the Kerinci Seblat region, Sumatra. Biological Conservation 137: 2027.Google Scholar
Louthan, A. M., Doak, D. F. & Angert, A. L. (2015). Where and when do species interactions set range limits? Trends in Ecology & Evolution 30(12): 780792.Google Scholar
Mathisen, K. M. (2003). Effects of forest fires on termites (Isoptera) and availability of food for the sun bear (Ursus malayanus) in a dipterocarp forest of East Kalimantan, Indonesia. MSc thesis, Agriculture University of Norway.Google Scholar
Mattson, D. J., Herrero, S. & Merrill, T. (2005). Are black bears a factor in the restoration of North American grizzly bear populations? Ursus 16(1): 1131.Google Scholar
Miyagawa, S., Koyama, Y., Kokubo, M., et al. (2011). Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. Journal of Ethnobiology and Ethnomedicine 7(1): 2429.Google Scholar
Ngoprasert, D., Steinmetz, R., Reed, D. H., Savini, T. & Gale, G. A. (2011). Influence of fruit on habitat selection of Asian bears in a tropical forest. The Journal of Wildlife Management 75(3): 588595.Google Scholar
Primack, R. B. & Corlett, R. (2005). Tropical rain forests: An ecological and biogeographical comparison. Hoboken, NJ: Blackwell Publishing.Google Scholar
Rosenzweig, M. L. (1991). Habitat selection and population interactions: the search for mechanism. The American Naturalist 137: S5S28.Google Scholar
Sacco, T. & Van Valkenburgh, B. (2004). Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). Journal of Zoology 263(1): 4154.Google Scholar
Seidensticker, J., Yoganand, K. & Johnsingh, A. J. T. (2011). Sloth bears living in seasonally dry tropical and moist broadleaf forests and their conservation. In: McShea, W. J., Davies, S. J. & Bhumpakphan, N. (Eds.), Dry forests of Asia: Conservation and ecology (pp. 217236). Washington, DC: Smithsonian Institution Press.Google Scholar
Sethy, J. & Chauhan, N. P. S. (2018). Dietary preference of Malayan sun bear Helarctos malayanus in Namdapha Tiger Reserve, Arunachal Pradesh, India. Wildlife Biology 2018(1): wlb.00351.Google Scholar
Steinmetz, R. (2011). Ecology and distribution of sympatric Asiatic black bears and sun bears in the tropical dry forest ecosystem of Southeast Asia. In: McShea, W. J., Davies, S. J. & Bhumpakphan, N. (Eds.), Dry forests of Asia: Conservation and ecology (pp. 249274). Washington, DC: Smithsonian Institution Press.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2011). The shared preference niche of sympatric Asiatic black bears and sun bears in a tropical forest mosaic. PLoS One 6(1): e14509.Google Scholar
Steinmetz, R., Garshelis, D. L., Chutipong, W. & Seuaturien, N. (2013). Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94(1): 118.Google Scholar
Talukdar, N. R. & Choudhury, P. (2017). Conserving wildlife wealth of Patharia Hills Reserve Forest, Assam, India: a critical analysis. Global Ecology and Conservation 10: 126138.Google Scholar
Tougard, C. (2001). Biogeography and migration routes of large mammal faunas in South-East Asia during the Late Middle Pleistocene: focus on the fossil and extant faunas from Thailand. Palaeogeography, Palaeoclimatology, Palaeoecology 168(3–4): 337358.Google Scholar
Tumbelaka, L. & Fredriksson, G. M. (2006). The status of sun bears in Indonesia. In: Understanding Asian bears to secure their future (pp. 7378). Ibaraki: Japan Bear Network.Google Scholar
Wagner, J., Čermák, S. & Horáček, I. (2011). The presence of Ursus ex gr. minimus-thibetanus in the Late Villányian and its position among the Pliocene and Pleistocene black bears in Europe. Quaternaire 4: 3958.Google Scholar
Wiens, J. A. (1993). Fat times, lean times and competition among predators. Trends in Ecology & Evolution 8(10): 348349.Google Scholar
Wiens, J. J. (2011). The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1576): 23362350.Google Scholar
Wong, S. T., Servheen, C. W. & Ambu, L. (2002). Food habits of Malayan sun bears in lowland tropical forests of Borneo. Ursus 13: 127136.Google Scholar
Wong, S. T., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21(6): 627639.Google Scholar
Woodburne, M. O. (2004). Global events and the North American mammalian biochronology. New York, NY: Columbia University Press.Google Scholar
Woodruff, D. S. (2003). Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula. Journal of Biogeography 30(4): 551567.Google Scholar
Wu, J., Kohno, N., Mano, S., et al. (2015). Phylogeographic and demographic analysis of the Asian Black Bear (Ursus thibetanus) based on mitochondrial DNA. PLoS One 10(9): e0136398.Google Scholar
Yadav, S. K., Lamichhane, B. R., Subedi, N., et al. (2017). Himalayan black bear discovered in Babai Valley of Bardia National Park, Nepal, co-occurring with sloth bears. International Bear News 26(3): 2325.Google Scholar
