Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T15:12:18.644Z Has data issue: false hasContentIssue false

3 - Bacterial secretion systems

from Part II - Bacterial cell biology and pathogenesis

Published online by Cambridge University Press:  12 August 2009

Helen J. Betts
Affiliation:
Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
Christopher M. Bailey
Affiliation:
Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
Mark J. Pallen
Affiliation:
Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
Ian R. Henderson
Affiliation:
Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

To survive in any given niche, bacteria must be capable of sensing, interacting with, and responding to their environment. The method and extent to which bacteria interact with their environment are governed to a large degree by the proteinaceous molecules located on the bacterial cell surface or released into the extracellular milieu. Due to differences in cell-envelope architecture, this process of protein secretion is markedly different between Gram-positive and Gram-negative organisms.

GRAM-POSITIVE VERSUS GRAM-NEGATIVE BACTERIA

Gram-positive bacteria possess a single biological membrane termed the cytoplasmic membrane, which is surrounded by a thick cell wall. The majority of proteins targeted for secretion possess an N-terminal amino-acid signal peptide and utilize the Sec-dependent pathway (Holland, 2004). The Sec machinery is composed of several membrane-associated proteins, including an ATPase (SecA), the Sec translocon (SecYEG), which appears to be the basic unit of cellular life forms, several integral membrane proteins (e.g. SecD, SecF), and a signal peptidase that removes the signal peptide during translocation of the proteins across the cytoplasmic membrane (Dalbey and Chen, 2004). In addition to the Sec pathway, several alternative protein-secretion systems have been recognized in Gram-positive organisms, including the Tat (twin arginine translocation) and ESAT-6/WXG-100 pathways (Pallen, 2002; Robinson and Bolhuis, 2004). However, the role of these systems in protein secretion in Gram-positive bacteria is minor in comparison with the Sec-dependent pathway. Once translocated across the cytoplasmic membrane, the mature protein either can be released into the extracellular milieu or may remain in contact with the cell wall.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 59 - 98
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizawa, S. I. (2001). Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202, 157–164.CrossRefGoogle ScholarPubMed
Aktories, K., Schmidt, G., and Just, I. (2000). Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381, 421–426.CrossRefGoogle ScholarPubMed
Alfano, J. R. and Collmer, A. (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414.CrossRefGoogle ScholarPubMed
Allaoui, A., Schulte, R., and Cornelis, G. R. (1995). Mutational analysis of the Yersinia enterocolitica virC operon: characterization of yscE, F, G, I, J, K required for Yop secretion and yscH encoding YopR. Mol. Microbiol. 18, 343–355.CrossRefGoogle Scholar
Andersen, C., Koronakis, E., Bokma, E., et al. (2002). Transition to the open state of the TolC periplasmic tunnel entrance. Proc. Natl. Acad. Sci. U. S. A. 99, 11 103–11 108.CrossRefGoogle ScholarPubMed
Backert, S., Moese, S., Selbach, M., Brinkmann, V., and Meyer, T. F. (2001). Phosphorylation of tyrosine 972 of the Helicobacter pyloriCagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol. Microbiol. 42, 631–644.CrossRefGoogle ScholarPubMed
Barz, C., Abahji, T. N., Trulzsch, K., and Heesemann, J. (2000). The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Lett. 482, 139–143.CrossRefGoogle ScholarPubMed
Baumann, U., Wu, S., Flaherty, K. M., and McKay, D. B. (1993). Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364.Google ScholarPubMed
Benabdelhak, H., Kiontke, S., Horn, C., et al. (2003). A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin. Am. J. Mol. Biol. 327, 1169–1179.CrossRefGoogle Scholar
Binet, R. and Wandersman, C. (1995). Protein secretion by hybrid bacterial ABC-transporters: specific functions of the membrane ATPase and the membrane fusion protein. EMBO J. 14, 2298–2306.Google ScholarPubMed
