Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T09:16:29.897Z Has data issue: false hasContentIssue false

Chapter 23 - ‘Ragged mountain ranges, droughts and flooding rains’: the evolutionary history and conservation of Australian freshwater fishes

Published online by Cambridge University Press:  05 November 2014

Leanne Faulks
Affiliation:
Uppsala University, Sweden
Dean Gilligan
Affiliation:
Fisheries and Ecosystems Research, Industry & Investment NSW
Luciano B. Beheregaray
Affiliation:
Flinders University, Australia
Adam Stow
Affiliation:
Macquarie University, Sydney
Norman Maclean
Affiliation:
University of Southampton
Gregory I. Holwell
Affiliation:
University of Auckland
Get access

Summary

Summary

Australia hosts a unique assemblage of flora and fauna derived from a combination of Gondwanan relict and more recently evolved endemic taxa and is recognised as one of the world’s megadiverse countries. Despite the continent’s high species biodiversity, the Australian freshwater fish fauna is relatively depauperate. The conservation of freshwater fishes in Australia is of increasing importance as many species are listed as threatened by the IUCN. The major threatening processes for Australian freshwater fishes are habitat degradation, river regulation, anthropogenic barriers to dispersal, introduced species, disease and climate change. The use of molecular genetic tools to infer evolutionary history and to inform conservation is well recognised and is one way of predicting how fish may respond to these threatening processes. Nonetheless, there are few Australian cases that allow a bigger picture assessment of evolutionary processes across a broad range of environments, yet within a single taxonomic group. The temperate freshwater perches of the genus Macquaria provide an exception. This chapter uses this fish group as a case study in phylogeography and population genetics to explore and identify evolutionary processes relevant for aquatic conservation across a large section of eastern and central Australia.

Australian freshwater fishes: biodiversity and conservation

Australia hosts a unique assemblage of flora and fauna derived from a combination of Gondwanan relict and more recently evolved endemic taxa (Allen et al., 2002; Sanmartin & Ronquist,2004)and is recognised as one of the world’s megadiverse countries (Mittermeier et al., 1997).

Type
Chapter
Information
Austral Ark
The State of Wildlife in Australia and New Zealand
, pp. 492 - 511
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. R., Midgley, S. H., Allen, M. (2002). Field Guide to the Freshwater Fishes of Australia. Perth, Australia, Western Australian Museum.Google Scholar
Avise, J. C., Walker, D. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society London B, 265, 457–463.CrossRefGoogle ScholarPubMed
Balcombe, S. R., Sheldon, F., Capon, S. J. et al. (2011). Climate-change threats to native fish in degraded rivers and flood plains of the Murray–Darling Basin, Australia. Marine and Freshwater Research, 62, 1099–1114.CrossRefGoogle Scholar
Barrows, T. T., Stone, J. O., Fifield, L. K., Creswell, R. G. (2001). Late Pleistocene glaciation of the Kosciuszko massif, Snowy Mountains, Australia. Quaternary Research, 55, 179–189.CrossRefGoogle Scholar
Beare, S., Heaney, A. (2002). Climate change and water resources in the Murray–Darling Basin, Australia. In: Proceedings of the 2002 World Congress of Environmental and Resource Economists. Monterey, California, USA.Google Scholar
Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17, 3754–3774.Google ScholarPubMed
Beheregaray, L. B., Sunnucks, P., Briscoe, D. A. (2002). A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proceedings of the Royal Society of London B, 269, 65–73.CrossRefGoogle ScholarPubMed
