Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:33:04.549Z Has data issue: false hasContentIssue false

5 - Roles of flagella in pathogenic bacteria and bacterial–host interactions

from Part II - Bacterial cell biology and pathogenesis

Published online by Cambridge University Press:  12 August 2009

Glenn M. Young
Affiliation:
University of California, Davis, CA 95616, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

The quintessential event that initiates an infection is defined by the pathogen encountering a targeted tissue of a host. Mucosal surfaces often serve as an entry point for pathogens, and the pathogens frequently access epithelial cells at these sites with the aid of flagellar-mediated motility. Flagella are common to a diversity of pathogenic bacteria, and their structure is well conserved (Harshey and Toguchi, 1996). The number of flagella produced by a bacterium is tightly regulated, ranging from one up to several dozen per cell depending on the species (Aldridge and Hughes, 2002). Likewise, these organelles may be localized to a single pole or both poles of a cell or may be in a peritrichous arrangement. In some cases, flagellar number and cellular position undergo a regulated change in response to specific environmental conditions. Directional control of motility, either towards a favorable situation or away from a stressful circumstance, is achieved by a chemosensory phosphorelay system, which integrates environmental signals and adjusts the frequency of motor reversals that cause reorientation of bacterial movement (Sournik, 2004; Wadhams and Armitage, 2004). The cumulative affect invoked by the chemosensory system in response to chemical, physical, and physiological cues offers the bacterium a behavioral activity to fine tune its progression through an environment and consequently enhances the ability of many bacteria to infect their hosts.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 131 - 157
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguero-Rosenfeld, M. E., Yang, X. H., and Nachamkim, I. (1990). Infection of Syrian hamsters with flagellar variants of Campylobacter jejuni. Infect. Immun. 58, 2214–2219.Google ScholarPubMed
Aizawa, S. I. (1996). Flagellar assembly in Salmonella typhimurium. Mol. Microbiol. 19, 1–5.CrossRefGoogle ScholarPubMed
Aizawa, S. I. (2001). Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202, 157–164.CrossRefGoogle ScholarPubMed
Aizawa, S. I., Dean, G. E., Jones, C. J., Macnab, R. M., and Yamaguchi, S. (1985). Purification and characterization of the flagellar hook–basal body complex of Salmonella typhimurium. J. Bacteriol. 161, 836–849.Google ScholarPubMed
Akira, S. and Takeda, K. (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511.CrossRefGoogle ScholarPubMed
Aldridge, P. and Hughes, K. T. (2002). Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160–165.CrossRefGoogle ScholarPubMed
Allison, C., Emody, L., Coleman, N., and Hughes, C. (1994). The role of swarm differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J. Infect. Dis. 169, 1155–1158.CrossRefGoogle ScholarPubMed
Amosti, D. N. and Chamberlin, M. J. (1989). Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 86, 830–834.Google Scholar
Arora, K., Ritchings, B. W., Almira, E. C., Lory, S., and Ramphal, R. (1998). The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin binding. Infect. Immun. 66, 1474–1479.Google Scholar
Arora, S. K., Neely, A. N., Blair, B., Lory, S., and Ramphal, R. (2005). Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73, 4395–4398.CrossRefGoogle ScholarPubMed
Black, R. E., Levinne, M. M., Clements, M. L., and Blaser, M. L. (1988). Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157, 472–479.CrossRefGoogle ScholarPubMed
Blair, D. F. and Berg, H. C. (1988). Restoration of torque in defective flagellar motors. Science 242, 1678–1681.CrossRefGoogle ScholarPubMed
Blocker, A., Gounon, P., Larquet, E., et al. (1999). The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693.CrossRefGoogle ScholarPubMed
Borkovich, K. A., Kaplan, N., Hess, J. F., and Simon, M. I. (1989). Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc. Natl. Acad. Sci. U. S. A. 86, 1208–1212.CrossRefGoogle ScholarPubMed