Binet, R., Letoffe, S., Ghigo, J. M., Delepelaire, P., and Wandersman, C. (1997). Protein secretion by Gram-negative bacterial ABC exporters: a review. Gene. 192, 7–11.CrossRefGoogle ScholarPubMed
Bitter, W. (2003). Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179, 307–314.CrossRefGoogle ScholarPubMed
Bitter, W., Koster, M., Latijnhouwers, M., Cock, H., and Tommassen, J. (1998). Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol. 27, 209–219.CrossRefGoogle ScholarPubMed
Blaser, M. J., Perez-Perez, G. I., Kleanthous, H., et al. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55, 2111–2115.Google ScholarPubMed
Bleves, S. and Cornelis, G. R. (2000). How to survive in the host: the Yersinia lesson. Microbes Infect. 2, 1451–1460.CrossRefGoogle ScholarPubMed
Bleves, S., Lazdunski, A., and Filloux, A. (1996). Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas aeruginosa. J. Bacteriol. 178, 4297–4300.CrossRefGoogle ScholarPubMed
Bleves, S., Voulhoux, R., Michel, G., et al. (1998). The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31–40.CrossRefGoogle Scholar
Bleves, S., Gerard-Vincent, M., Lazdunski, A., and Filloux, A. (1999). Structure–function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J. Bacteriol. 181, 4012–4019.Google ScholarPubMed
Bliska, J. B., Guan, K. L., Dixon, J. E., and Falkow, S. (1991). Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci. U. S. A. 88, 1187–1191.CrossRefGoogle ScholarPubMed
Bolin, I., Portnoy, D. A., and Wolf-Watz, H. (1985). Expression of the temperature-inducible outer membrane proteins of Yersiniae. Infect. Immun. 48, 234–240.Google ScholarPubMed
Bouley, J., Condemine, G., and Shevchik, V. E. (2001). The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol. 308, 205–219.CrossRefGoogle ScholarPubMed
Boyd, A. P., Lambermont, I., and Cornelis, G. R. (2000). Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182, 4811–4821.CrossRefGoogle ScholarPubMed
Boyd, E. F. and Brussow, H. (2002). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10, 521–529.CrossRefGoogle ScholarPubMed
Braun, V., Ondraczek, R., and Hobbie, S. (1993). Activation and secretion of Serratia hemolysin. Zentralbl. Bakteriol. 278, 306–315.CrossRefGoogle ScholarPubMed
Burghout, P., Boxtel, R., Gelder, P., et al. (2004). Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. Bacteriol. 186, 4645–4654.CrossRefGoogle ScholarPubMed
Burns, D. L. (2003). Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6, 29–34.CrossRefGoogle ScholarPubMed
Buttner, D. and Bonas, U. (2002). Getting across: bacterial type III effector proteins on their way to the plant cell. EMBO J. 21, 5313–5322.CrossRefGoogle ScholarPubMed
Campellone, K. G. and Leong, J. M. (2003). Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 6, 82–90.CrossRefGoogle ScholarPubMed
Cascales, E. and Christie, P. J. (2003). The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1, 137–149.CrossRefGoogle ScholarPubMed
Censini, S., Stein, M., and Covacci, A. (2001). Cellular responses induced after contact with Helicobacter pylori. Curr. Opin. Microbiol. 4, 41–46.CrossRefGoogle ScholarPubMed
Chen, H. D. and Frankel, G. (2005). Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol. Rev. 29, 83–98.CrossRefGoogle ScholarPubMed
Chen, L. Y., Chen, D. Y., Miaw, J., and Hu, N. T. (1996). XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J. Biol. Chem. 271, 2703–2708.CrossRefGoogle ScholarPubMed
Chevalier, N., Moser, M., Koch, H. G., et al. (2004). Membrane targeting of a bacterial virulence factor harbouring an extended signal peptide. J. Mol. Microbiol. Biotechnol. 8, 7–18.CrossRefGoogle ScholarPubMed
Christie, P. J. and Vogel, J. P. (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360.CrossRefGoogle ScholarPubMed
Conover, G. M., Derre, I., Vogel, J. P., and Isberg, R. R. (2003). The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol. 48, 305–321.CrossRefGoogle ScholarPubMed
Cordes, F. S., Komoriya, K., Larquet, E., et al. (2003). Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17 103–17 107.CrossRefGoogle ScholarPubMed