Bell, M. A., Foster, S. A. (1994). The Evolutionary Biology of the Threespine Stickleback. Oxford University Press.Google Scholar
Bonduriansky, R., Crean, A. J., Day, T. (2012). The implications of nongenetic inheritance for evolution in changing environments. Evolutionary Applications, 5, 192–201.CrossRefGoogle ScholarPubMed
Bostock, B. M., Adams, M., Laurenson, L. J. B., Austin, C. M. (2006). The molecular systematics of Leiopotherapon unicolor (Gunther, 1859): testing for cryptic speciation in Australia’s most widespread freshwater fish. Biological Journal of the Linnean Society, 87, 537–552.CrossRefGoogle Scholar
Bowler, J. (1990). The last 500, 000 years. In: The Murray, (eds. Mackay, N, Eastburn, D.). Canberra, Murray Darling Basin Commission, pp. 95–109.Google Scholar
Brauer, C. J., Unmack, P. J., Hammer, M. P., Adams, M., Beheregaray, L. B. (2013). Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems. PLoS ONE, 8(12), e82953.CrossRefGoogle ScholarPubMed
Brumley, A. (1987). Past and present distributions of golden perch Macquaria ambigua (Pisces: Percichthyidae) in Victoria, with reference to releases of hatchery produced fry. Proceedings of the Royal Society of Victoria, 99, 111–116.Google Scholar
Byrne, M., Yeates, D. K., Joseph, L. et al. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 17, 4398–4417.CrossRefGoogle ScholarPubMed
Cadwallader, P. L. (1978). Some causes of the decline in range and abundance of native fish in the Murray–Darling River system. Proceedings of the Royal Society of Victoria, 90, 211–224.Google Scholar
Chen, W., Lavoué, S., Beheregaray, L. B., Mayden, R. L. (2014). Historical biogeography of a new antitropical clade of temperate freshwater fishes. Journal of Biogeography, .CrossRef
Chenoweth, S. F., Hughes, J. M. (1997). Genetic population structure of the catadromous Perciform: Macquaria novemaculeata (Percichthyidae). Journal of Fish Biology, 50, 721–733.Google Scholar
Chessman, B. C. (2013). Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biological Conservation, 160, 40–49.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A. et al. (2007). Regional Climate Projections. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel for Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.). Cambridge, Cambridge University Press.Google Scholar
Cook, B. D., Bunn, S. E., Hughes, J. M. (2007). Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biological Conservation, 138, 60–72.CrossRefGoogle Scholar
Cooke, G. M., Chao, N. L., Beheregaray, L. B. (2012). Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). Journal of Biogeography, 39, 724–738.CrossRefGoogle Scholar
Cowx, I. G., Gerdeaux, D. (2004). The effects of fisheries management practises on freshwater ecosystems. Fisheries Management & Ecology, 11, 145–151.CrossRefGoogle Scholar
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15, 290–295.CrossRefGoogle ScholarPubMed
Craw, D., Burridge, C. P., Anderson, L., Waters, J. M. (2007). Late Quaternary river drainage and fish evolution, Southland, New Zealand. Geomorphology, 84, 98–110.CrossRefGoogle Scholar
Davies, P., Harris, J., Tillman, T., Walker, K. (2008). SRA Report 1: a Report on the Ecological Health of Rivers in the Murray–Darling Basin, 2004–2007. Canberra, Australia, Murray–Darling Basin Commission.Google Scholar
Davis, E. B., Koo, M. S., Conroy, C., Patton, J. L., Moritz, C. (2008). The California hotspots project: identifying regions of rapid diversification in mammals. Molecular Ecology, 17, 120–138.CrossRefGoogle ScholarPubMed
Dudgeon, D., Arthington, A. H., Gessner, M. O. et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Review, 81, 163–182.CrossRefGoogle ScholarPubMed
Dufty, S. (1986). Genetic and morphological divergence between populations of Macquarie perch (Macquaria australasica) east and west of the Great Dividing Range. Honours thesis, University of New South Wales, Sydney.
