Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T11:51:39.927Z Has data issue: false hasContentIssue false

4 - Residue Analysis

from Part II - Biomolecular Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Residue analysis, as used in archaeology, is a generic term used to describe the characterisation of traces of organic products from the past. This chapter is concerned with organic residues that are commonly encountered bound to, adhered to or absorbed within a mineral artefact, such as a ceramic vessel or a stone tool. Methods of analysis are varied and range from microscopic identification of remnant tissue fragments to chemical and structural analysis of the major classes of biomolecules, such as lipids, proteins and DNA. This chapter aims to provide the reader with a broad overview of the composition of residues associated with artefacts, their formation and preservation, the principal methods of analysis and to demonstrate the impact that this field has made for understanding the use of artefacts in the past. For more detailed overviews of the occurrence and analysis of specific biomolecules in archaeology, readers are directed to Evershed et al. (2001), Evershed (2008a) and Pollard and Heron (2008) for lipids; Hendy et al. (2001), Pollard and Heron (2008), Colombini and Modugno (2009) and Regert (2011) also provide a comprehensive description of lipid residue analysis of artefacts.

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 70 - 98
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aichholz, R. and Lorbeer, E. 2000. Investigation of combwax of honeybees with high-temperature gas chromatography and high–temperature gas chromatography-chemical ionization mass spectrometry II. High-temperature gas chromatography-chemical ionization mass spectrometry. Journal of Chromatography A 883:7588.CrossRefGoogle ScholarPubMed
Aillaud, S. 2001. Field and laboratory studies of diagenetic reactions affecting lipid residues absorbed in unglazed archaeological pottery vessels. Doctoral thesis, University of Bristol, UK.Google Scholar
Allentoft, M. E., Sikora, M., Sjögren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P. B., Schroeder, H., Ahlström, T., Vinner, L., Malaspinas, A.-S., Margaryan, A., Higham, T., Chivall, D., Lynnerup, N., Harvig, L., Baron, J., Della Casa, P., Dąbrowski, P., Duffy, P. R., Ebel, A. V., Epimakhov, A., Frei, K., Furmanek, M., Gralak, T., Gromov, A., Gronkiewicz, S., Grupe, G., Hajdu, T., Jarysz, R., Khartanovich, V., Khokhlov, A., Kiss, V., Kolář, J., Kriiska, A., Lasak, I., Longhi, C., McGlynn, G., Merkevicius, A., Merkyte, I., Metspalu, M., Mkrtchyan, R., Moiseyev, V., Paja, L., Pálfi, G., Pokutta, D., Pospieszny, L., Price, T. D. Saag, L., Sablin, M., Shishlina, N., Smrčka, V., Soenov, V. I., Szeverényi, V., Tóth, G., Trifanova, S. V., Varul, L., Vicze, M., Yepiskoposyan, L., Zhitenev, V., Orlando, L., Sicheritz-Pontén, T., Brunak, S., Nielsen, R., Kristiansen, K. and Willerslev, E. 2015. Population genomics of Bronze Age Eurasia. Nature 522:167172.Google Scholar
Asperger, A., Engewald, W. and Fabian, G. 1999. Analytical characterization of natural waxes employing pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 50:103115.CrossRefGoogle Scholar
Barnard, H., Shoemaker, L., Rider, M., Craig, O. E., Parr, R. E., Sutton, M. Q. and II Yohe, R. M. 2007. Introduction to the analysis of protein residues in archaeological ceramics. In: `Barnard, H. and `Eerkens, J. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 216231. Oxford: Archaeopress.CrossRefGoogle Scholar
Barton, H. and Matthews, P. J. 2006. Taphonomy. In `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research. California: Left Coast Press.Google Scholar
Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G. Jann, O.C., Bertorelle, G., Chamberlain, A. T., Nunes, T. P., Metodiev, S., Ferrand, N. and Erhardt, G. 2003. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics 35(4):311313.Google Scholar
