Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T10:00:03.512Z Has data issue: false hasContentIssue false

Chapter 14 - Polar Bear (Ursus maritimus)

from Part II - Species Accounts

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access

Summary

This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.

Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 196 - 212
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aars, J. (2013). Variation in detection probability of polar bear maternity dens. Polar Biology 36: 10891096.CrossRefGoogle Scholar
Aars, J., Marques, T. A., Lone, K., et al. (2017). The number and distribution of polar bears in the western Barents Sea. Polar Research 36: 1374125.CrossRefGoogle Scholar
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. (2008). A Bayesian network modelling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver, E. T., Bitz, C. M. & Tremblay, L. B. (Eds.), Arctic sea ice decline: Observations, projections, mechanisms, and implications (pp. 213268). Geophysical Monograph 180. Washington, DC: American Geophysical Union.Google Scholar
Andersen, M., Derocher, A. E., Wiig, Ø. & Aars, J. (2012). Polar bear (Ursus maritimus) maternity den distribution in Svalbard, Norway. Polar Biology 35: 499508.CrossRefGoogle Scholar
Arnould, J. P. Y. & Ramsay, M. A. (1994). Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Canadian Journal of Zoology 72: 13651370.Google Scholar
Åsbakk, K., Aars, J., Derocher, A. E., et al. (2010). Serosurvey for Trichinella in polar bears (Ursus maritimus) from Svalbard and the Barents Sea. Veterinary Parasitology 172: 256263.Google Scholar
Atkinson, S. N. & Ramsay, M. A. (1995). The effects of prolonged fasting of the body composition and reproductive success of female polar bears (Ursus maritimus). Functional Ecology 9: 559567.Google Scholar
Atkinson, S. N., Nelson, R. A. & Ramsay, M. A. (1996a). Changes in the body composition of fasting polar bears (Ursus maritimus): the effect of relative fatness on protein conservation. Physiological Zoology 69: 304316.Google Scholar
Atkinson, S. N., Stirling, I. & Ramsay, M. A. (1996b). Growth in early life and relative body size among adult polar bears (Ursus maritimus). Journal of Zoology 239: 225234.CrossRefGoogle Scholar
Atwood, T. C., Marcot, B. G., Douglas, D. C., et al. (2015). Evaluating and ranking threats to the long-term persistence of polar bears. US Geological Survey Open-File Report 2014-1254.Google Scholar
Atwood, T. C., Peacock, E., McKinney, M. A., et al. (2016). Rapid environmental change drives increased land use by an Arctic marine predator. PLoS ONE 11: e0155932.Google Scholar
Atwood, T. C., Duncan, C. G., Patyk, K. A., et al. (2017). Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Scientific Reports 7: 13193.Google Scholar
Bechshøft, T. Ø., Derocher, A. E., Viengkone, M., et al. (2018). On the integration of ecological and physiological variables in polar bear toxicology research: a systematic review. Environmental Review 26: 1-12.CrossRefGoogle Scholar
Belikov, S. E., Boltunov, A. N., Ovsyanikov, N. G., Mordvintsev, I. & Nikiforov, V. V. (2010). Polar bear management and research in Russia, 2005–2009. In: Obbard, M. E., Thiemann, G. W., Peacock, E. & DeBruyn, T. D. (Eds.), Polar bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, June 29–July 3, 2009, Copenhagen, Denmark. Occasional Paper of the IUCN Species Survival Commission No. 43 (pp. 165169). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Bentzen, T. W., Follmann, E. H., Amstrup, S. C., et al. (2007). Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis. Canadian Journal of Zoology 85: 596608.Google Scholar
Bignert, A., Hung, H., Katsoyiannis, A. A., et al. (2016). Arctic Monitoring and Assessment Programme (AMAP) 2016: Temporal Trends in Persistent Organic Pollutants in the Arctic. Oslo, Norway: AMAP.Google Scholar
Boertmann, D. (2008). Greenland Red List – 2007. Aarhus: Greenland Home Rule.Google Scholar
Bowen, L., Miles, A. K., Waters, S., et al. (2015). Gene transcription in polar bears (Ursus maritimus) from disparate populations. Polar Biology 38: 14131427.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25: 634651.Google Scholar
Brown, T. M., Macdonald, R., Muir, D. C. G. & Letcher, R. J. (2018). The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s Eastern Arctic. Science of the Total Environment 618: 500517.Google Scholar
Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. (2013). Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. Journal of Animal Ecology 82: 912921.Google Scholar
Clark, D. A., Stirling, I. & Calvert, W. (1997). Distribution, characteristics, and use of earth dens and related excavations by polar bears on the western Hudson Bay Lowlands. Arctic 50: 158166.Google Scholar
Comiso, J. C. (2012). Large decadal decline of the Arctic multiyear ice cover. Journal of Climate 25: 11761193.Google Scholar
Comiso, J. C., Parkinson, C. L., Gersten, R. & Stock, L. (2008). Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35: L01703.Google Scholar
COSEWIC. (2008). COSEWIC Assessment and Update Status Report (WWW document). Available from http://sararegistry.gc.ca/virtual_sara/files/cosewic/sr_polar_bear_0808_e.pdf (accessed January 3, 2019).Google Scholar
Dau, J. & Barrett, R. (1981). Trichinella. In: Dieterich, R. A. (Ed.), Alaskan wildlife diseases (pp. 151161). Fairbanks, AK: University of Alaska.Google Scholar
DeMaster, D. P. & Stirling, I. (1981). Ursus maritimus. Mammalian Species 145: 17.Google Scholar
Derocher, A. E. (1999). Latitudinal variation in litter size of polar bears: ecology or methodology? Polar Biology 22: 350356.Google Scholar
Derocher, A. E. & Stirling, I. (1990a). Distribution of polar bears (Ursus maritimus) during the ice-free period in western Hudson Bay. Canadian Journal of Zoology 68: 13951403.Google Scholar
Derocher, A. E. & Stirling, I. (1990b). Observations of aggregating behaviour in adult male polar bears (Ursus maritimus). Canadian Journal of Zoology 68: 13901394.Google Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears. Journal of Zoology 234: 527536.Google Scholar
Derocher, A. E. & Stirling, I. (1998). Geographic variation in growth of polar bears (Ursus maritimus). Journal of Zoology 245: 6572.Google Scholar
Derocher, A. E. & Wiig, Ø. (2002). Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. Journal of Zoology 256: 343349.Google Scholar
Derocher, A. E., Stirling, I. & Andriashek, D. (1992). Pregnancy rates and serum progesterone levels of polar bears in western Hudson Bay. Canadian Journal of Zoology 70: 561566.CrossRefGoogle Scholar
Derocher, A. E., Andriashek, D. & Arnould, J. P. Y. (1993). Aspects of milk composition and lactation in polar bears. Canadian Journal of Zoology 71: 561567.CrossRefGoogle Scholar
Derocher, A. E., Wiig, Ø. & Andersen, M. (2002). Diet composition of polar bears in Svalbard and the western Barents Sea. Polar Biology 25: 448452.Google Scholar
Derocher, A. E., Andersen, M., Wiig, Ø. & Aars, J. (2010). Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behavioral Ecology and Sociobiology 64: 939946.CrossRefGoogle Scholar
Derocher, A. E., Andersen, M., Wiig, Ø., et al. (2011). Sea ice and polar bear den ecology at Hopen Island, Svalbard. Marine Ecology Progress Series 441: 273279.Google Scholar
de Wit, C. A., Muir, D. C. G., Vorkamp, K., et al. (2017). Arctic Monitoring and Assessment Programme (AMAP) 2016: Chemicals of Emerging Arctic Concern. Oslo, Norway: AMAP.Google Scholar
Dietz, R., Sonne, C., Basu, N., et al. (2013). What are the toxicological effects of mercury in Arctic biota? Science of the Total Environment 443: 775790.Google Scholar
Dietz, R., Desforges, J. P., Gustavson, K., et al. (2018). Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013. Environmental International 118: 169178.Google Scholar
Dietz, R., Letcher, R. J., Desforges, J-P., et al. (2019). Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment 696: 133792.Google Scholar
Duignan, P. J., Van Bressem, M-F., Cortés-Hinojosa, G. & Kennedy-Stoskopf, S. (2018). Viruses. In: Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 2nd edition (pp. 331365). Boca Raton, FL: CRC Press.Google Scholar
Duncan, C. G., Tiller, R., Mathis, D., et al. (2014). Brucella placentitis and seroprevalence in northern fur seals (Callorhinus ursinus) of the Pribilof Islands, Alaska. Journal of Veterinary Diagnostic Investigation 26: 507512.Google Scholar
Dupouy-Camet, J., Bourée, P. & Year, H. (2017). Trichinella and polar bears: a limited risk for humans. Journal of Helminthology 91: 440446.Google Scholar