Cotter, S. E., Surana, N. K., and St Geme, J. W. 3rd (2005). Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol. 13, 199–205.CrossRefGoogle ScholarPubMed
Coutte, L., Willery, E., Antoine, R., et al. (2003). Surface anchoring of bacterial subtilisin important for maturation function. Mol. Microbiol. 49, 529–539.CrossRefGoogle ScholarPubMed
Covacci, A., Censini, S., Bugnoli, M., et al. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. U. S. A. 90, 5791–5795.CrossRefGoogle ScholarPubMed
Dalbey, R. E. and Chen, M. (2004). Sec-translocase mediated membrane protein biogenesis. Biochim. Biophys. Acta. 1694, 37–53.CrossRefGoogle ScholarPubMed
Daniell, S. J., Kocsis, E., Morris, E., et al. (2003). 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol. Microbiol. 49, 301–308.CrossRefGoogle ScholarPubMed
Darwin, K. H. and Miller, V. L. (2000). The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Mol. Microbiol. 35, 949–960.CrossRefGoogle ScholarPubMed
Das, A. and Xie, Y. H. (1998). Construction of transposon Tn3phoA: its application in defining the membrane topology of the Agrobacterium tumefaciens DNA transfer proteins. Mol. Microbiol. 27, 405–414.CrossRefGoogle ScholarPubMed
Dean, P. and Kenny, B. (2004). Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol. Microbiol. 54, 665–675.CrossRefGoogle Scholar
Groot, A., Filloux, A., and Tommassen, J. (1991). Conservation of xcp genes, involved in the two-step protein secretion process, in different Pseudomonas species and other gram-negative bacteria. Mol. Gen. Genet. 229, 278–284.CrossRefGoogle ScholarPubMed
Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta 1694, 149–161.CrossRefGoogle ScholarPubMed
Deleuil, F., Mogemark, L., Francis, M. S., Wolf-Watz, H., and Fallman, M. (2003). Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell. Microbiol. 5, 53–64.CrossRefGoogle ScholarPubMed
Denecker, G., Declercq, W., Geuijen, C. A., et al. (2001). Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of bid. J. Biol. Chem. 276, 19 706–19 714.CrossRefGoogle ScholarPubMed
Ding, Z., Atmakuri, K., and Christie, P. J. (2003). The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11, 527–535.CrossRefGoogle ScholarPubMed
Eichelberg, K., Ginocchio, C. C., and Galan, J. E. (1994). Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176, 4501–4510.CrossRefGoogle ScholarPubMed
Espinosa, A. and Alfano, J. R. (2004). Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell. Microbiol. 6, 1027–1040.CrossRefGoogle ScholarPubMed
Feldman, M. F. and Cornelis, G. R. (2003). The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol. Lett. 219, 151–158.CrossRefGoogle Scholar
Filloux, A. (2004). The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta 1694, 163–179.CrossRefGoogle ScholarPubMed
Francis, M. S., Wolf-Watz, H., and Forsberg, A. (2002). Regulation of type III secretion systems. Curr. Opin. Microbiol. 5, 166–172.CrossRefGoogle ScholarPubMed
Galan, J. E. (2001). Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol. 17, 53–86.CrossRefGoogle ScholarPubMed
Galan, J. E. and Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328.Google ScholarPubMed
Garcia-del Portillo, F., Zwick, M. B., Leung, K. Y., and Finlay, B. B. (1993). Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 90, 10 544–10 548.CrossRefGoogle ScholarPubMed
Genin, S. and Boucher, C. (2004). Lessons learned from the genome analysis of ralstonia solanacearum. Annu. Rev. Phytopathol. 42, 107–134.CrossRefGoogle ScholarPubMed
Gentschev, I., Dietrich, G. and Goebel, W. (2002). The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol. 10, 39–45.CrossRefGoogle Scholar
Gerard-Vincent, M., Robert, V., Ball, G., et al. (2002). Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol. Microbiol. 44, 1651–1665.CrossRefGoogle ScholarPubMed
Ghigo, J. M., Letoffe, S., and Wandersman, C. (1997). A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J. Bacteriol. 179, 3572–3579.CrossRefGoogle ScholarPubMed
Ghosh, P. (2004). Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68, 771–795.CrossRefGoogle ScholarPubMed
Gophna, U., Ron, E. Z., and Graur, D. (2003). Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163.CrossRefGoogle ScholarPubMed