Caldwell, M. B., Guerry, P., Lee, J. P., and Walker, R. I. (1985). Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50, 941–943.Google ScholarPubMed
Coker, C., Poore, C. A., Li, X., and Mobley, H. T. (2000). Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect. 2, 1479–1505.CrossRefGoogle ScholarPubMed
Deitrich, C., Heuner, K., Brand, B. C., Hacker, J., and Steinert, M. (2001). Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect. Immun. 69, 2116–2122.CrossRefGoogle Scholar
Drake, D. and Monte, T. C. (1988). Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J. Gen. Microbiol. 134, 43–52.Google ScholarPubMed
Eaton, K. A., Morgan, D. R., and Krakowka, S. (1992). Motility as a factor in the colonization of gnotobiotic piglets by Helicobacter pylori. J. Med. Microbiol. 37, 123–127.CrossRefGoogle Scholar
Eaton, K. A., Suerbaum, S., Josenhans, C., and Krakowka, S. (1996). Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64, 2445–2448.Google ScholarPubMed
Eaves-Pyles, T. D., Wong, H. R., Odoms, K., and Pyles, R. B. (2001). Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167, 7009–7016.CrossRefGoogle ScholarPubMed
Feldman, M., Bryan, R., Rajan, S., et al. (1998). Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51.Google ScholarPubMed
Fernandez, L. A. and Berenguer, J. (2000). Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol. Rev. 24, 21–44.CrossRefGoogle ScholarPubMed
Ferrero, R. L. and Lee, A. (1988). Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J. Gen. Microbiol. 134, 53–59.Google Scholar
Fleizig, S. M., Arora, S. K., Van, R., and Ramphal, R. (2001). FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect. Immun. 69, 4931–4937.CrossRefGoogle Scholar
Foynes, S., Dorrell, N., Ward, S. J., et al. (2000). Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68, 2016–2023.CrossRefGoogle Scholar
Francez-Chalot, A., Laugel, B., Gemert, A., et al. (2003). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. 49, 823–832.CrossRefGoogle Scholar
Francis, N. R., Sosinsky, G. E., Thomas, D., and DeRosier, D. J. (1994). Isolation, characterization and structure of the bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235, 1261–1270.CrossRefGoogle ScholarPubMed
Fraser, G. M., Claret, L., Furness, R., Gupta, S., and Hughes, C. (2002). Swarming-coupled expression of the Proteus mirabilis hpmBA hemolysin operon. Microbiology 148, 2191–2201.CrossRefGoogle Scholar
Gerwitz, A. T., Navas, T. A., Lyons, S., Godowski, P. J., and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885.CrossRefGoogle Scholar
Gillen, K. L. and Hughes, K. T. (1991). Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173, 6453–6459.CrossRefGoogle ScholarPubMed
Giron, J. A., Torres, A. G., Freer, E., and Kaper, J. B. (2002). The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44, 361–379.CrossRefGoogle ScholarPubMed
Guo, B. P. and Mekalanos, J. J. (2002). Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc. Natl. Acad. Sci. U. S. A. 99, 8354–8359.CrossRefGoogle ScholarPubMed
Harshey, R. M. (1994). Bees aren't the only ones: swarming in Gram-negative bacteria. Mol. Microbiol. 13, 389–394.CrossRefGoogle ScholarPubMed
Harshey, R. M. and Toguchi, A. (1996). Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol. 4, 226–231.CrossRefGoogle ScholarPubMed
Hawn, T. R., Verbon, A., Lettinga, K. D., et al. (2003). A common TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires' disease. J. Exp. Med., 1563–1572.CrossRefGoogle ScholarPubMed
Hayashi, F., Smith, K. D., Ozinsky, A., et al. (2001). The innate immune response of bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.CrossRefGoogle ScholarPubMed
Hazell, S. L., Lee, A., Brady, L., and Hennessy, W. (1986). Campylobacter pylori and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 153, 658–663.CrossRefGoogle Scholar
Hendrixson, D. R. and DiRita, V. J. (2004). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484.CrossRefGoogle ScholarPubMed
Hess, J. F., Oosawa, K., Kaplan, N., and Simon, M. I. (1988). Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53, 79–87.CrossRefGoogle ScholarPubMed