Durner, G. M., Amstrup, S. C. & Fischbach, A. S. (2003). Habitat characteristics of polar bear terrestrial maternal den sites in northern Alaska. Arctic 56: 5562.Google Scholar
Durner, G. M., Douglas, D. C., Nielson, R. M., et al. (2009). Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79: 2558.Google Scholar
Durner, G. M., Whiteman, J. P., Harlow, H. J., et al. (2011). Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Polar Biology 34: 975984.Google Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (2018). Proceedings of the 18th working meeting of the IUCN/SSC Polar Bear Specialist Group, June 7–11, 2016, Anchorage, AK. Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Dutton, C. J., Quinnell, M., Lindsay, R., DeLay, J. & Barker, I. K. (2009). Paraparesis in a polar bear (Ursus maritimus) associated with West Nile virus infection. Journal of Zoo and Wildlife Medicine 40: 568571.Google Scholar
Engelhard, M. (2017). Ice bear. Washington, DC: University of Washington Press.Google Scholar
Environment and Climate Change Canada. (2018). Canadian polar bear subpopulation and status map 2018 (WWW document). Available from www.canada.ca/en/environment-climate-change/services/biodiversity/maps-sub-populations-polar-bears-protected.html#_fig03 (accessed January 9, 2019).Google Scholar
Escajeda, E., Laidre, K. L., Born, E. W., et al. (2018). Identifying shifts in maternity den phenology and habitat characteristics of polar bears (Ursus maritimus) in Baffin Bay and Kane Basin. Polar Biology 41: 87100.Google Scholar
Fagre, A., Patyk, K. A., Nol, P., et al. (2015). A review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance EcoHealth 12: 528539.Google Scholar
Fay, F. H. (1960). Carnivorous walrus and some arctic zoonoses. Arctic 13: 111122.Google Scholar
Ferguson, S. H., Taylor, M. K., Born, E. W., Rosing-Asvid, A. & Messier, F. (1999). Determinants of home range size for polar bears (Ursus maritimus). Ecology Letters 2: 311318.Google Scholar
Ferguson, S. H., Taylor, M. K. & Messier, F. (2000). Influence of sea ice dynamics on habitat selection by polar bears. Ecology 81: 761772.Google Scholar
Ferguson, S. H., Stirling, I. & McLoughlin, P. (2005). Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Marine Mammal Science 21: 121135.Google Scholar
Ferguson, S. H., Young, B. G., Yurkowski, D. J., et al. (2017). Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. Peer Journal 5: e2957.Google Scholar
Fischbach, A. S., Amstrup, S. C. & Douglas, D. C. (2007). Landward and eastward shift of Alaskan polar bear denning associated with recent sea ice changes. Polar Biology 30: 13951405.CrossRefGoogle Scholar
Freitas, C., Kovacs, K. M., Andersen, M., et al. (2012). Importance of fast ice and glacier fronts for female polar bears and their cubs during spring in Svalbard, Norway. Marine Ecology Progress Series 447: 289304.Google Scholar
Galicia, M. P., Thiemann, G. W., Dyck, M. G., Ferguson, S. H. & Higdon, J. W. (2016). Dietary habits of polar bears in Foxe Basin, Canada: possible evidence of a trophic regime shift mediated by a new top predator. Ecology and Evolution 6: 60056018.Google Scholar
Gormezano, L. J. & Rockwell, R. F. (2013). What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay. Ecology and Evolution 3: 35093523.Google Scholar
Griffen, B. D. (2018). Modelling the metabolic costs of swimming in polar bears (Ursus maritimus). Polar Biology 41: 491503.Google Scholar
Hamilton, S. G., Castro de la Guardia, L., Derocher, A. E., et al. (2014). Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9: e113746.CrossRefGoogle ScholarPubMed
Ingolfsson, O. &Wiig, Ø. (2009). Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Research 28: 455462.Google Scholar
Jessen, A. (2018). Management on polar bears in Greenland, 2009–2016. In: Durner, G. M., Laidre, K. L. & York, G. S. (Eds.), Polar bears: Proceedings of the 18th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Anchorage, Alaska, June 7–11, 2016 (pp. 8494). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Kingsley, M. C. S. (1979). Fitting the von Bertalanffy growth equation to polar bear age-weight data. Canadian Journal of Zoology 57: 10201025.Google Scholar
Kingsley, M. C. S., Stirling, I. & Calvert, W. (1985). The distribution and abundance of seals in the Canadian high Arctic, 1980–1982. Canadian Journal of Fisheries and Aquatic Sciences 42: 11891210.Google Scholar