Gruenheid, S., Sekirov, I., Thomas, N. A., et al. (2004). Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 51, 1233–1249.CrossRefGoogle ScholarPubMed
Guzzo, J., Duong, F., Wandersman, C., Murgier, M., and Lazdunski, A. (1991). The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally related to those of Erwinia chrysanthemi proteases and Escherichia coli alpha-haemolysin. Mol. Microbiol. 5, 447–453.CrossRefGoogle ScholarPubMed
Hakansson, S., Bergman, T., Vanooteghem, J. C., Cornelis, G., and Wolf-Watz, H. (1993). YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect. Immun. 61, 71–80.Google ScholarPubMed
Hardie, K. R., Lory, S., and Pugsley, A. P. (1996). Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J. 15, 978–988.Google ScholarPubMed
He, S. Y. (1998). Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36, 363–392.CrossRefGoogle ScholarPubMed
He, S. Y. and Jin, Q. (2003). The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6, 15–19.CrossRefGoogle ScholarPubMed
He, S. Y., Nomura, K., and Whittam, T. S. (2004). Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694, 181–206.CrossRefGoogle ScholarPubMed
Henderson, I. R., Navarro-Garcia, F., and Nataro, J. P. (1998). The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378.CrossRefGoogle ScholarPubMed
Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C., and Ala'Aldeen, D. (2004). Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744.CrossRefGoogle ScholarPubMed
Hernandez, L. D., Pypaert, M., Flavell, R. A., and Galan, J. E. (2003). A Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell. Biol. 163, 1123–1131.CrossRefGoogle ScholarPubMed
Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L., and O'Toole, G. A. (2003). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49, 905–918.CrossRefGoogle Scholar
Hobbie, S., Chen, L. M., Davis, R. J., and Galan, J. E. (1997). Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559.Google ScholarPubMed
Hoiczyk, E. and Blobel, G. (2001). Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. U. S. A. 98, 4669–4674.CrossRefGoogle ScholarPubMed
Holland, I. B. (2004). Translocation of bacterial proteins: an overview. Biochim. Biophys. Acta 1694, 5–16.CrossRefGoogle ScholarPubMed
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433.Google ScholarPubMed
Innes, R. (2003). New effects of type III effectors. Mol. Microbiol. 50, 363–365.CrossRefGoogle ScholarPubMed
Iriarte, M. and Cornelis, G. R. (1998). YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915–929.CrossRefGoogle ScholarPubMed
Jackson, M. W., Day, J. B., and Plano, G. V. (1998). YscB of Yersinia pestis functions as a specific chaperone for YopN. J. Bacteriol. 180, 4912–4921.Google ScholarPubMed
Jacob-Dubuisson, F., Fernandez, R., and Coutte, L. (2004). Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694, 235–257.CrossRefGoogle ScholarPubMed
Jarchau, T., Chakraborty, T., Garcia, F., and Goebel, W. (1994). Selection for transport competence of C-terminal polypeptides derived from Escherichia coli hemolysin: the shortest peptide capable of autonomous HlyB/HlyD-dependent secretion comprises the C-terminal 62 amino acids of HlyA. Mol. Gen. Genet. 245, 53–60.CrossRefGoogle ScholarPubMed
Jin, Q. and He, S. Y. (2001). Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294, 2556–2558.CrossRefGoogle ScholarPubMed
Jin, Q., Thilmony, R., Zwiesler-Vollick, J., and He, S. Y. (2003). Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5, 301–310.CrossRefGoogle ScholarPubMed
Kaniga, K., Uralil, J., Bliska, J. B., and Galan, J. E. (1996). A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641.CrossRefGoogle ScholarPubMed
Kenny, B. (2002). Mechanism of action of EPEC type III effector molecules. Int. J. Med. Microbiol. 291, 469–477.CrossRefGoogle ScholarPubMed
Kenny, B., DeVinney, R., Stein, M., et al. (1997). Enteropathogenic E. coli. (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.CrossRefGoogle ScholarPubMed
Kirby, J. E., Vogel, J. P., Andrews, H. L., and Isberg, R. R. (1998). Evidence for pore-forming ability by Legionella pneumophila. Mol. Microbiol. 27, 323–336.CrossRefGoogle ScholarPubMed