Homma, M., Komeda, Y., Iino, T., and Macnab, R. M. (1987). The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide. J. Bacteriol. 169, 1493–1498.CrossRefGoogle ScholarPubMed
Homma, M., Kutsukake, K., Hasebe, M., Iino, T., and Macnab, R. M. (1990). FlgB, FlgC, FlgD and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211, 465–477.CrossRefGoogle Scholar
Hueck, C. J. (1998). Type III secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433.Google ScholarPubMed
Hughes, K. T. and Aldridge, P. (2002). Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160–165.Google Scholar
Hughes, K. T., Gillen, K. L., Semon, M. J., and Karlinsey, J. E. (1993). Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280.CrossRefGoogle ScholarPubMed
Ikeda, T., Asakura, S., and Kamiya, R. (1989). Total reconstitution of Salmonella flagellar filaments from hook and purified flagellin and hook-associated proteins in vitro. J. Mol. Biol. 209, 109–114.CrossRefGoogle ScholarPubMed
Jones, B. V., Young, R., Mahenthiralingam, E., and Stickler, D. J. (2004). Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associate urinary tract infection. Infect. Immun. 72, 3941–3950.CrossRefGoogle ScholarPubMed
Jones, C. J., Macnab, R. M., Okino, H., and Aizawa, S. I. (1990). Stoichiometric analysis of the flagellar hook–(basal body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377–387.CrossRefGoogle ScholarPubMed
Journet, L., Hughes, K. T., and Cornelis, G. R. (2005). Type III secretion: a secretory pathway serving both motility and virulence. Mol. Membr. Biol. 22, 41–50.CrossRefGoogle ScholarPubMed
Kalir, S., McClure, J., Pabbaraju, K., et al. (2001). Ordering genes in the flagellar pathway by analysis of expression from living bacteria. Science 292, 2080–2083.CrossRefGoogle ScholarPubMed
Ko, M. and Park, C. (2000). H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 182, 4670–4672.CrossRefGoogle ScholarPubMed
Konkel, M. E., Klena, J. D., Rivera-Amill, V., et al. (2004). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186, 3296–3303.CrossRefGoogle ScholarPubMed
Kubori, T., Shimamoto, N., Yamaguchi, S., Namba, K., and Aizawa, T. (1992). Morphologic pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 226, 433–446.CrossRefGoogle Scholar
Kubori, T., Matsushima, Y., Nakamura, D., et al. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605.CrossRefGoogle ScholarPubMed
Kutsukake, K., Ohya, Y., and Iino, T. (1990). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741–747.CrossRefGoogle ScholarPubMed
Kutsukake, K., Iyoda, S., Onishi, K., and Iiono, T. (1994). Genetic and molecular analyses of the interaction between the flagellum-specific sigma and anti-sigma factors in Salmonella typhimurium. EMBO J. 13, 4568–4576.Google ScholarPubMed
Lee, A., O'Rourke, J. L., Barrington, P. J., and Trust, T. J. (1986). Mucus colonization as determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect. Immun. 51, 536–546.Google ScholarPubMed
Lehnen, D., Blumer, C., Polen, T., et al. (2002). LlhA as a new transcription key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol. Microbiol. 45, 521–532.CrossRefGoogle Scholar
Liu, X. and Matsumura, P. (1994). The FlhD/FlhC complex, a transcriptional activator of Escherichia coli flagellar class II operons. J. Bacteriol. 176, 7345–7351.CrossRefGoogle ScholarPubMed
Lockman, H. A. and Curtis, R. III (1990). Salmonella typhimurium mutants lacking flagella and motility remain virulent in BALB/c mice. Infect. Immun. 58, 137–143.Google ScholarPubMed
Lucas, R. L., Lostroh, C. P., DiRusso, C. C., et al. (2000). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica Serovar Typhimurium. J. Bacteriol. 182, 1872–1882.CrossRefGoogle ScholarPubMed
Lyons, S., Wang, L., Casanova, J. E., et al. (2004). Salmonella typhimurium translocates flagellin via an SPI2-mediated vesicular transport pathway. J. Cell Sci. 117, 5771–5780.CrossRefGoogle Scholar
Macnab, R. M. (1996). Flagella and motility. In Escherichia coli and Salmonella typhimurium: cellular and molecular biology, ed. Neidhardt, F. C.. Washington, DC: ASM Press, pp. 123–145.Google Scholar
