Published online by Cambridge University Press: 08 August 2009
INTRODUCTION
Many species of bacterium exchange chemical signals to help them monitor their population densities, a phenomenon referred to as quorum sensing. Quorum sensing was first described over two decades ago in two luminescent marine bacterial species, Vibrio fischeri and V. harveyi (40), which have served as model species for studies of cell-density-dependent gene expression. In both species, the enzymes responsible for light production are encoded by the luciferase structural operon luxCDABE (13, 39) and light emission occurs only at high cell density in response to the accumulation of secreted autoinducer signaling molecules (40). In the 1980s, Eberhard et al. (11) purified the first homoserine lactone autoinducer from V. fischeri and showed that it was indeed a specific inducer of luminescence. In 1983, the basic features of the autoinduction system were revealed at the molecular level when the lux genes of V. fischeri were successfully cloned and expressed in Escherichia coli (12).
Although quorum sensing regulation has been analyzed in great detail in V. harveyi and V. fischeri, the study of quorum sensing phenotypes in the clinically important Vibrio species V. cholerae was virtually non-existent until quite recently. This was partly because, unlike V. fischeri and V. harveyi, V. cholerae does not possess luciferase genes and it was therefore unclear whether it possessed any genes that were regulated by quorum sensing. However, when the V. cholerae genome sequence was completed (22) it was revealed that V. cholerae contains several quorum-sensing genes similar to those of V. harveyi.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.