Kirn, T. J., Bose, N., and Taylor, R. K. (2003). Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49, 81–92.CrossRefGoogle ScholarPubMed
Knight, D. A. and Barbieri, J. T. (1997). Ecto-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exoenzyme. S. Infect. Immun. 65, 3304–3309.Google ScholarPubMed
Knodler, L. A., Celli, J., Hardt, W. D., et al. (2002). Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 43, 1089–1103.CrossRefGoogle ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. J., et al. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176.CrossRefGoogle ScholarPubMed
Koronakis, V., Hughes, C. and Koronakis, E. (1991). Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J. 10, 3263–3272.Google ScholarPubMed
Koronakis, E., Hughes, C., Milisav, I., and Koronakis, V. (1995). Protein exporter function and in vitro ATPase activity are correlated in ABC-domain mutants of HlyB. Mol. Microbiol. 16, 87–96.CrossRefGoogle ScholarPubMed
Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. and Hughes, C. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 405, 914–919.CrossRefGoogle ScholarPubMed
Krueger, K. M. and Barbieri, J. T. (1995). The family of bacterial ADP-ribosylating exotoxins. Clin. Microbiol. Rev. 8, 34–47.Google ScholarPubMed
Kubori, T., Sukhan, A., Aizawa, S. I. and Galan, J. E. (2000). Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. U. S. A. 97, 10 225–10 230.CrossRefGoogle ScholarPubMed
Kuhle, V., Jackel, D., and Hensel, M. (2004). Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells. Traffic. 5, 356–370.CrossRefGoogle ScholarPubMed
Lammertyn, E. and Anne, J. (2004). Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiol. Lett. 238, 273–279.Google ScholarPubMed
Lee, A. H., Zareei, M. P., and Daefler, S. (2002). Identification of a NIPSNAP homologue as host cell target for Salmonella virulence protein SpiC. Cell. Microbiol. 4, 739–750.CrossRefGoogle ScholarPubMed
Letoffe, S., Ghigo, J. M., and Wandersman, C. (1994a). Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc. Natl. Acad. Sci. U.S.A. 91, 9876–9880.CrossRefGoogle Scholar
Letoffe, S., Ghigo, J. M., and Wandersman, C. (1994b). Secretion of the Serratia marcescens HasA protein by an ABC transporter. J. Bacteriol. 176, 5372–5377.CrossRefGoogle Scholar
Letoffe, S., Delepelaire, P., and Wandersman, C. (1996). Protein secretion in gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J. 15, 5804–5811.Google ScholarPubMed
Lindeberg, M., Salmond, G. P. and Collmer, A. (1996). Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol. Microbiol. 20, 175–190.CrossRefGoogle Scholar
Liu, S., Yahr, T. L., Frank, D. W., and Barbieri, J. T. (1997). Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J. Bacteriol. 179, 1609–1613.CrossRefGoogle ScholarPubMed
Lu, L. and Walker, W. A. (2001). Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am. J. Clin. Nutr. 73, 1124S–1130S.CrossRefGoogle ScholarPubMed
Luo, Y., Bertero, M. G., Frey, E. A., et al. (2001). Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8, 1031–1036.CrossRefGoogle ScholarPubMed
Macnab, R. M. (2004). Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207–217.CrossRefGoogle ScholarPubMed
Marenne, M. N., Journet, L., Mota, L. J., and Cornelis, G. R. (2003). Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, YscF and YopN. Microb. Pathog. 35, 243–258.CrossRefGoogle ScholarPubMed
Marlovits, T. C., Kubori, T., Sukhan, A., et al. (2004). Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042.CrossRefGoogle ScholarPubMed
Mattick, J. S. (2002). Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314.CrossRefGoogle ScholarPubMed
McGhie, E. J., Hayward, R. D., and Koronakis, V. (2001). Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20, 2131–2139.CrossRefGoogle ScholarPubMed
Miki, T., Okada, N., Shimada, Y., and Danbara, H. (2004). Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium. Microb. Pathog. 37, 65–72.CrossRefGoogle ScholarPubMed
Molmeret, M., Bitar, D. M., Han, L., and Kwaik, Y. A. (2004). Cell biology of the intracellular infection by Legionella pneumophila. Microbes Infect. 6, 129–139.CrossRefGoogle ScholarPubMed
Mudgett, M. B. (2005). New insights to the function of phytopathogenic baterial type III effectors in plants. Annu. Rev. Plant. Biol. 56, 509–531.CrossRefGoogle Scholar