Yamazaki, K., Kozakai, C., Koike, S., et al. (2012). Myrmecophagy of Japanese black bears in the grasslands of the Ashio area, Nikko National Park, Japan. Ursus 23(1): 5265.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.Google Scholar

References

Coy, P. L. & Garshelis, D. L. (1992). Reconstructing reproductive histories of black bears from the incremental layering in dental cementum. Canadian Journal of Zoology 70: 21502160.Google Scholar
Ditmer, M. A., Burk, T. E. & Garshelis, D. L. (2015a). Do innate food preferences and learning affect crop raiding by American black bears? Ursus 26: 4052.Google Scholar
Ditmer, M. A., Garshelis, D. L., Noyce, K. V., et al. (2015b). Behavioral and physiological responses of American black bears to landscape features in an agricultural region. Ecosphere 6(3): 28. http://dx.doi.org/10.1890/ES14–00199.1Google Scholar
Ditmer, M. A., Garshelis, D. L., Noyce, K. V., Haveles, A. W. & Fieberg, J. R. (2016). Are American black bears in an agricultural landscape being sustained by crops? Journal of Mammalogy 97: 5467.Google Scholar
Ditmer, M. A., Garshelis, D. L., Noyce, K. V. & Fieberg, J. R. (2018a). Delineating the ecological and geographic edge of an opportunist: the American black bear exploiting an agricultural landscape. Ecological Modelling 387: 205219.Google Scholar
Ditmer, M. A., Rettler, S. J., Fieberg, J. R., et al. (2018b). American black bears perceive the risks of crossing roads. Behavioral Ecology 29: 667675.Google Scholar
Garshelis, D. L. & Hellgren, E. C. (1994). Variation in reproductive biology of male black bears. Journal of Mammalogy 75: 175188.Google Scholar
Garshelis, D. L. & Noyce, K. V. (2008). Seeing the world through the nose of a bear – diversity of foods fosters behavioral and demographic stability. In: Fulbright, T. & Hewitt, D. (Eds.), Frontiers in wildlife science: Linking ecological theory and management applications (pp. 139163). Boca Raton, FL: CRC Press.Google Scholar
Henry, A. & Thompson, D. (1897). New light on the early history of the greater Northwest. The manuscript journals of Alexander Henry and of David Thompson 1799–1814. Exploration and adventure among the Indians on the Red, Saskatchewan, Missouri, and Columbia Rivers. Coues, E. (Ed.), vol. 1. New York, NY: Harper.Google Scholar
Iaizzo, P. A., Laske, T. G., Harlow, H. J., McClay, C. B. & Garshelis, D. L. (2012). Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation. Integrative Zoology 7: 7789.Google Scholar
Iles, T. L., Laske, T. G., Garshelis, D. L. & Iaizzo, P. A. (2017). Blood clotting behavior is innately modulated in Ursus americanus during early and late denning relative to summer months. Journal of Experimental Biology 220: 455459.Google Scholar
Laske, T. G., Harlow, H. J., Garshelis, D. L. & Iaizzo, P. A. (2010). Extreme respiratory sinus arrhythmia enables hibernating black bear survival – physiological insights and applications to human medicine. Journal of Cardiovascular Translational Research 3: 559569.Google Scholar
Laske, T. G., Garshelis, D. L. & Iaizzo, P. A. (2011). Monitoring the wild black bear’s reaction to human and environmental stressors. BMC Physiology 11: 13. doi:10.1186/1472-6793-11-13Google Scholar
Laske, T. G., Iaizzo, P. A. & Garshelis, D. L. (2017). Six years in the life of a mother bear – the longest continuous heart rate recordings from a free-ranging mammal. Scientific Reports 7:40732. doi: 10.1038/srep40732.Google Scholar
Laske, T. G., Evans, A. L., Arnemo, J. M., et al. (2018). Development and utilization of implantable cardiac monitors in free-ranging American black and Eurasian brown bears: system evolution and lessons learned. Animal Biotelemetry 6: 13. doi.org/10.1186/s40317–018-0157-zGoogle Scholar
Noyce, K. V. & Garshelis, D. L. (1994). Body size and blood characteristics as indicators of condition and reproductive performance in black bears. International Conference on Bear Research and Management 9: 481496.Google Scholar
Noyce, K. V. & Garshelis, D. L. (1997). Influence of natural food abundance on black bear harvests in Minnesota. Journal of Wildlife Management 61: 10671074.Google Scholar
Noyce, K. V. & Garshelis, D. L. (1998). Spring weight changes in black bears in northcentral Minnesota: the negative foraging period revisited. Ursus 10: 521531.Google Scholar
Noyce, K. V. & Garshelis, D. L. (2011). Seasonal migrations of black bears (Ursus americanus): causes and consequences. Behavioral Ecology and Sociobiology 65: 823835.Google Scholar
Noyce, K. V. & Garshelis, D. L. (2014). Follow the leader: social cues help guide landscape-level movements of American black bears (Ursus americanus). Canadian Journal of Zoology 92: 10051017.Google Scholar
Schorger, A. W. (1949). The black bear in early Wisconsin. Transactions of the Wisconsin Academy of Sciences, Arts and Letters 39: 151194.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×