Beverly, M. B., Kay, P. T. and Voorhees, K. J. 1995. Principal component analysis of the pyrolysis-mass spectra from African, Africanized hybrid, and European beeswax. Journal of Analytical and Applied Pyrolysis 34:251263.CrossRefGoogle Scholar
Boyd, M., Surette, C. and Nicholson, B. A. 2006. Archaeobotanical evidence of prehistoric maize (Zea mays) consumption at the northern edge of the Great Plains. Journal of Archaeological Science 33(8):11291140.Google Scholar
Boyd, M., Varney, T., Surette, C. and Surrette, J. 2008. Reassessing the northern limit of maize consumption in North America: Stable isotope, plant microfossil, and trace element content of carbonised food residue. Journal of Archaeological Science 35:25452556.CrossRefGoogle Scholar
Buckley, S. A., Stott, A. W. and Evershed, R. P. 1999. Studies of organic residues from ancient Egyptian mummies using high temperature gas chromatography mass spectrometry and sequential thermal desorption gas chromatography mass spectrometry and pyrolysis gas chromatography mass spectrometry. Analyst 124(4):443452.Google Scholar
Buckley, S., Usai, D., Jakob, T., Radini, A. and Hardy, K. 2014. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric Central Sudan. PLoS One 9 :e100808.Google Scholar
Buonasera, T. 2007. Investigating the presence of ancient absorbed organic residues in ground stone using GC-MS and other analytical techniques: A residue study of several prehistoric milling tools from central California. Journal of Archaeological Science 34:12791390.Google Scholar
Cattaneo, C., Gelsthorpe, K., Phillips, P. and Sokol, R. J. 1993. Blood residues on stone tools — indoor and outdoor experiments. World Archaeology 25(1):2943.Google Scholar
Cavalieri, D., McGovern, P. E., Hartl, D. L., Mortimer, R. and Polsinelli, M. 2003. Evidence for S-cerevisiae fermentation in ancient wine. Journal of Molecular Evolution 57:S226S232.CrossRefGoogle ScholarPubMed
Chandler Ezell, K., Pearsall, D. M. and Zeidler, J. A. 2006. Root and tuber phytoliths and starch grains document manioc (Manihot esculenta) arrowroot (Maranta arundinacea) and ilerén (Calathea sp.) at the real Alto site Ecuador. Economic Botany 60(2):103120.Google Scholar
Charters, S., Evershed, R. P., Blinkhorn, P. W. and Denham, V. 1995. Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry 37(1):113127.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Heron, C. and Blinkhorn, P. 1993a. Identification of an adhesive used to repair a Roman jar. Archaeometry 35(1):91101.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Leyden, A., Blinkhorn, P. W. and Denhem, V. 1993b. Quantification and distribution of lipid in archaeological ceramics: Implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35(2):211223.Google Scholar
Charters, S., Evershed, R. P., Quye, A., Blinkhorn, P. W. and Reeves, V. 1997. Simulation experiments for determining the use of ancient pottery vessels: The behaviour of epicuticular leaf wax during boiling of leafy vegetable. Journal of Archaeological Science 24:17.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapò, J., Millard, A. R. and Turner-Walker, G. 2002. The survival of organic matter in bone: A review. Archaeometry 44:383394.Google Scholar
Collins, M. J., Westbroek, P., Muyzer, G. and deLeeuw, J. W. 1992. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica et Cosmochimica Acta 56:15391544.Google Scholar
Colombini, M. P., Giachi, G., Iozzo, M. and Ribechini, E. 2009. An Etruscan ointment from Chiusi (Tuscany, Italy): Its chemical characterisation. Journal of Archaeological Science 36:14881495.Google Scholar
Colombini, M. P. and Modugno, F. 2009. Organic Mass Spectrometry in Art and Archaeology. Chichester: Wiley.Google Scholar
Colonese, A. C., Hendy, J., Lucquin, A., Speller, C. F., Collins, M. J., Carrer, F., Gubler, R., Kühn, M., Fischer, R., Craig, O. E., 2017. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Scientific Reports 7:6633.Google Scholar
Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., Payne, S. and Evershed, R. P. 2003. Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Sciences of the United States of America 100(4):15241529.CrossRefGoogle ScholarPubMed
Copley, M. S., Hansel, F. A., Sadr, K. and Evershed, R. P. 2004. Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science 100:279283.Google Scholar
Correa-Ascencio, M. and Evershed, R. P. 2014. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Analytical Methods 6:13301340.CrossRefGoogle Scholar
Craig, O. E. and Collins, M. J. 2000. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. Journal of Immunological Methods 236(1–2):8997.Google Scholar
Craig, O. E. and Collins, M. J. 2002. The removal of protein from mineral surfaces: Implications for residue analysis of archaeological materials. Journal of Archaeological Science 29(10):10771082.Google Scholar
Craig, O. E., Chapman, J., Figler, A., Patay, P., Taylor, G. and Collins, M. J. 2003. ‘Milk jugs’ and other myths of the Copper Age of Central Europe. European Journal of Archaeology 6(3):251265.Google Scholar
Craig, O. E., Chapman, J., Heron, C., Willis, L. H., Bartosiewicz, L., Taylor, G., Whittle, A. and Collins, M. 2005. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity 79(306):882894.CrossRefGoogle Scholar
Craig, O. E., Forster, M., Anderson, S. H., Koch, E., Crombé, P., Miller, N. J., Stern, B., Bailey, G. N. and Heron, C. P. 2007. Molecular and isotopic demonstration of the processing of aquatic products in Northern European prehistoric pottery. Archaeometry 49(1):135152.Google Scholar
Craig, O. E, Mulville, J., Pearson, M. P., Sokol, R., Gelsthorpe, K., Stacey, R. and Collins, M. 2000. Archaeology – Detecting milk proteins in ancient pots. Nature 408(6810):312312.Google Scholar
Craig, O. E., Saul, H., Lucquin, A., Nishida, Y., Tache, K., Clarke, L., Thompson, A., Altoft, D. T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C. P. and Jordan, P. 2013. Earliest evidence for the use of pottery. Nature 496:351354.CrossRefGoogle ScholarPubMed
Craig, O. E., Shillito, L.-M., Alberella, U., Chan, B., Cleal, R., Ixer, R., Jay, M., Marshall, P., Wright, E. and Parker Pearson, M. 2015. Feeding Stonehenge: Cuisine and consumption at the Late Neolithic site of Durrington Walls. Antiquity 89(347):114.Google Scholar
Craig, O. E., Steele, V. J., Fischer, A., Hartz, S., Andersen, S. H., Donohoe, P., Glykou, A., Saul, H., Jones, D. M., Koch, E. and Heron, C. P. 2011. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proceedings of the National Academy of Sciences of the United States of America 108:1791017915.Google Scholar
Cramp, L. and Evershed, R. P. 2014. Reconstructing aquatic resource exploitation in human Prehistory using lipid biomarkers and stable isotopes. In: `Turekian, H. D. H. K. (ed.) Treatise on Geochemistry, 2nd ed., pp. 319339. Oxford: Elsevier.Google Scholar
Cramp, L., Jones, J., Sheridan, A., Smyth, J., Whelton, H., Mulville, J., Sharples, N. and Evershed, R. P. 2014. Immediate replacement of fishing with dairying by the earliest farmers of the Northeast Atlantic archipelagos. Proceedings of the Royal Society. Biological Sciences 281:20132372.Google Scholar
Crowther, A. 2005. Starch residues on undecorated Lapita pottery from Anir, New Ireland. Archaeology in Oceania 40:6266.Google Scholar
deMan, J. M. 1999. Principles in Food Chemistry (3rd edn). Maryland: Aspen Publishers Inc.Google Scholar
Dudd, S. N. and Evershed, R. P. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282(5393):14781481.Google Scholar
Dudd, S. N. and Evershed, R. P. 1999. Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Letters 40:359362.Google Scholar
Dudd, S. N., Regert, M. and Evershed, R. P. 1998. Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Organic Geochemistry 29: 13451354.Google Scholar
Dunne, J., Evershed, R. P., Salque, M., Cramp, L., Bruni, S., Ryan, K., Biagetti, S. and Di Lernia, S. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:390394.CrossRefGoogle ScholarPubMed