Nagai, H. and Roy, C. R. (2001). The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970.CrossRefGoogle ScholarPubMed
Nagai, H. and Roy, C. R. (2003). Show me the substrates: modulation of host cell function by type IV secretion systems. Cell. Microbiol. 5, 373–383.CrossRefGoogle ScholarPubMed
Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A. and Roy, C. R. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science. 295, 679–682.CrossRefGoogle ScholarPubMed
Navarro, L., Alto, N. M., and Dixon, J. E. (2005). Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr. Opin. Microbiol. 8, 21–27.CrossRefGoogle ScholarPubMed
Neyt, C. and Cornelis, G. R. (1999). Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol. Microbiol. 31, 143–156.CrossRefGoogle ScholarPubMed
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. U. S. A. 95, 14 057–14 059.CrossRefGoogle ScholarPubMed
Nouwen, N., Ranson, N., Saibil, H., et al. (1999). Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl. Acad. Sci. U. S. A. 96, 8173–8177.CrossRefGoogle ScholarPubMed
Nouwen, N., Stahlberg, H., Pugsley, A. P. and Engel, A. (2000). Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J. 19, 2229–2236.CrossRefGoogle ScholarPubMed
Oliver, D. C., Huang, G., and Fernandez, R. C. (2003). Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J. Bacteriol. 185, 489–495.CrossRefGoogle ScholarPubMed
Oliver, D. C., Huang, G., Nodel, E., Pleasance, S., and Fernandez, R. C. (2003). A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol. Microbiol. 47, 1367–1383.CrossRefGoogle ScholarPubMed
Oomen, C. J., Ulsen, P., Gelder, P., et al. (2004). Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266.CrossRefGoogle ScholarPubMed
Pallen, M. J. (2002). The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system?Trends Microbiol. 10, 209–212.CrossRefGoogle Scholar
Pallen, M. J. and Ponting, C. P. (1997). PDZ domains in bacterial proteins. Mol. Microbiol. 26, 411–413.CrossRefGoogle ScholarPubMed
Pallen, M. J., Francis, M. S., and Futterer, K. (2003). Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol. Lett. 223, 53–60.CrossRefGoogle ScholarPubMed
Pallen, M. J., Beatson, S. A., and Bailey, C. M. (2005a). Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev. 29, 201–229.CrossRefGoogle Scholar
Pallen, M. J., Beatson, S. A., and Bailey, C. M. (2005b). Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol. 5, 9.CrossRefGoogle Scholar
Pallen, M. J., Penn, C. W., and Chaudhuri, R. R. (2005). Bacterial flagellar diversity in the post-genomic era. Trends Microbiol. 13, 143–149.CrossRefGoogle ScholarPubMed
Parsot, C., Hamiaux, C., and Page, A. L. (2003). The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14.CrossRefGoogle Scholar
Pepe, J. C. and Lory, S. (1998). Amino acid substitutions in PilD, a bifunctional enzyme of Pseudomonas aeruginosa: effect on leader peptidase and N-methyltransferase activities in vitro and in vivo. J. Biol. Chem. 273, 19 120–19 129.CrossRefGoogle ScholarPubMed
Pettersson, J., Holmstrom, A., Hill, J., et al. (1999). The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol. Microbiol. 32, 961–976.CrossRefGoogle ScholarPubMed
Plano, G. V., Day, J. B., and Ferracci, F. (2001). Type III export: new uses for an old pathway. Mol. Microbiol. 40, 284–293.CrossRefGoogle ScholarPubMed
Possot, O. M., Vignon, G., Bomchil, N., Ebel, F., and Pugsley, A. P. (2000). Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J. Bacteriol. 182, 2142–2152.CrossRefGoogle ScholarPubMed
Puhler, A., Arlat, M., Becker, A., et al. (2004). What can bacterial genome research teach us about bacteria–plant interactions?. Curr. Opin. Plant Biol. 7, 137–147.CrossRefGoogle ScholarPubMed
Py, B., Loiseau, L., and Barras, F. (2001). An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248.CrossRefGoogle ScholarPubMed
Ren, C. P., Chaudhuri, R. R., Fivian, A., et al. (2004). The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J. Bacteriol. 186, 3547–3560.CrossRefGoogle ScholarPubMed
Robinson, C. and Bolhuis, A. (2004). Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim. Biophys. Acta 1694, 135–147.CrossRefGoogle ScholarPubMed