Echelle, A. A., Echelle, A. F. (1984). Evolutionary genetics of a ‘species Flock’: atherinid fishes on the Mesa Central of Mexico. In: Evolution of Fish Species Flocks (eds. Echelle, A. A., Kornfield, I.), pp. 93–110. Orono, University of Maine at Orono Press.Google Scholar
Edmands, S. (2007). Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463–475.CrossRefGoogle Scholar
Estes, R. (1984). Fish, amphibians and reptiles from the Etadunna Formation, Miocene of South Australia. Australian Zoologist, 21, 335–343.Google Scholar
Faulks, L. K., Gilligan, D. M., Beheregaray, L. B. (2008). Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications. Marine and Freshwater Research, 59, 89–96.CrossRefGoogle Scholar
Faulks, L. K., Gilligan, D. M., Beheregaray, L. B. (2010a). Clarifying an ambiguous evolutionary history: range-wide phylogeography of an Australian freshwater fish, Golden Perch (Macquaria ambigua). Journal of Biogeography, 37, 1329–1340.CrossRefGoogle Scholar
Faulks, L. K., Gilligan, D. M., Beheregaray, L. B. (2010b). Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica. Conservation Genetics, 11, 921–934.CrossRefGoogle Scholar
Faulks, L. K., Gilligan, D. M., Beheregaray, L. B. (2010c). Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia’s arid zone, the golden perch Macquaria ambigua. Molecular Ecology, 19, 4723–4737.CrossRefGoogle Scholar
Faulks, L. K., Gilligan, D. M., Beheregaray, L. B. (2011). The role of natural vs. anthropogenic in-stream structures in determining the genetic diversity of an endangered freshwater fish, Macquarie perch (Macquaria australasica). Evolutionary Applications, 4, 589–601.CrossRefGoogle Scholar
Frankham, R., Ballou, J. D., Briscoe, D. A. (2002). Introduction to Conservation Genetics. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Fraser, D. J., Bernatchez, L. (2001). Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology, 10, 2741–2752.CrossRefGoogle ScholarPubMed
Gehrke, P. C., Astles, K. L., Harris, J. H. (1999). Within-catchment effects of flow alteration on fish assemblages in the Hawkesbury–Nepean River system, Australia. River Research and Applications, 15, 181–198.Google Scholar
Hallerman, E. M. (2003). Population Genetics: Principles and Applications for Fisheries Scientists. Bethesda, American Fisheries Society.Google Scholar
Hammer, M. (2001). Molecular systematics and conservation biology of the southern pygmy perch Nannoperca australis (Gunther, 1861) (Teleostei: Percichthyidae) in south-eastern Australia. Adelaide, Australia, Honours Thesis, Adelaide University.
Hammer, M., Adams, M., Unmack, P., Walker, K. F. (2007). A rethink on Retropinna: conservation implications of a new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae). Marine and Freshwater Research, 58, 327–341.CrossRefGoogle Scholar
Hammer, M., Unmack, P., Adams, M., Johnson, J., Walker, K. (2010). Phylogeographic structure in the threatened Yarra pygmy perch Nannoperca obscura (Teleostei: Percichthyidae) has major implications for declining populations. Conservation Genetics, 11, 213–223.CrossRefGoogle Scholar
Harris, J., Gehrke, P. (1997). Fish and Rivers in Stress: the NSW Rivers Survey. Sydney, Australia, New South Wales Fisheries Office of Conservation and Cooperative Research Centre for Freshwater Ecology.Google Scholar
Hewitt, G. (2000). The genetic legacy of the Quarternary Ice Ages. Nature, 405, 907–913.CrossRefGoogle Scholar
Hills, E. S. (1934). Tertiary freshwater fishes from southern Queensland. Memoirs of the Queensland Museum, 39, 131–174.Google Scholar
Hills, E. S. (1943). Tertiary freshwater fishes and crocodilian remains from Gladstone and Duaringa, Queensland. Memoirs of the Queensland Museum, 12, 96–101.Google Scholar
Hindar, K., Ryman, N., Utter, F. (1991). Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries & Aquatic Sciences, 48, 945–957.CrossRefGoogle Scholar
Howard, J., L. (2008). The future of the Murray River: emerity re-considered?Geographical Research, 46, 291–302.CrossRefGoogle Scholar
Huey, J. A., Hughes, J. M., Baker, A. M. (2006). Patterns of gene flow in two species of eel-tailed catfish, Neosilurus hyrtlii and Porochilus argenteus (Siluriformes: Plotosidae), in western Queensland’s dryland rivers. Biological Journal of the Linnean Society, 87, 457–467.CrossRefGoogle Scholar