Kirk, C. M., Amstrup, S., Swor, R., Holcomb, D. & O’Hara, T. M. (2010). Morbillivirus and Toxoplasma exposure and association with hematological parameters for southern Beaufort Sea polar bears: potential response to infectious agents in a sentinel species. EcoHealth 7: 321331.Google Scholar
Knudsen, B. (1978). Time budgets of polar bears (Ursus maritimus) on North Twin Island, James Bay, during summer. Canadian Journal of Zoology 56: 16271628.Google Scholar
Kolenosky, G. B. & Prevett, J. P. (1983). Productivity and maternity denning of polar bears in Ontario. International Conference on Bear Research and Management 5: 238245.Google Scholar
Kumar, V., Lammers, F., Bidon, T., et al. (2017). The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7: 46487.CrossRefGoogle ScholarPubMed
Kwok, R. & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters 36: 2009GL039035.Google Scholar
Laidre, K. L., Born, E. W., Heagerty, P., et al. (2015a). Shifts in habitat use by female polar bears (Ursus maritimus) in East Greenland. Polar Biology 38: 879893.Google Scholar
Laidre, K. L., Stern, H., Kovacs, K.M., et al. (2015b). Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century. Conservation Biology 29: 724737.CrossRefGoogle Scholar
Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. (2018). Historical and potential future importance of large whales as a food for polar bears. Frontiers in Ecology and the Environment 16: 515524.CrossRefGoogle Scholar
Larsen, T. S. & Stirling, I. (2009). The Agreement on the Conservation of Polar Bears – its History and Future. Norsk Polarinstittut, No. 127. 16 pp.Google Scholar
Latour, P. B. (1981). Spatial relationships and behavior of polar bears (Ursus maritimus Phipps) concentrated on land during the ice-free season of Hudson Bay. Canadian Journal of Zoology 56: 17631774.Google Scholar
Letcher, R. J., Bustnes, J-O., Dietz, R., et al. (2010). Exposure and effects assessment of persistent organic pollutants in Arctic wildlife and fish. Science of the Total Environment 408: 29953043.Google Scholar
Letcher, R. J., Morris, A. D., Dyck, M., et al. (2018). Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Science of the Total Environment 610: 121136.Google Scholar
Linke, K. (2017). World Zoo & Aquarium Association International Polar Bear Studbook. Rostock, Germany: Zoo Rostock.Google Scholar
Liu, Y., Richardson, E. S., Derocher, A. E., et al. (2018). Hundreds of unrecognized halogenated contaminants discovered in polar bear serum. Angewandte Chemie 57: 16,40116,406.Google Scholar
Loewen, K., Prins, B. & Philibert, H. (1990). Northwest Territories. Rabies in a polar bear. Canadian Veterinary Journal 31: 457.Google Scholar
Lone, K., Kovacs, K. M., Lydersen, C., et al. (2018a). Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Scientific Reports 8: 9677.CrossRefGoogle Scholar
Lone, K., Merkel, B., Lydersen, C., Kovacs, K. M. & Aars, J. (2018b). Sea ice resource selection models for polar bears in the Barents Sea subpopulation. Ecography 41: 567578.Google Scholar
Lunn, N. J., Stirling, I., Andriashek, D. & Richardson, E. (2004). Selection of maternity dens by female polar bears in western Hudson Bay, Canada and the effects of human disturbance. Polar Biology 27: 350356.Google Scholar
Lunn, N. J., Servanty, S., Regehr, E.V., et al. (2016). Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications 26: 13021320.Google Scholar
Malenfant, R. M., Coltman, D. W., Richardson, E. S., et al. (2015). Evidence of adoption, monozygotic twinning, and low inbreeding rates in a large genetic pedigree of polar bears. Polar Biology 39: 14551465.CrossRefGoogle Scholar
Malenfant, R. M., Davis, C. S., Cullinghman, C. I. & Coltman, D. W. (2016). Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS ONE 11: e0148967.Google Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. (2002). Resource selection by animals. Dordrecht: Kluwer Academic Publishers.Google Scholar
Mauritzen, M., Derocher, A. E., Wiig, Ø., et al. (2002). Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic. Journal of Applied Ecology 39: 7990.Google Scholar
Mauritzen, M., Belikov, S. E., Boltunov, A. N., et al. (2003). Functional responses in polar bear habitat selection. Oikos 100: 112124.Google Scholar
