Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T00:58:22.516Z Has data issue: false hasContentIssue false

6 - Blocks for mod p representations of GL2(ℚp)

Published online by Cambridge University Press:  05 October 2014

Vytautas Paškūnas
Affiliation:
Universität Duisburg–Essen
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Barthel and R., Livné, ‘Irreducible modular representations of GL2 of a local field’, Duke Math. J. 75, (1994) 261–292.Google Scholar
[2] L., Berger, ‘Représentations modulaires de GL2(ℚp) et représentations galoisiennes de dimension 2’, Astérisque 330 (2010), 263–279.Google Scholar
[3] L., Berger and C., Breuil, ‘Sur quelques représentations potentiellement cristallines de GL2(ℚp)’, Astérisque 330 (2010) 155–211.Google Scholar
[4] C., Breuil, ‘Sur quelques représentations modulaires et p-adiques de GL2(ℚp). I’, Compositio 138, (2003), 165–188.Google Scholar
[5] C., Breuil, ‘Sur quelques représentations modulaires et p-adiques de GL2(ℚp). II’, J. Inst. Math. Jussieu 2, (2003), 1–36.Google Scholar
[6] C., Breuil and M., Emerton, ‘Représentations p-adiques ordinaires de GL2(ℚp) et compatibilité local-global’, Astérisque 331 (2010), 255–315.Google Scholar
[7] C., Breuil and V., Paškūnas, ‘Towards a modulo p Langlands correspondence for GL2’, Memoirs of AMS, 216, 2012.Google Scholar
[8] P., Colmez, ‘Représentations de GL2(ℚp) et (ϕ, Γ)-modules’, Astérisque 330 (2010) 281–509.Google Scholar
[9] B., Conrad, ‘Weil and Grothendieck approaches to adelic points’, Enseign. Math. (2) 58 (2012), no. 1–2, 61–97.Google Scholar
[10] R.L., Ellis, ‘Extending continuous functions on zero-dimensional spaces’, Math. Ann., 186, (1970), 114–122.Google Scholar
[11] M., Emerton, ‘p-adic L-functions and unitary completions of representations of p-adic reductive groups’, Duke Math. J. 130 (2005), no. 2, 353–392.Google Scholar
[12] M., Emerton, ‘Locally analytic vectors in representations of locally p-adic analytic groups’, to appear in Memoirs of the AMS.
[13] M., Emerton, ‘Local-global compatibility conjecture in the p-adic Langlands programme for GL2/ℚ’, Pure and Applied Math. Quarterly 2 (2006), no. 2, 279–393.Google Scholar
[14] M., Emerton, ‘Local-global compatibility in the p-adic Langlands programme for GL2/ℚ’, Preprint 2011, available at www.math.uchicago.edu/~emerton/preprints.html.
[15] M., Emerton, ‘Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties’, Astérisque 331 (2010), 335–381.Google Scholar
[16] M., Emerton, ‘Ordinary parts of admissible representations of p-adic reductive groups II. Derived functors’, Astérisque 331 (2010), 383–438.Google Scholar
[17] P., Gabriel, ‘Des catégories abéliennes’, Bull. Soc. Math. France 90 (1962) 323–448.Google Scholar
[18] J.C., Jantzen, Representations of algebraic groups, 2nd edn, Mathematical Surveys and Momographs, Vol. 107, AMS, 2003.
[19] M., Lazard, ‘Groupes analytiques p-adiques’, Publ. Math. IHES 26 (1965).Google Scholar
[20] R., Ollivier, ‘Le foncteur des invariants sous l'action du pro-p-Iwahori de GL(2, F)’, J. für die Reine und Angewandte Mathematik 635 (2009) 149–185.Google Scholar
[21] V., Paškūnas, ‘Coefficient systems and supersingular representations of GL2(F)’, Mémoires de la SMF, 99, (2004).Google Scholar
[22] V., PaškūnasOn some crystalline representations of GL2(ℚp)’, Algebra Number Theory 3 (2009), no. 4, 411–421.Google Scholar
[23] V., Paškūnas, ‘Extensions for supersingular representations of GL2(ℚp)’, Astérisque 331 (2010) 317–353.Google Scholar
[24] V., Paškūnas, ‘Admissible unitary completions of locally ℚp-rational representations of GL2(F)’, Represent. Theory 14 (2010), 324–354.Google Scholar
[25] V., Paškūnas, ‘The image of Colmez's Montreal functor’, to appear in Publ. Math. IHES. DOI: 10.1007/s10240-013-0049-y.
[26] P., Schneider and J., Teitelbaum, ‘Banach space representations and Iwasawa theory’, Israel J. Math. 127, (2002) 359–380.Google Scholar
[27] M.-F., Vignéras, ‘Representations modulo p of the p-adic group GL(2, F)’, Compositio Math. 140 (2004) 333–358.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×