Huey, J. A., Baker, A. M., Hughes, J. M. (2008). The effect of landscape processes upon gene flow and genetic diversity in an Australian freshwater fish, Neosilurus hyrtlii. Freshwater Biology, 53, 1393–1408.CrossRefGoogle Scholar
Huey, J. A., Baker, A. M., Hughes, J. M. (2011). Evidence for multiple historical colonizations of an endoreic drainage basin by an Australian freshwater fish. Journal of Fish Biology, 79, 1047–1067.CrossRefGoogle ScholarPubMed
Hughes, J. M., Hillyer, M. (2006). Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia. Journal of Fish Biology, 68, 270–291.CrossRefGoogle Scholar
Hughes, J., Ponniah, M., Hurwood, D., Chenoweth, S. F., Arthington, A. (1999). Strong genetic structuring in a habitat specialist, the Oxylean Pygmy Perch Nannoperca oxleyana. Heredity, 83, 5–14.CrossRefGoogle Scholar
Hughes, J. M., Schmidt, D. J., Finn, D. S. (2009). Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience, 59, 573–583.CrossRefGoogle Scholar
Humphries, P., Walker, K. (2013). Ecology of Australian Freshwater Fishes. CSIRO Publishing, Victoria AustraliaGoogle Scholar
Hurwood, D. A., Hughes, J. M. (1998). Phylogeography of the freshwater fish, Mogurnda adspersa, in streams of north-eastern Queensland, Australia: evidence for altered drainage patterns. Molecular Ecology, 7, 1507–1517.CrossRefGoogle Scholar
Imbrie, J., Hays, J., Martinson, D. G. et al. (1984). The orbital theory of the Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Milankovitch and Climate (eds. Berger, A. L., Imbrie, J., Hays, J., Kukla, G., Salzman, B.), Part 1. Riedel, Dordrecht, pp. 269–305.Google Scholar
Jerry, D. R. (1997). Population genetic structure of the catadromous Australian bass from throughout its range. Journal of Fish Biology, 51, 909–920.CrossRefGoogle Scholar
Jerry, D. R. (2008). Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern Australian freshwater fish fauna. Marine and Freshwater Research, 59, 351–360.CrossRefGoogle Scholar
Jerry, D. R., Baverstock, P. R. (1998). Consequences of a catadromous life-strategy for levels of mitochondrial DNA differentiation among populations of the Australian bass, Macquaria novemaculeata. Molecular Ecology, 7, 1003–1013.CrossRefGoogle ScholarPubMed
Jerry, D. R., Woodland, D. J. (1997). Electrophoretic evidence for the presence of the undescribed ‘Bellinger’ catfish (Tandanus sp.) (Teleostei : Plotosidae) in four New South Wales mid-northern coastal rivers. Marine and Freshwater Research, 48, 235–240.CrossRefGoogle Scholar
Jerry, D. R., Elphinstone, M. S., Baverstock, P. R. (2001). Phylogenetic relationships of Australian members of the family Percichthyidae inferred from mitochondrial 12S rRNA sequence data. Molecular Phylogenetics and Evolution, 18, 335–347.CrossRefGoogle ScholarPubMed
Jones, F., Grabherr, M., Chan, Y. et al. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 482, 55–61.CrossRefGoogle Scholar
Kennard, M. J., Pusey, B. J., Olden, J. D. et al. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55, 171–193.CrossRefGoogle Scholar
Kershaw, P., Moss, P., Van Der Kaars, S. (2003). Causes and consequences of long-term climatic variability on the Australian climate. Freshwater Biology, 48, 1274–1283.CrossRefGoogle Scholar
Kingsford, R. T., Auld, K. M. (2005). Waterbird breeding and environmental flow management in the Macquarie Marshes, arid Australia. River Research and Applications, 21, 187–200.CrossRefGoogle Scholar
Knight, J. T., Nock, C. J., Elphinstone, M. S., Baverstock, P. R. (2009). Conservation implications of distinct genetic structuring in the endangered freshwater fish Nannoperca oxleyana (Percichthyidae). Marine and Freshwater Research, 60, 34–44.CrossRefGoogle Scholar
Knudsen, R., Klemetsen, A., Amundsen, P. A., Hermansen, B. (2006). Incipient speciation through niche expansion: an example from the Artic charr in a subarctic lake. Proceedings of the Royal Society of London B, 273, 2291–2298.CrossRefGoogle Scholar
Latta, R. G. (2008). Conservation genetics as applied evolution: from genetic pattern to evolutionary process. Evolutionary Applications, 1, 84–94.CrossRefGoogle ScholarPubMed
Lintermans, M. (2007). Fishes of the Murray–Darling Basin: An Introductory Guide. Canberra,Murray Darling Basin Commission.Google Scholar