McCall, A. G., Pilfold, N. W., Derocher, A. E. & Lunn, N. J. (2016). Seasonal habitat selection by adult female polar bears in western Hudson Bay. Population Ecology 58: 407419.Google Scholar
McDonald, J. C., Gyorkos, T. W., Alberton, B., et al. (1990) An outbreak of toxoplasmosis in pregnant women in northern Quebec. Journal of Infectious Diseases 161: 769774.Google Scholar
McKinney, M. A., Stirling, I., Lunn, N. J., Peacock, E. & Letcher, R. J. (2010). The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991–2007. Science of the Total Environment 408: 62106222.Google Scholar
McKinney, M. A., Iverson, S., Fisk, A., et al. (2013). Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Global Change Biology 19: 23602372.Google Scholar
McKinney, M. A., Pedro, S., Dietz, R., et al. (2015). Ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems: a review of initial findings. Current Zoology 61: 617628.Google Scholar
Messier, F., Taylor, M. K. & Ramsay, M. A. (1992). Seasonal activity patterns of female polar bears (Ursus maritimus) in the Canadian Arctic as revealed by satellite telemetry. Journal of Zoology 226: 219229.Google Scholar
Messier, F., Taylor, M. K. & Ramsay, M. A. (1994). Denning ecology of polar bears in the Canadian Arctic archipelago. Journal of Mammalogy 75: 420430.Google Scholar
Messier, V., Levesque, B., Proulx, J. F., et al. (2009). Seroprevalence of Toxoplasma gondii among Nunavik Inuit (Canada). Zoonoses Public Health 56: 188197.Google Scholar
Meyerson, R. (2006). Association of Zoo and Aquariums Polar Bear Studbook. Toledo, OH: Toledo Zoo.Google Scholar
Meyerson, R., Moore, D., Long, S. & Che-Castaldo, J. (2017). Welfare of captive polar bears and their value in in situ conservation efforts. In: Butterworth, A. (Ed.), Marine mammal welfare – Human-induced change in the marine environment and its impacts on marine mammal welfare (pp. 489502). Bristol, UK: Springer Publishing.Google Scholar
Miller, M., Shapiro, K., Murray, M. J., Haulena, M. & Raverty, S. (2018). Protozoan parasites of marine mammals. In: Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 3rd edition (pp. 425469). Boca Raton, FL: CRC Press.Google Scholar
Miller, S., Wilder, J. & Wilson, R. R. (2015). Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. Journal of Mammalogy 96: 13171325.Google Scholar
Miller, W., Schuster, S. C., Welch, A. J., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proceedings of the National Academy of Sciences 109: 23822390.Google Scholar
Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. (2008). Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proceedings of the Royal Society B – Biological Sciences 275: 217226.Google Scholar
Monnett, C. & Gleason, J. S. (2006). Observations of mortality associated with extended open-water swimming by polar bears in the Alaskan Beaufort Sea. Polar Biology 29: 681687.Google Scholar
Nymo, I., Tryland, M., Kirstine-Frie, A., et al. (2013). Age-dependent prevalence of anti-Brucella antibodies in hooded seals Cystophora cristata. Inter-Research 106: 187196.Google Scholar
Obbard, M. E., Cattet, M. R. L., Howe, E. J., et al. (2016). Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2: 1532.Google Scholar
O’Hara, T. M., Holcomb, D., Elzer, P., et al. (2010). Brucella species survey in polar bears (Ursus maritimus) of northern Alaska. Journal of Wildlife Diseases 46: 687694.Google Scholar
Olson, J. W., Rode, K. D., Eggett, D. L., et al. (2017). Collar temperature sensor data reveal long-term patterns in southern Beaufort Sea polar bear den distribution on pack ice and land. Marine Ecology Progress Series 564: 211224.Google Scholar
Owen, M. A., Swaisgood, R. R., Slocomb, C., et al. (2015). An experimental investigation of chemical communication in the polar bear. Journal of Zoology 295: 3643.Google Scholar
Pagano, A., Cutting, A., Nicassio-Hiskey, N., Hash, A. & Williams, T. (2019). Energetic costs of aquatic locomotion in a sub-adult polar bear. Marine Mammal Science 35, 649659.CrossRefGoogle Scholar
Parks, E. K., Derocher, A. E. & Lunn, N. J. (2006). Seasonal and annual movement patterns of polar bears on the sea ice of Hudson Bay. Canadian Journal of Zoology 84: 12811294.Google Scholar
Peacock, E., Taylor, M. K., Laake, J. L. & Stirling, I. (2013). Population ecology of polar bears in Davis Strait, Canada and Greenland. Journal of Wildlife Management 77: 463476.Google Scholar