Macnab, R. M. (1999). The bacterial flagellum: reversible rotary propellor and type III export apparatus. J. Bacteriol. 181, 7149–7153.Google ScholarPubMed
Macnab, R. M. (2003). How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100.CrossRefGoogle ScholarPubMed
Macnab, R. M. (2004). Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207–217.CrossRefGoogle ScholarPubMed
Mahenthiralinggam, E., Campbell, M. E., and Speert, D. P. (1994). Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically infected patients with cystic fibrosis. Infect. Immun. 62, 596–605.Google Scholar
Marchetti, M., Sirard, J. C., Sansonetti, P., Pringault, E., and Kerneis, S. (2004). Interaction of pathogenic bacteria with rabbit appendix M cells: bacterial motility is a key feature in vivo. Microbes Infect. 6, 521–528.CrossRefGoogle ScholarPubMed
McGee, D. J., Langford, M. L., Watson, E. L., et al. (2005). Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants. Infect. Immun. 73, 1820–1827.CrossRefGoogle ScholarPubMed
Minamino, T. and Macnab, R. M. (1999). Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394.Google ScholarPubMed
Minamino, T., Gonzalez-Pedrajo, B., Yamaguchi, K., Aizawa, S. I., and Macnab, R. M. (1999). FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 34, 295–304.CrossRefGoogle ScholarPubMed
Minamino, T., Saijo-Hamano, Y., Furukawa, Y., et al. (2004). Domain organization and function of the Salmonella FliK, a flagellar hook-length control protein. J. Mol. Biol. 341, 491–502.CrossRefGoogle ScholarPubMed
Mobley, H. L., Belas, R., Lockatell, V., et al. (1996). Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 64, 5332–5340.Google Scholar
Morooka, T., Umeda, A., and Amako, K. (1985). Motility as an intestinal colonization factor for Campylobacter jejuni. J. Gen. Microbiol. 131, 1973–1980.Google ScholarPubMed
Nachamkim, I., Yang, X. H., and Stern, N. J. (1993). Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl. Envir. Microbiol. 59, 1269–1273.Google Scholar
Ninfa, E. G., Stock, A., Mowbray, S., and Stock, J. (1991). Reconstitution of the bacterial chemotaxis signal transduction system from purified components. J. Biol. Chem. 266, 9764–9770.Google ScholarPubMed
Ohnishi, K., Kutsukake, K., Suzuki, H., and Iino, T. (1990). Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221, 139–147.CrossRefGoogle ScholarPubMed
Ohnishi, K., Ohto, Y., Aizawa, S.-I., Macnab, R. M., and Iiono, T. (1994). FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J. Bacteriol. 176, 2272–2281.CrossRefGoogle ScholarPubMed
Ottemann, K. M. and Lowenthal, A. C. (2002). Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70, 1984–1990.CrossRefGoogle ScholarPubMed
Ramos, H. C., Rumbo, M., and Sirard, J.-C. (2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12, 509–517.CrossRefGoogle ScholarPubMed
Ramphal, R. and Arora, S. K. (2001). Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj. J. 18, 709–713.CrossRefGoogle ScholarPubMed
Scharfman, A., Arora, S. K., Delmotee, P., et al. (2001). Recognition of Lewisx derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect. Immun. 69, 5243–5248.CrossRefGoogle Scholar
Schmiel, D. H., Wagar, E., Karamanou, L., Weeks, D., and Miller, V. L. (1998). Phospholipase A of Yersinia enterocolitica contributes to pathogenesis in a mouse model. Infect. Immun. 66, 3941–3951.Google ScholarPubMed
Schmiel, D. S., Young, G. M., and Miller, V. L. (2000). The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182, 2314–2320.CrossRefGoogle ScholarPubMed
Schmitt, C. K., Ikeda, J. S., Darnell, S. C., et al. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69, 5619–5625.CrossRefGoogle ScholarPubMed
Shapiro, L. and Maizel, J. (1973). Synthesis and structure of Calobacter crescentus flagella. J. Bacteriol. 113, 478–485.Google ScholarPubMed
Shin, S. and Park, C. (1995). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177, 4696–4702.CrossRefGoogle ScholarPubMed
Smith, K. D., Andersen-Nissen, E., Hayashi, F., et al. (2003). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 5, 1159–1160.Google Scholar
Song, Y. C., Jin, S., Louie, H., et al. (2004). FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53, 541–553.CrossRefGoogle ScholarPubMed