Longman, H. A. (1929). Specimens from a well at Brigalow. Memoirs of the Queensland Museum, 9, 247.Google Scholar
Lovejoy, N., Bermingham, E., Martin, A. P. (1998). Marine incursion into South America. Nature, 396, 421–422.CrossRefGoogle Scholar
Lowe, W. & Likens, G. (2005). Moving headwater streams to the head of the class. BioScience, 55, 196–197.CrossRefGoogle Scholar
MacDonald, C. M. (1986). Morhpological and biochemical systematics of Australian freshwater and estuarine Percichthyd fishes. Australian Journal of Marine & Freshwater Research, 29, 667–698.CrossRefGoogle Scholar
Manel, S., Schwartz, M. K., Luikart, G., Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 18, 189–197.CrossRefGoogle Scholar
Masci, K. D., Ponniah, M., Hughes, J. M. (2008). Patterns of connectivity between the Lake Eyre and Gulf drainages, Australia: a phylogeographic approach. Marine and Freshwater Research, 59, 751–760.CrossRefGoogle Scholar
McCairns, R., Bernatchez, L. (2012). Plasticity and heritability of morphological variation within and between parapatric stickleback demes. Journal of Evolutionary Biology, 25, 1097–1112.CrossRefGoogle ScholarPubMed
McGlashan, D. J., Hughes, J. M. (2000). Reconciling patterns of genetic variation with stream structure, earth history and biology in the Australian freshwater fish Craterocephalus stercusmuscarum. Molecular Ecology, 9, 1737–1751.CrossRefGoogle ScholarPubMed
McGlashan, D. J., Hughes, J. M. (2001a). Low levels of genetic differentiation among populations of the freshwater fish Hypseleotris compressa (Gobiidae: Eleotridinae): implications for its biology, population connectivity and history. Heredity, 86, 222–233.CrossRefGoogle ScholarPubMed
McGlashan, D. J., Hughes, J. M. (2001b). Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Dividing Range. Journal of Fish Biology, 59, 55–67.CrossRefGoogle Scholar
MDBC (2003). Native Fish Strategy for the Murray Darling Basin 2003–2013. Available online. fish strategy.
Meehl, G. A., Stocker, T. F., Collins, W. D. et al. (2007). Global climate projections. In: Climate Change 2007: the Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.). Cambridge, Cambridge University Press.Google Scholar
Miller, A., Waggy, G., Ryan, S. G., Austin, C. M. (2004). Mitochondrial 12S rRNA sequences support the existence of a third species of freshwater blackfish (Percichthyidae: Gadopsis) from south-eastern Australia. Memoirs of the Museum of Victoria, 61, 121–127.CrossRefGoogle Scholar
Mittermeier, R. A., Gil, P. R., Mittermeier, C. G. (1997). Megadiversity: Earth’s Biologically Wealthiest Nations. Conservation International, Cemex.Google Scholar
Moore, A., Ingram, B. A., Friend, S. et al. (2010). Management of Genetic Resources for Fish and Crustaceans in the Murray–Darling Basin. Canberra, Bureau of Rural Sciences.Google Scholar
Moritz, C. (1994). Defining evolutionary significant units for conservation. Trends in Ecology and Evolution, 9, 373–375.CrossRefGoogle Scholar
Moritz, C. (2002). Strategies to protect diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238–254.CrossRefGoogle Scholar
Musyl, M. K., Keenan, C. P. (1992). Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and electrophoretic identification of a new species from the Lake Eyre basin. Australian Journal of Marine and Freshwater Research, 43, 1585–1601.CrossRefGoogle Scholar
Musyl, M. K., Keenan, C. P. (1996). Evidence for cryptic speciation in Australian freshwater eel-tailed catfish, Tandanus tandanus (Teleostei: Plotosidae). Copeia, 3, 526–534.CrossRefGoogle Scholar
Nanson, G. C., Price, D., Short, S. A. (1992). Wetting and drying in Australia over the last 300 ka yearsGeology, 20, 791–794.2.3.CO;2>CrossRefGoogle Scholar
Near, T. J., Sandel, M., Kuhn, K. L. et al. (2012). Nuclear gene-inferred phylogenies resolve the relationships of the enigmatic pygmy sunfishes, elassoma (teleostei: Percomorpha). Molecular Phylogenetics and Evolution, 63, 388–395.CrossRefGoogle Scholar
O’Connor, J. P., O’Mahony, D. J., O’Mahony, J. M. (2005). Movements of Macquaria ambigua, in the Murray River, south-eastern Australia. Journal of Fish Biology, 66, 392–403.CrossRefGoogle Scholar