Philippa, J. D., Leighton, F. A., Daoust, P. Y., et al. (2004). Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Veterinary Record 155: 135140.Google Scholar
Pilfold, N. W., Derocher, A. E., Stirling, I., Richardson, E. & Andriashek, D. (2012). Age and sex composition of seals killed by polar bears in the eastern Beaufort Sea. PLoS ONE 7: e41429.Google Scholar
Pilfold, N. W., Derocher, A. E. & Richardson, E. (2014). Influence of intraspecific competition on the distribution of a wide-ranging, non-territorial carnivore. Global Ecology and Biogeography 23: 425435.Google Scholar
Poirier, P. & Lanthier, C. (1995). North American Regional Polar Bear Studbook. Quebec, Canada: Jardin zoologique de Granby.Google Scholar
Pond, C. M., Mattacks, C. A., Colby, R. H. & Ramsay, M. A. (1992). The anatomy, chemical composition, and metabolism of adipose tissue in wild polar bears (Ursus maritimus). Canadian Journal of Zoology 70: 326341.Google Scholar
Pongracz, J. D., Paetkau, D., Branigan, M. & Richardson, E. (2017). Recent hybridization between a polar bear and grizzly bears in the Canadian Arctic. Arctic 70: 151160.Google Scholar
Prop, J., Aars, J., Bardsen, B.-J., et al. (2015). Climate change and the increasing impact of polar bears on bird populations. Frontiers in Ecology and Evolution 3: 33.Google Scholar
Rah, H., Chomel, B. B., Kasten, R. W., et al. (2005) Serosurvey of selected zoonotic agents in polar bears (Ursus maritimus). Veterinary Record 156: 713.Google Scholar
Ramsay, M. A. & Dunbrack, R. L. (1986). Physiological constraints on life-history phenomena: the example of small bear cubs at birth. American Naturalist 127: 735743.Google Scholar
Ramsay, M. A. & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology 64: 21422151.Google Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology 214: 601634.Google Scholar
Ramsay, M. A. & Stirling, I. (1990). Fidelity of female polar bears to winter den sites. Journal of Mammalogy 71: 233236.Google Scholar
Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. (2007). Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. Journal of Wildlife Management 71: 26732683.Google Scholar
Regehr, E. V., Hunter, C. M., Caswell, H., Amstrup, S. C. & Stirling, I. (2010). Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice. Journal of Animal Ecology 79: 117127.Google Scholar
Regehr, E. V, Laidre, K. L., Akçakaya, H. R., et al. (2016). Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biology Letters 12: 20160556.Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R., et al. (2018). Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Scientific Reports 8: 16780.Google Scholar
Richardson, E., Stirling, I. & Hik, D. S. (2005). Polar bear (Ursus maritimus) maternity denning habitat in western Hudson Bay: a bottom-up approach to resource selection functions. Canadian Journal of Zoology 83: 860870.Google Scholar
Rigét, F. F., Bignert, A., Braune, B., et al. (2019). Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Science of the Total Environment 649: 99110.Google Scholar
Robbins, C. T., Ben-David, M., Fortin, J. K. & Nelson, O. L. (2012). Maternal condition determines birth date and growth of newborn bear cubs. Journal of Mammalogy 93: 540546.Google Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. (2010). Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications 20: 768782.Google Scholar
Rode, K. D., Regehr, E. V., Douglas, D. C., et al. (2014).Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology 20: 7688.Google Scholar
Rode, K. D., Wilson, R. R., Regehr, E. V., et al. (2015a). Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE 10: e0142213.Google Scholar
Rode, K. D., Robbins, C. T., Nelson, L., et al. (2015b). Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Frontiers in Ecology and the Environment 13: 138145.Google Scholar
Rode, K. D., Stricker, C. A., Erlenbach, J., et al. (2016). Isotopic incorporation and the effects of fasting and dietary lipid content on isotopic discrimination in large, carnivorous mammals. Physiological and Biochemical Zoology 89: 182197.Google Scholar
Rosing-Asvid, A., Born, E. W. & Kingsley, M. C. S. (2002). Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biology 25: 878883.Google Scholar
