Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T04:12:10.716Z Has data issue: false hasContentIssue false

7 - Methods for strong lens modelling

Published online by Cambridge University Press:  05 September 2016

Charles Keeton
Affiliation:
University of New Jersey, USA
Evencio Mediavilla
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jose A. Muñoz
Affiliation:
University of Valencia
Francisco Garzón
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Terence J. Mahoney
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

This chapter discusses computational and statistical methods for fitting models to strong lens data. It centres on parametric models of point-like lenses but includes extensions to composite models, free-form models, and extended sources. It describes how to use statistical tools including Monte Carlo Markov chains and nested sampling to explore the range of models that are consistent with data.

Introduction

Strong lensing is a versatile tool for astrophysics that can be used to study the physical properties and environments of lensing galaxies, to dissect the structure of source quasars and galaxies, to constrain cosmological parameters, and much more. Other chapters in this volume review the theory of strong lensing, the status of observations, and the variety of astrophysical applications that result. The goal of this chapter is to outline methods for fitting models to strong lens data. Since modelling is required for most applications of strong lensing, understanding the strengths and weaknesses of the analysis is key for drawing robust conclusions.

When discussing methodology, we need to distinguish between point-like and extended images. Point-like images (in a lensed quasar, for example) provide constraints on the potential and its derivatives at discrete positions, which can be described with a modest number of constraint equations or a straightforward χ2 goodness of fit statistic. Established statistical methods can then be used to find the best fit and explore the range of allowed models. In this case the barrier to entry is low in the sense that fitting basic models does not require tremendous expertise, yet the potential for growth is high in the sense that advanced analyses can combine lensing with other astrophysical probes to draw conclusions that have broad reach. Extended images, by contrast, provide many more pixels of data but require many more free parameters (associated with the unknown shape of the source). Specialized methods must be used to simultaneously fit a mass model for the lens and a light model for the source. For pedagogical purposes, I focus on analysis methods that are applicable to point-like sources but include an overview of methods for modelling extended images (Section 7.5.4).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, G. & Fischer, P. 1999, AJ, 118, 14
Betancourt, M. 2011, in AIP Conf. Ser. 1305, Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Proc. 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, ed. A., Mohammad-Djafari, J.-F., Bercher & P., Bessière (New York: AIP), 165
Blandford, R. & Narayan, R. 1986, ApJ, 310, 568
Blandford, R., Surpi, G. & Kundić, T. 2001, in ASP Conf. Ser. 237, Gravitational Lensing: Recent Progress and Future Goals, ed. T. G., Brainerd & C. S., Kochanek (San Francisco: ASP), 65
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., Gavazzi, R., Moustakas, L. A., Wayth, R. & Schlegel, D. J. 2008, ApJ, 682, 964
Brewer, B. J., Pártay, L. B. & Csányi, G. 2010, DNEST: Diffusive Nested Sampling. Astrophysics Source Code Library
Brownstein, J. R. et al. 2012, ApJ, 744, 41
Bruzual, G. & Charflot, S. 2003, MNRAS, 344, 1000
Collett, T. E. et al. 2013, MNRAS, 432, 679
Congdon, A. B. & Keeton, C. R. 2005, MNRAS, 364, 1459
Conroy, C., Gunn, J. E. & White, M. 2009, ApJ, 699, 486
Dalal, N. & Kochanek, C. S. 2002, ApJ, 572, 25
Dye, S. & Warren, S. J. 2005, ApJ, 623, 31
Evans, N. W. & Witt, H. J. 2003, MNRAS, 345, 1351
Fadely, R. & Keeton, C. R. 2012, MNRAS, 419, 936
Fadely, R., Keeton, C. R., Nakajima, R. & Bernstein, G. M. 2010, ApJ, 711, 246
Falco, E. E., Gorenstein, M. V. & Shapiro, I. I. 1985, ApJL, 289, L1
Feroz, F. and Hobson, M. P. 2008, MNRAS, 384, 449
Feroz, F., Hobson, M. P. & Bridges, M. 2009, MNRAS, 398,1601
Ferreras, I., Saha, P. & Williams, L. L. R. 2005, ApJL, 623, L5
Ferreras, I., Saha, P., Leier, D., Courbin, F. & Falco, E. E. 2010, MNRAS, 409, L30
