Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T17:21:29.469Z Has data issue: false hasContentIssue false

4 - Model selection and multi-model inference

Published online by Cambridge University Press:  11 April 2011

Andrew R. Liddle
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
Pia Mukherjee
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
David Parkinson
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
Michael P. Hobson
Affiliation:
University of Cambridge
Andrew H. Jaffe
Affiliation:
Imperial College of Science, Technology and Medicine, London
Andrew R. Liddle
Affiliation:
University of Sussex
Pia Mukherjee
Affiliation:
University of Sussex
David Parkinson
Affiliation:
University of Sussex
Get access

Summary

Introduction

One of the principal aims of cosmology is to identify the correct cosmological model, able to explain the available high-quality data. Determining the best model is a two-stage process. First, we must identify the set of parameters that we will allow to vary in seeking to fit the observations. As part of this process we need also to fix the allowable (prior) ranges that these parameters might take, most generally by providing a probability density function in the N-dimensional parameter space. This combination of parameter set and prior distribution is what we will call a model, and it should make calculable predictions for the quantities we are going to measure. Having chosen the model, the second stage is to determine, from the observations, the ranges of values of the parameters which are compatible with the data. This second step, parameter estimation, is described in the cosmological context by Lewis and Bridle in Chapter 3 of this volume. In this article, we shall concentrate on the choice of model.

Typically, there is not a single model that we wish to fit to the data. Rather, the aim of obtaining the data is to choose between competing models, where different physical processes may be responsible for the observed outcome. This is the statistical problem of model comparison, or model selection. This is readily carried out by extending the Bayesian parameter estimation framework so that we assign probabilities to models, as well as to parameter values within those models.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×