Routti, H., Atwood, T., Bechshoft, T. Ø., et al. (2019). State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. Science of the Total Environment 664, 10631083.Google Scholar
Russell, R. H. (1975). The food habits of polar bears of James Bay and southwest Hudson Bay in summer and autumn. Arctic 28: 117129.Google Scholar
Schliebe, S., Rode, K. D., Gleason, J. S., et al. (2008). Effects of sea ice extent and food availability on spatial and temporal distribution of polar bears during the fall openwater period in the Beaufort Sea. Polar Biology 31: 9991010.Google Scholar
Sidor, I., Goldstein, T. & Whatmore, A. M. (2008). Transplacental infection with Brucella in California sea lion (Zalophus californianus) fetus. In Brucellosis International Research Conference, Chicago, USA.Google Scholar
Smith, T. G. & Stirling, I. (1975). The breeding habitat of the ringed seal (Phoca hispida). The birth lair and associated structures. Canadian Journal of Zoology 53: 12971305.Google Scholar
Smith, T. G. & Stirling, I. (1978). Variation in the density of ringed seal (Phoca hispida) birth lairs in the Amundsen Gulf, Northwest Territories. Canadian Journal of Zoology 56: 10661070.Google Scholar
Smith, T. S., Partridge, S. T., Amstrup, S. C. & Schliebe, S. (2007). Post-den emergence behavior of polar bears (Ursus maritimus) in northern Alaska. Arctic 60: 187194.Google Scholar
Sonne, C. (2010). Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environment International 36: 461491.CrossRefGoogle ScholarPubMed
Sonne, C., Letcher, R. J., Bechshøft, T. Ø., et al. (2012). Two decades of biomonitoring polar bear health in Greenland: a review. Acta Veterinaria Scandinavica 54: S15.Google Scholar
Sonne, C., Bechshøft, T. Ø. & Rigét, F. F. (2013). Size and density of East Greenland polar bear (Ursus maritimus) skulls: valuable bio-indicators of environmental changes? Ecological Indicators 34: 290295.Google Scholar
Stern, H. L. & Laidre, K. L. (2015). Sea-ice indicators of polar bear habitat. The Cryosphere 10: 20272041.Google Scholar
Stirling, I. (1974). Midsummer observations on the behavior of wild polar bears (Ursus maritimus). Canadian Journal of Zoology 52: 11911198.Google Scholar
Stirling, I. (1997). The importance of polynyas, ice edges, and leads to marine mammals and birds. Journal of Marine Systems 10: 921.Google Scholar
Stirling, I. & Archibald, W. R. (1977). Aspects of predation on seals by polar bears. Journal of Fisheries Research Board Canada 34: 11261129.Google Scholar
Stirling, I. & Latour, P. B. (1978). Comparative hunting abilities of polar bear cubs of different ages. Canadian Journal of Zoology 56: 17681772.Google Scholar
Stirling, I. & van Meurs, R. (2015). Longest recorded underwater dive by a polar bear. Polar Biology 38: 13011304.Google Scholar
Stirling, I., Kingslay, M. C. S. & Calvert, W. (1982). The distribution and abundance of seals in the eastern Beaufort Sea, 1974–79. Canadian Wildlife Service Occasional Report 46.Google Scholar
Stirling, I., Andriashek, D. & Calvert, W. (1993). Habitat preferences of polar bears in the western Canadian Arctic in late winter and spring. Polar Record 29: 1324.Google Scholar
Stirling, I., Lunn, N. J. & Iacozza, J. (1999). Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52: 294306.Google Scholar
Stirling, I., Lunn, N. J., Iacozza, J., Elliott, C. & Obbard, M. (2004). Polar bear distribution and abundance on the southwestern Hudson Bay coast during open water season, in relation to population trends and annual ice patterns. Arctic 57: 1526.CrossRefGoogle Scholar
Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. (2011). Polar bear population status in the northern Beaufort Sea, Canada, 1971–2006. Ecological Applications 21: 859876.Google Scholar
Stirling, I., Spencer, C. & Andriashek, D. (2016). Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Marine Mammal Science 32: 1337.Google Scholar
Stishov, M. S. (1997). Results of aerial counts of the polar bear dens on the Arctic coast of the extreme Northeast Asia. Proceedings of the working meeting of the IUCN polar bear specialist group. International Union for the Conservation of Nature Species Survival Commission Occasional Paper 7: 9092.Google Scholar
SWG (Scientific Working Group to the Canada-Greenland Joint Commission on Polar Bear). (2016). Re-assessment of the Baffin Bay and Kane Basin polar bear subpopulations: final report to the Canada–Greenland Joint Commission on polar bear. July 31, 2016.Google Scholar