Gelman, A., Carlin, J. B., Stern, H. & Rubin, D. B. 2003, Bayesian Data Analysis (Boca Raton: Chapman & Hall/CRC)
Gorenstein, M. V., Shapiro, I. I. & Falco, E. E. 1988, ApJ, 327, 693
Greene, Z. S. et al. 2013, ApJ, 768, 39
Hastings, W. K. 1970, Biometrika, 57(1), 97
Hilbert, S., Hartlap, J., White, S. D. M. & Schneider, P. 2009, A&A, 499, 31
Hilbert, S., Hartlap, J., White, S. D. M. & Schneider, P. 2009, A&A, 499, 31
Jeffreys, H. 1998, Theory of Probability, 3rd edn (Oxford: Oxford University Press)
Keeton, C. R. 2001, A Catalog of Mass Models for Gravitational Lensing, arXiv:astro-ph/ 0102341
Keeton, C. R. 2010, General Relativity and Gravitation, 42, 2151
Keeton, C. R. 2011, MNRAS, 414, 1418
Keeton, C. R., Falco, E. E., Impey, C. D., Kochanek, C. S., Lehár, J., McLeod, B. A., Rix, H.-W., Muñoz, J. A. & Peng, C. Y. 2000, ApJ, 542, 74
Kochanek, C. S. 1991, ApJ, 373, 354
Koopmans, L. V. E. 2005, MNRAS, 363, 1136
Koopmans, L. V. E., Treu, T., Bolton, A. S., Burles, S. & Moustakas, L. A. 2006, ApJ, 649, 599
Kovner, I. 1987, ApJ, 316, 52
Leier, D., Ferreras, I., Saha, P. & Falco, E. E. 2011, ApJ, 740, 97
McCully, C., Keeton, C. R., Wong, K. C. & Zabludoff, A. I. 2014, MNRAS, 443, 3631
Maraston, C., Strömbäck, G., Thomas, D., Wake, D. A. & Nichol, R. C. 2009, MNRAS, 394, l107
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. 1953, J. Chem. Phys., 21, 1087
Momcheva, I., Williams, K., Keeton, C. & Zabludoff, A. 2006, ApJ, 641, 169
Nakajima, R., Bernstein, G. M., Fadely, R., Keeton, C. R. & Schrabback, T. 2009, ApJ, 697, 1793
Petters, A. O., Levine, H. & Wambsganss, J. 2001, Singularity Theory and Gravitational Lensing (Boston: Birkhäuser)
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992, The Art of Scientific Computing, 2nd edn (Cambridge: Cambridge University Press)
Ros, E., Guirado, J. C., Marcaide, J. M., Pérez-Torres, M. A., Falco, E. E., Muñoz, J. A., Alberdi, A. & Lara, L. 2000, A&A, 362, 845
Rose, C. & Smith, M. 2002, Mathematical Statistics with Mathematica (Berlin: Springer-Verlag)
Ross, S. 2012, A First Course in Probability, 9th edn (New Jersey: Pearson Education)
Saha, P. & Williams, L. L. R. 1997, MNRAS, 292, 148
Saha, P. & Williams, L. L. R. 2004, AJ, 127, 2604
Saha, P., Coles, J., Macciò, A. V. & Williams, L. L. R. 2006, ApJL, 650, L17
Schneider, P., Ehlers, J. & Falco, E. E. 1992, Gravitational Lenses (Berlin: Springer-Verlag)
Shaw, J. R., Bridges, M. & Hobson, M. P. 2007, MNRAS, 378, 1365
Shewchuk, J. R. 1996, in Lecture Notes in Computer Science 1148, Applied Computational Geometry: Towards Geometric Engineering, ed. M. C., Lin & D., Manocha (Berlin: Springer- Verlag)
Shewchuk, J. R. 2002, Computational Geometry, 22(1–3), 21
Skilling, J. 2004, in AIP Conf. Ser. 735, Bayesian Inference and Maximum Entropy Methods in Science and Engineering (New York: AIP), 395
Skilling, J. 2006, Bayesian Analysis, 1, 833
Stark, D. P. et al. 2013, MNRAS, 436, 1040
Suyu, S. H. & Blandford, R. D. 2006, MNRAS, 366, 39
Suyu, S. H., Marshall, P. J., Hobson, M. P. & Blandford, R. D. 2006, MNRAS, 371, 983
Suyu, S. H., Marshall, P. J., Blandford, R. D., Fassnacht, C. D., Koopmans, L. V. E., McKean, J. P. & Treu, T. 2009, ApJ, 691, 277
Suyu, S. H., Marshall, P. J., Auger, M. W., Hilbert, S., Blandford, R. D., Koopmans, L. V. E., Fassnacht, C. D. & Treu, T. 2010, ApJ, 711, 201
Suyu, S. H. et al. 2013, ApJ, 766, 70
Tagore, A. S. & Keeton, C. R. 2014, MNRAS, 445, 694
Treu, T. & Koopmans, L. V. E. 2004, ApJ, 611, 739
Trotter, C. S., Winn, J. N. & Hewitt, J. N. 2000, ApJ, 535, 671
Vegetti, S. & Koopmans, L. V. E. 2009, MNRAS, 392, 945
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T. & Gavazzi, R. 2010, MNRAS, 408, 1969
Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D. & Koopmans, L. V. E. 2012, Nature, 481, 341
Wallington, S., Narayan, R. & Kochanek, C. S. 1994, ApJ, 426, 60
Wallington, S., Kochanek, C. S. & Koo, D. C. 1995, ApJ, 441, 58
Wallington, S., Kochanek, C. S. & Narayan, R. 1996, ApJ, 465, 64
Warren, S. J. & Dye, S. 2003, ApJ, 590, 673
Wayth, R. B. & Webster, R. L. 2006, MNRAS, 372, 1187
Williams, K. A., Momcheva, I., Keeton, C. R., Zabludoff, A. I. & Lehár, J. 2006, ApJ, 646, 85
Williams, L. L. R. & Saha, P. 2000, AJ, 119, 439
Wong, K. C., Keeton, C. R., Williams, K. A., Momcheva, I. G. & Zabludoff, A. I. 2011, ApJ, 726, 84
Yoo, J., Kochanek, C. S., Falco, E. E. & McLeod, B. A. 2005, ApJ, 626, 51
Yoo, J., Kochanek, C. S., Falco, E. E. & McLeod, B. A. 2006, ApJ, 642, 22

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×