Ollier, C. D. (1978). Tectonics and geomorphology of the eastern highlands. In: Landform Evolution in Australasia (eds. Davies, J. L., Williams, M. A. J.). Canberra, Australian National University Press, pp. 5–48.Google Scholar
Ovenden, J. R., White, R. W. G., Sanger, A. C. (1988). Evolutionary relationships of Gadopsis spp. inferred from restriction enzyme analysis of their mitochondrial DNA. Journal of Fish Biology, 32, 137–148.CrossRefGoogle Scholar
Page, T. J., Sharma, S., Hughes, J. M. (2004). Deep phylogenetic structure has conservation implications for ornate rainbowfish (Melanotaeniidae: Rhadinocentrus ornatus) in Queensland eastern Australia. Marine and Freshwater Research, 55, 165–172.CrossRefGoogle Scholar
Page, T. J., Marshall, J. C., Hughes, J. M. (2012). The world in a grain of sand: evolutionary relevant, small-scale freshwater bioregions on subtropical dune islands. Freshwater Biology, 57, 612–627.CrossRefGoogle Scholar
Phillips, R. D., Storey, A. W., Johnson, M. S. (2009). Genetic structure of Melanotaenia australis at local and regional scales in the east Kimberley, Western Australia. Journal of Fish Biology, 74, 437–451.CrossRefGoogle ScholarPubMed
Poff, N. L., Olden, J. D., Pepin, D. M., Bledsoe, B. P. (2006). Placing global stream-flow variability in geographic and geomorphic contexts. River Research and Applications, 22, 149–166.CrossRefGoogle Scholar
Preston, B. L., Jones, R. N. (2008). Screening climatic and non-climatic risks to Australian catchments. Geographical Research, 46, 258–274.CrossRefGoogle Scholar
Puckridge, J. T., Sheldon, F., Walker, K. F., Boulton, A. J. (1998). Flow variability and the ecology of large rivers. Marine and Freshwater Research, 49, 55–72.CrossRefGoogle Scholar
Pusey, B., Kennard, M., Arthington, A. (2004). Freshwater Fishes of North-Eastern Australia. Australia, CSIRO Publishing.Google Scholar
Raeymaekers, J. A. M., Maes, G. E., Geldof, S. et al. (2008). Modelling genetic connectivity in sticklebacks as a guideline for river restoration. Evolutionary Applications, 1, 475–488.CrossRefGoogle Scholar
Rahel, F. J. (2007). Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshwater Biology, 52, 696–710.CrossRefGoogle Scholar
Reynolds, L. F. (1983). Migration patterns of five fish species in the Murray–Darling river system. Australian Journal of Marine and Freshwater Research, 34, 857–871.CrossRefGoogle Scholar
Rourke, M. (2007). Population genetic structure of Murray cod (Maccullochella peelii peelii) and impacts of stocking in the Murray–Darling Basin. PhD thesis, Melbourne, Australia, Monash University.
Rourke, M. L., McPartlan, H. C., Ingram, B. A., Taylor, A. C. (2010). Biogeography and life history ameliorate the potentially negative genetic effects of stocking on Murray cod (Maccullochella peelii peelii). Marine and Freshwater Research, 61, 918–927.CrossRefGoogle Scholar
Rowland, S. J. (1993). Maccullochella ikei, an endangered species of freshwater cod (Pisces: Percicthyidae) from the Clarence River system, NSW and M. peeli mariensis, a new subspecies from the Mary River system, Qld. Records of the Australian Museum, 45, 121–145.CrossRefGoogle Scholar
Ryman, N., Utter, F. (1987). Population Genetics and Fishery Management. Washington, USA, University of Washington.Google Scholar
Sabine, E., Schreiber, G., Bearlin, A. R., Nicol, S. J., Todd, C. R. (2004). Adaptive management: a synthesis of current understanding and effective application. Ecological Restoration and Management, 5, 177–182Google Scholar
Sanmartin, I., Ronquist, F. (2004). Southern Hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology, 53, 216–243.CrossRefGoogle ScholarPubMed
Schramm, H. L., Piper, R. G. (1995). Uses and Effects of Cultured Fishes in Aquatic Ecosystems. Bethesda, American Fisheries Society.Google Scholar
Shaddick, K., Burridge, C. P., Jerry, D. R. et al. (2011a). A hybrid zone and bidirectional introgression between two catadromous species: Australian bass Macquaria novemaculeata and estuary perch Macquaria colonorum. Journal of Fish Biology, 79, 1214–1235.CrossRefGoogle ScholarPubMed
Shaddick, K., Burridge, C., Jerry, D. et al. (2011b). Historic divergence with contemporary connectivity in a catadromous fish, the estuary perch (Macquaria colonorum). Canadian Journal of Fisheries and Aquatic Sciences, 68, 304–318.CrossRefGoogle Scholar