Roggenkamp, A., Ackermann, N., Jacobi, C. A., et al. (2003). Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J. Bacteriol. 185, 3735–3744.CrossRefGoogle ScholarPubMed
Roy, C. R. and Isberg, R. R. (1997). Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect. Immun. 65, 571–578.Google ScholarPubMed
Ruckdeschel, K., Harb, S., Roggenkamp, A., et al. (1998). Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J. Exp. Med. 187, 1069–1079.CrossRefGoogle ScholarPubMed
Sandkvist, M. (2001a). Type II secretion and pathogenesis. Infect. Immun. 69, 3523–3535.CrossRefGoogle Scholar
Sandkvist, M. (2001b). Biology of type II secretion. Mol. Microbiol. 40, 271–283.CrossRefGoogle Scholar
Sauvonnet, N., Vignon, G., Pugsley, A. P., and Gounon, P. (2000). Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221–2228.CrossRefGoogle ScholarPubMed
Schwartz, M. (2004). Rho signalling at a glance. J. Cell. Sci. 117, 5457–5458.CrossRefGoogle ScholarPubMed
Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A. 96, 14 559–14 564.CrossRefGoogle ScholarPubMed
Sharff, A., Fanutti, C., Shi, J., Calladine, C., and Luisi, B. (2001). The role of the TolC family in protein transport and multidrug efflux: from stereochemical certainty to mechanistic hypothesis. Eur. J. Biochem. 268, 5011–5026.CrossRefGoogle ScholarPubMed
Shea, J. E., Hensel, M., Gleeson, C., and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. U. S. A. 93, 2593–2597.CrossRefGoogle ScholarPubMed
Shotland, Y., Kramer, H., and Groisman, E. A. (2003). The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking. Mol. Microbiol. 49, 1565–1576.CrossRefGoogle ScholarPubMed
Sijbrandi, R., Urbanus, M. L., ten Hagen-Jongman, C. M., et al. (2003). Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J. Biol. Chem. 278, 4654–4659.CrossRefGoogle ScholarPubMed
Smith, C. L. and Hultgren, S. J. (2001). Bacteria thread the needle. Nature. 414, 29–31.CrossRefGoogle Scholar
Stebbins, C. E. and Galan, J. E. (2001). Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature. 414, 77–81.CrossRefGoogle ScholarPubMed
Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F., and Finlay, B. B. (1996). Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164.CrossRefGoogle ScholarPubMed
Sukhan, A., Kubori, T., and Galan, J. E. (2003). Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J. Bacteriol. 185, 3480–3483.CrossRefGoogle ScholarPubMed
Surana, N. K., Grass, S., Hardy, G. G., et al. (2004). Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc. Natl. Acad. Sci. U. S. A. 101, 14 497–14 502.CrossRefGoogle ScholarPubMed
Szabady, R. L., Peterson, J. H., Skillman, K. M., and Bernstein, H. D. (2005). An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl. Acad. Sci. U. S. A. 102, 221–226.CrossRefGoogle ScholarPubMed
Takizawa, N. and Murooka, Y. (1985). Cloning of the pullulanase gene and overproduction of pullulanase in Escherichia coli and Klebsiella aerogenes. Appl. Environ. Microbiol. 49, 294–298.Google ScholarPubMed
Tamano, K., Aizawa, S., Katayama, E., et al. (2000). Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887.CrossRefGoogle ScholarPubMed
Tamano, K., Katayama, E., Toyotome, T., and Sasakawa, C. (2002). Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 1244–1252.CrossRefGoogle ScholarPubMed
Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J., and Kokkinidis, M. (2004). Conserved features of type III secretion. Cell. Microbiol. 6, 805–816.CrossRefGoogle ScholarPubMed
Tardy, F., Homble, F., Neyt, C., et al. (1999). Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J. 18, 6793–6799.CrossRefGoogle ScholarPubMed
Thanabalu, T., Koronakis, E., Hughes, C., and Koronakis, V. (1998). Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 17, 6487–6496.CrossRefGoogle Scholar
Ton-That, H., Marraffini, L. A., and Schneewind, O. (2004). Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta 1694, 269–278.CrossRefGoogle ScholarPubMed
Tu, X., Nisan, I., Yona, C., Hanski, E., and Rosenshine, I. (2003). EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol. 47, 595–606.CrossRefGoogle ScholarPubMed