Sournik, V. (2004). Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12, 569–576.CrossRefGoogle Scholar
Soutourina, O., Kolb, A., Krin, E., et al. (1999). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181, 7500–7508.Google ScholarPubMed
Springer, W. R. and Koshland, D. E. J. (1977). Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. U. S. A. 74, 533–537.CrossRefGoogle ScholarPubMed
Stecher, B., Hapfelmeier, S., Muller, C., et al. (2004). Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-treated mice. Infect. Immun. 72, 4138–4150.CrossRefGoogle Scholar
Suarez, M. and Russmann, H. (1998). Molecular mechanisms of Salmonella invasion: the type III secretion system of pathogenicity island 1. Int. Microbiol. 1, 197–204.Google ScholarPubMed
Szymanski, C. M., King, M., Haardt, M., and Armstrong, G. D. (1995). Campylobacter jejuni motility and invasion of CaCo-2 cells. Infect. Immun. 63, 4295–4300.Google ScholarPubMed
Tasteyre, A., Barc, M. C., Collingnon, A., Boureau, H., and Karajalainen, T. (2001). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69, 7937–7940.CrossRefGoogle ScholarPubMed
Teplitski, M., Goodier, R. I., and Ahmer, B. M. (2003). Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J. Bacteriol. 185, 7257–7265.CrossRefGoogle ScholarPubMed
Terry, K., Williams, S. M., Connolly, L., and Ottemann, K. M. (2005). Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun. 73, 803–811.CrossRefGoogle ScholarPubMed
Tsubokura, M., Otsuki, K., Shimohira, I., and Yamamoto, H. (1979). Production of indirect hemolysin by Yersinia enterocolitica and its properties. Infect. Immun. 25, 939–942.Google ScholarPubMed
Wadhams, G. H. and Armitage, J. P. (2004). Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell. Biol. 5, 1024–1037.CrossRefGoogle ScholarPubMed
Warren, S. M. and Young, G. M. (2005). An amino-terminal secretion signal is required for YplA export by the Ysa, Ysc and flagellar type III secretion systems of Yersinia enterocolitica Biovar 1B. J. Bacteriol. 187, 6075–6083.CrossRefGoogle ScholarPubMed
Wassenaar, T. M., Zeijst, B. A., Ayling, R., and Newell, D. G. (1993). Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 139, 1171–1175.CrossRefGoogle ScholarPubMed
Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., et al. (2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40, 245–256.CrossRefGoogle ScholarPubMed
Worku, M. L., Sidebotham, R. L., Baron, J. H., et al. (1999). Motility of Helicobacter pylori in a viscous environment. Eur. J. Gastroenterol. Hepatol. 11, 1143–1150.CrossRefGoogle Scholar
Yanagihara, S., Iyoda, S., Ohnishi, K., and Kutsukake, K. (1999). Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet. Syst. 74, 105–111.CrossRefGoogle ScholarPubMed
Yonekawa, H., Hayashi, H., and Parkinson, J. S. (1983). Requirement of the cheB function for sensory adaptation in Escherichia coli. J. Bacteriol. 156, 1228–1235.Google ScholarPubMed
Yonekura, K., Maki, S., Morgan, D. G., et al. (2000). The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152.CrossRefGoogle ScholarPubMed
Young, B. M. and Young, G. M. (2002). YplA is exported by the Ysc, Ysa and flagellar type III secretion systems of Yersinia enterocolitica. J. Bacteriol. 184, 1324–1334.CrossRefGoogle ScholarPubMed
Young, G. M., Smith, M., Minnich, S. A., and Miller, V. L. (1998). The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility and swarming motility. J. Bacteriol. 181, 2823–2833.Google Scholar
Young, G. M., Badger, J. L., and Miller, V. L. (2000). Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68, 4323–4326.CrossRefGoogle ScholarPubMed
Young, G. M., Schmiel, D. H., and Miller, V. L. (1999). A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. U. S. A. 96, 6456–6461.CrossRefGoogle ScholarPubMed
Zhao, H., Thompson, R. B., Lockatell, V., Johnson, D. E., and Mobley, H. L. (1998). Use of green fluorescent protein to assess urease gene expression by uropathogenic Proteus mirabilis during experimental ascending urinary tract infection. Infect. Immun. 66, 330–335.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×