Sharma, S., Hughes, J. M. (2011). Genetic structure and phylogeography of two freshwater fishes, Rhadinocentrus ornatus and Hypseleotris compressa, in southern Queensland, Australia, inferred from allozymes and mitochondrial DNA. Journal of Fish Biology, 78, 57–77.CrossRefGoogle ScholarPubMed
Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S., Soltis, P. S. (2006). Comparative phylogeography of unglaciated eastern North America. Molecular Ecology, 15, 4261–4293.CrossRefGoogle ScholarPubMed
Stephenson, A. E. (1986). Lake Bungunnia – a Plio-Pleistocene mega-lake in southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 137–156.CrossRefGoogle Scholar
Strayer, D. (2010). Alien species in freshwater: ecological effects, interaction with other stressors, and prospects for the future. Freshwater Biology, 55 (Suppl. 1), 152–174.CrossRefGoogle Scholar
Stuart, I. G., Zampatti, B. P., Baumgartner, L. J. (2008). Can a low-gradient vertical-slot fishway provide passage for a lowland river fish community?Marine and Freshwater Research, 59, 332–346.CrossRefGoogle Scholar
Tallmon, D. A., Luikart, G., Waples, R. S. (2004). The alluring simplicity and complex reality of genetic rescue. Trends in Ecology and Evolution, 19, 489–496.CrossRefGoogle ScholarPubMed
Thacker, C., Unmack, P., Matsui, L., Rifenbark, N. (2007). Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. Journal of Biogeography, 34, 1518–1533.CrossRefGoogle Scholar
Thacker, C., Unmack, P., Matsui, L., Duong, P., Huang, E. (2008). Phylogeography of Philypnodon species (Teleostei: Eleotridae) across south-eastern Australia: testing patterns of connectivity across drainage divides and among coastal rivers. Biological Journal of the Linnean Society, 95, 175–192.CrossRefGoogle Scholar
Thuesen, P. A., Pusey, B. J., Peck, D. R., Pearson, R., Congdon, B. C. (2008). Genetic differentiation over small spatial scales in the absence of physical barriers in an Australian rain forest stream fish. Journal of Fish Biology, 72, 1174–1187.CrossRefGoogle Scholar
Turner, S. (1982). A catalogue of fossil fish in Queensland. Memoirs of the Queensland Museum, 20, 599–611.Google Scholar
Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography, 28, 1053–1089.CrossRefGoogle Scholar
Unmack, P. J., Dowling, T. E. (2010). Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia. Molecular Phylogenetics and Evolution, 55, 968–984.CrossRefGoogle Scholar
Unmack, P. J., Bagley, J. C., Adams, M., Hammer, M. P., Johnson, J. B. (2012). Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla). PLoS ONE, 7, e38433.CrossRefGoogle Scholar
Unmack, P. J., Allen, G. R., Johnson, J. B. (2013a). Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Molecular Phylogenetics and Evolution, 67, 15–27.CrossRefGoogle ScholarPubMed
Unmack, P. J., Hammer, M. P., Adams, M., Johnson, J., Dowling, T. E. (2013b). The role of continental shelf width in determining freshwater phylogeographic patterns in south-eastern Australian pygmy perches (Teleostei: Percichthyidae). Molecular Ecology, 22, 1683–1699.CrossRefGoogle Scholar
Walters, C. J. (2007). Is adaptive management helping to solve fisheries problems?Ambio, 36, 304–307.CrossRefGoogle ScholarPubMed
Ward, R. D. (2006). The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fisheries Research, 80, 9–18.CrossRefGoogle Scholar
Wellman, P, (1979), On the Cainozoic uplift of the south-eastern Australian highland. Journal of the Geological Society of Australia, 26, 1–9.CrossRefGoogle Scholar
Whitley, G. P. (1960). Native Freshwater Fishes of Australia. Brisbane, Australia, Jacaranda.Google Scholar
Wishart, M. J., Dawies, B. R. (2003). Beyond catchment considerations in the conservation of lotic biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 429–437.CrossRefGoogle Scholar
Wong, B. B. M., Keogh, J. S., McGlashan, D. J. (2004). Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Molecular Ecology, 13, 391–401.CrossRefGoogle Scholar
Woodworth, L. M., Montgomery, M. E., Briscoe, D., Frankhan, R. (2002). Rapid genetic deterioration in captive populations: causes and conservation implications. Conservation Genetics, 3, 277–288.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×