Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Atomic structure
- 3 Atomic processes
- 4 Radiative transitions
- 5 Electron–ion collisions
- 6 Photoionization
- 7 Electron–ion recombination
- 8 Multi-wavelength emission spectra
- 9 Absorption lines and radiative transfer
- 10 Stellar properties and spectra
- 11 Opacity and radiative forces
- 12 Gaseous nebulae and H II regions
- 13 Active galactic nuclei and quasars
- 14 Cosmology
- Appendix A Periodic table
- Appendix B Physical constants
- Appendix C Angular algebra and generalized radiative transitions
- Appendix D Coefficients of the fine structure components of an LS multiplet
- Appendix E Effective collision strengths and A-values
- References
- Index
Preface
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction
- 2 Atomic structure
- 3 Atomic processes
- 4 Radiative transitions
- 5 Electron–ion collisions
- 6 Photoionization
- 7 Electron–ion recombination
- 8 Multi-wavelength emission spectra
- 9 Absorption lines and radiative transfer
- 10 Stellar properties and spectra
- 11 Opacity and radiative forces
- 12 Gaseous nebulae and H II regions
- 13 Active galactic nuclei and quasars
- 14 Cosmology
- Appendix A Periodic table
- Appendix B Physical constants
- Appendix C Angular algebra and generalized radiative transitions
- Appendix D Coefficients of the fine structure components of an LS multiplet
- Appendix E Effective collision strengths and A-values
- References
- Index
Summary
This text is aimed at students and researchers in both astronomy and physics. Spectroscopy links the two disciplines; one as the point of application and the other as the basis. However, it is not only students but also advanced researchers engaged in astronomical observations and analysis who often find themselves rather at a loss to interpret the vast array of spectral information that routinely confronts them. It is not readily feasible to reach all the way back into the fundamentals of spectroscopy, while one is involved in detailed and painstaking analysis of an individual spectrum of a given astrophysical object. At the same time (and from the other end of the spectrum, so to speak) physics graduate students are not often exposed to basic astronomy and astrophysics at a level that they are quite capable of understanding, and, indeed, that they may contribute to if so enabled.
Therefore, we feel the need for a textbook that lays out steps that link the mature field of atomic physics, established and developed for well over a century, to the latest areas of research in astronomy. The challenge is recurring and persistent: high-resolution observations made with great effort and cost require high-precision analytical tools, verified and validated theoretically and experimentally.
Historically, the flow of information has been both ways: astrophysics played a leading role in the development of atomic physics, and as one of the first great applications of quantum physics.
- Type
- Chapter
- Information
- Atomic Astrophysics and Spectroscopy , pp. ix - xPublisher: Cambridge University PressPrint publication year: 2011