from Part II - Bacterial cell biology and pathogenesis
Published online by Cambridge University Press: 12 August 2009
To survive in any given niche, bacteria must be capable of sensing, interacting with, and responding to their environment. The method and extent to which bacteria interact with their environment are governed to a large degree by the proteinaceous molecules located on the bacterial cell surface or released into the extracellular milieu. Due to differences in cell-envelope architecture, this process of protein secretion is markedly different between Gram-positive and Gram-negative organisms.
GRAM-POSITIVE VERSUS GRAM-NEGATIVE BACTERIA
Gram-positive bacteria possess a single biological membrane termed the cytoplasmic membrane, which is surrounded by a thick cell wall. The majority of proteins targeted for secretion possess an N-terminal amino-acid signal peptide and utilize the Sec-dependent pathway (Holland, 2004). The Sec machinery is composed of several membrane-associated proteins, including an ATPase (SecA), the Sec translocon (SecYEG), which appears to be the basic unit of cellular life forms, several integral membrane proteins (e.g. SecD, SecF), and a signal peptidase that removes the signal peptide during translocation of the proteins across the cytoplasmic membrane (Dalbey and Chen, 2004). In addition to the Sec pathway, several alternative protein-secretion systems have been recognized in Gram-positive organisms, including the Tat (twin arginine translocation) and ESAT-6/WXG-100 pathways (Pallen, 2002; Robinson and Bolhuis, 2004). However, the role of these systems in protein secretion in Gram-positive bacteria is minor in comparison with the Sec-dependent pathway. Once translocated across the cytoplasmic membrane, the mature protein either can be released into the extracellular milieu or may remain in contact with the cell wall.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.