Tucker, S. C. and Galan, J. E. (2000). Complex function for SicA, a Salmonella enterica serovar typhimurium type III secretion-associated chaperone. J. Bacteriol. 182, 2262–2268.CrossRefGoogle ScholarPubMed
Uchiya, K., Barbieri, M. A., Funato, K., et al. (1999). A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18, 3924–3933.CrossRefGoogle ScholarPubMed
Montagu, M., Holsters, M., Zambryski, P., et al. (1980). The interaction of Agrobacterium Ti-plasmid DNA and plant cells. Proc. R. Soc. Lond. B Biol. Sci. 210, 351–365.CrossRefGoogle ScholarPubMed
Vazquez-Torres, A. and Fang, F. C. (2001a). Salmonella evasion of the NADPH phagocyte oxidase. Microbes. Infect. 3, 1313–1320.CrossRefGoogle Scholar
Vazquez-Torres, A. and Fang, F. C. (2001b). Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9, 29–33.CrossRefGoogle Scholar
Voulhoux, R., Ball, G., Ize, B., et al. (2001). Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J. 20, 6735–6741.CrossRefGoogle ScholarPubMed
Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M., and Tommassen, J. (2003). Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265.CrossRefGoogle ScholarPubMed
Wainwright, L. A. and Kaper, J. B. (1998). EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol. Microbiol. 27, 1247–1260.CrossRefGoogle ScholarPubMed
Walker, G., Hertle, R., and Braun, V. (2004). Activation of Serratia marcescens hemolysin through a conformational change. Infect. Immun. 72, 611–614.CrossRefGoogle ScholarPubMed
Wandersman, C., Delepelaire, P., Letoffe, S., and Schwartz, M. (1987). Characterization of Erwinia chrysanthemi extracellular proteases: cloning and expression of the protease genes in Escherichia coli. J. Bacteriol. 169, 5046–5053.CrossRefGoogle ScholarPubMed
Waterman, S. R. and Holden, D. W. (2003). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell. Microbiol. 5, 501–511.CrossRefGoogle ScholarPubMed
Weber, E., Ojanen-Reuhs, T., Huguet, E., et al. (2005). The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J. Bacteriol. 187, 2458–2468.CrossRefGoogle ScholarPubMed
Woestyn, S., Allaoui, A., Wattiau, P., and Cornelis, G. R. (1994). YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176, 1561–1569.CrossRefGoogle ScholarPubMed
Wong, K. R., McLean, D. M., and Buckley, J. T. (1990). Cloned aerolysin of Aeromonas hydrophila is exported by a wild-type marine Vibrio strain but remains periplasmic in pleiotropic export mutants. J. Bacteriol. 172, 372–376.CrossRefGoogle ScholarPubMed
Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T., and Frank, D. W. (1998). ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. U. S. A. 95, 13 899–13 904.CrossRefGoogle ScholarPubMed
Zhang, L., Chaudhuri, R. R., Constantinidou, C., et al. (2004). Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7. Infect. Immun. 72, 7282–7293.CrossRefGoogle ScholarPubMed
Zhao, Z., Sagulenko, E., Ding, Z., and Christie, P. J. (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J. Bacteriol. 183, 3855–3865.CrossRefGoogle ScholarPubMed
Zhou, D. and Galan, J. (2001). Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes. Infect. 3, 1293–1298.CrossRefGoogle ScholarPubMed
Ziemienowicz, A. (2001). Odyssey of Agrobacterium T-DNA. Acta Biochim. Pol. 48, 623–635.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bacterial secretion systems
    • By Helen J. Betts, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Christopher M. Bailey, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Mark J. Pallen, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Ian R. Henderson, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bacterial secretion systems
    • By Helen J. Betts, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Christopher M. Bailey, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Mark J. Pallen, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Ian R. Henderson, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bacterial secretion systems
    • By Helen J. Betts, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Christopher M. Bailey, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Mark J. Pallen, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK, Ian R. Henderson, Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.003
Available formats
×