Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T21:39:25.374Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  11 April 2011

Michael P. Hobson
Affiliation:
University of Cambridge
Andrew H. Jaffe
Affiliation:
Imperial College of Science, Technology and Medicine, London
Andrew R. Liddle
Affiliation:
University of Sussex
Pia Mukherjee
Affiliation:
University of Sussex
David Parkinson
Affiliation:
University of Sussex
Get access

Summary

A revolution is underway in cosmology, with largely qualitative models of the Universe being replaced with precision modelling and the determination of Universe's properties to high accuracy. The revolution is driven by three distinct elements – the development of sophisticated cosmological models and the ability to extract accurate predictions from them, the acquisition of large and precise observational datasets constraining those models, and the deployment of advanced statistical techniques to extract the best possible constraints from those data.

This book focuses on the last of these. In their approach to analyzing datasets, cosmologists for the most part lie resolutely within the Bayesian methodology for scientific inference. This approach is characterized by the assignment of probabilities to all quantities of interest, which are then manipulated by a set of rules, amongst which Bayes' theorem plays a central role. Those probabilities are constantly updated in response to new observational data, and at any given instant provide a snapshot of the best current understanding. Full deployment of Bayesian inference has only recently come within the abilities of high-performance computing.

Despite the prevalence of Bayesian methods in the cosmology literature, there is no single source which collects together both a description of the main Bayesian methods and a range of illustrative applications to cosmological problems. That, of course, is the aim of this volume. Its seeds grew from a small conference ‘Bayesian Methods in Cosmology’, held at the University of Sussex in June 2006 and attended by around 60 people, at which many cosmological applications of Bayesian methods were discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×