Tartu, S., Aars, J., Andersen, M., et al. (2018). Choose your poison – space-use strategy influences pollutant exposure in Barents Sea polar bears. Environmental Science and Technology 52: 32113221.Google Scholar
Taylor, M., Elkin, B., Maier, N. & Bradley, M. (1991). Observation of a polar bear with rabies. Journal of Wildlife Diseases 27: 337339.Google Scholar
Thiemann, G., Iverson, S. J. & Stirling, I. (2007). Variability in the blubber fatty acid composition of ringed seals (Phoca hispida) across the Canadian Arctic. Marine Mammal Science 23: 241261.Google Scholar
Thiemann, G. W., Iverson, S. J. & Stirling, I. (2008). Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecological Monographs 78: 591613.Google Scholar
Thorshaug, K. & Rosted, A. F. (1956). Researches into the prevalence of trichinosis in animals in Arctic and Antarctic waters. Nordic Veterinary Medicine 8: 115129.Google Scholar
Tryland, M. (2000). Zoonoses of arctic mammals. Infectious Disease Review 2: 5564.Google Scholar
Tryland, M., Derocher, A. E., Wiig, Ø. & Godfroid, J. (2001). Brucella sp. antibodies in polar bears from Svalbard and the Barents Sea. Journal of Wildlife Diseases 37: 523531.Google Scholar
Tryland, M., Neuvonen, E., Huovilainen, A., et al. (2005). Serologic survey for selected virus infections in polar bears at Svalbard. Journal of Wildlife Diseases 41: 310316.Google Scholar
Tryland, M., Nesbakken, T., Robertson, L., Grahek-Ogden, D. & Lunestad, B. T. (2014). Human pathogens in marine mammal meat – a Northern perspective. Zoonoses and Public Health 60: 118.Google Scholar
Tryland, M., Larsen, A. K. & Nymo, I. H. (2018). Bacterial infections and diseases. In Gulland, F. M. D., Dierauf, L. A. & Whitman, K. L. (Eds.), Handbook of marine mammal diseases, 2nd edition (pp. 367388). Boca Raton, FL: CRC Press.Google Scholar
US Fish and Wildlife Service. (2008). Final Rule Listing the Polar Bear as a Threatened Species Under the Endangered Species Act (May 15, 2008) www.fws.gov/alaska/fisheries/mmm/polarbear/esa.htm. Accessed 3 January 2019.Google Scholar
Vongraven, D., Ekker, M. & Wiig, Ø. (2010). Management of polar bears in Norway, 2005–2009. In: Obbard, M. E., Thiemann, G. W., Peacock, E. & DeBruyn, T. D. (Eds.), Polar bears: Proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, June 29–July 3, 2009, Copenhagen, Denmark. Occasional Paper of the IUCN Species Survival Commission No. 43 (pp. 149155). Gland, Switzerland and Cambridge, UK: IUCN.Google Scholar
Ware, J. V., Rode, K. D., Pagano, A. M., et al. (2015). Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears. Ursus 26: 818.Google Scholar
Ware, J. V., Rode, K. D., Bromaghin, J. F., et al. (2017). Habitat degradation affects the summer activity of polar bears. Oecologia 184: 8799.Google Scholar
Whiteman, J. P., Harlow, H. J., Durner, G. M., et al. (2015). Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349: 295298.Google Scholar
Wiig, Ø., Gjertz, I., Hansson, R. & Thomassen, J. (1992). Breeding behaviour of polar bears in Hornsund, Svalbard. Polar Record 28: 157159.Google Scholar
Wiig, Ø., Born, E. W. & Pedersen, L. T. (2003). Movements of female polar bears (Ursus maritimus) in the East Greenland pack ice. Polar Biology 26: 509516.Google Scholar
Wiig, Ø., Amstrup, S., Atwood, T., et al. (2015). Ursus maritimus. The IUCN Red List of Threatened Species e.T22823A1.Google Scholar
Wilson, R. R., Horne, J. S., Rode, K. D., Regehr, E. V. & Durner, G. M. (2014). Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic. Ecosphere 5: 136.Google Scholar
Wimsatt, W. A. (1974). Delayed implantation in the Ursidae, with particular reference to the black bear (Ursus americanus, Pallas). In: Enders, A. C. (Ed.), Delayed implantation (pp. 4986). Chicago, IL: University of Chicago Press.Google Scholar
Zeyl, E., Aars, J., Ehrich, D., Bachmann, L. & Wiig, Ø. (2009). The mating system of polar bears: a genetic approach. Canadian Journal of Zoology 87: 11951209.Google Scholar
Zeyl, E., Ehrich, D., Aars, J., Bachmann, L. & Wiig, Ø. (2010). Denning-area fidelity and mitochondrial DNA diversity of female polar bears (Ursus maritimus) in the Barents Sea. Canadian Journal of Zoology 88: 11391148.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×