Dunne, J., Mercuri, A. M., Evershed, R. P., Bruni, S., di Lernia, S., 2016. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nature Plants 3:16194.Google Scholar
Evershed, R. P. 1992. Gas chromatography of lipids. In: `Hamilton, R. J. and `Hamilton, S. (eds.) Lipid Analysis: A Practical Approach, pp. 113151. Oxford: Oxford University Press.Google Scholar
Evershed, R. P. 2008a. Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50:895924.Google Scholar
Evershed, R. P. 2008b. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology 40(1):2647.Google Scholar
Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G. and Charters, S. 1994. Application of isotope ratio monitoring gas chromatography-mass spectrometry to the analysis of organic residues of archaeological origin. Analyst 119:909914.Google Scholar
Evershed, R. P., Berstan, R., Grew, F., Copley, M. S., Charmant, A. J. H., Barham, E., Mottram, H. R. and Brown, G. 2004. Formulation of a Roman cosmetic. Nature 432:3536.Google Scholar
Evershed, R. P., Copley, M. S., Dickson, L. and Hansel, F. A. 2008b. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry 50(1):101113.Google Scholar
Evershed, R. P., Dudd, S. N., Charters, S., Mottram, H. A., Stott, A. W., Raven, A. van Bergen, P. F. and Bland, H. A. 1999. Lipids as carriers of anthropogenic signals from prehistory. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 354:1931.Google Scholar
Evershed, R. P., Dudd, S., Lockheart, M. J. and Jim, S. 2001. Lipids in archaeology. In: `Brothwell, D. R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 331349. Chichester: Wiley.Google Scholar
Evershed, R. P., Heron, C. and Goad, L. J. 1990. Analysis of organic residues of archaeological origin by high temperature gas chromatography and gas chromatography/mass spectrometry. Analyst 115:13391342.CrossRefGoogle Scholar
Evershed, R. P., Heron, C. and Goad, L. J. 1991. Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65:540544.Google Scholar
Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Ozdogan, M., Ozdogan, A. E., Nieuwenhuyse, O., Akkermans, P., Bailey, D., Andeescu, R. R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Ozbasaran, M., Bicakci, E., Garfinkel, Y., Levy, T. and Burton, M. M. 2008a. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455(7212):528531.Google Scholar
Evershed, R. P. and Tuross, N. 1996. Proteinaceous material from potsherds and associated soils. Journal of Archaeological Science 23(3):429436.Google Scholar
Gott, B., Barton, H., Samuel, D. and Torrence, R. 2006. Biology of starch. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 3546. California: Left Coast Press.Google Scholar
Gregg, M. W., Banning, E. B., Gibbs, K. and Slater, G. F. 2009. Subsistence practices and pottery use in Neolithic Jordan: Molecular and isotopic evidence. Journal of Archaeological Science 36:937946.Google Scholar
Guasch-Jané, M.R., Andres-Lacueva, C., Jauregui, O. and Lamuela-Raventos, R. M. 2006. The origin of the ancient Egyptian drink Shedeh revealed using LC/MS/MS. Journal of Archaeological Science 33(1):98101.Google Scholar
Guasch-Jané, M. R., Ibern-Gomez, M., Andres-Lacueva, C., Jauregui, O. and Lamuela-Raventos, R. M. 2004. Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry 76(6):16721677.Google Scholar
Hansel, F. A., Copley, M. S., Madureira, L. A. S. and Evershed, R. P. 2004. Thermally produced ω-(-o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters 45:29993002.Google Scholar
Hansel, F. A. and Everhsed, R. P. 2009. Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Letters 50:55625564.CrossRefGoogle Scholar
Hansson, M. C. and Foley, B. P. 2008. Ancient DNA fragments inside Classical Greek amphoras reveal cargo of 2400-year-old shipwreck. Journal of Archaeological Science 35:11691176.Google Scholar
Hardy, K., Blakeney, T., Copeland, L., Kirkham, J., Wrangham, R. and Collins, M. 2009. Starch grains, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36(2):248255.Google Scholar
Hardy, K., Buckley, S., Collins, M. J., Estallrich, A., Brothwell, D., Copeland, L., García-Tabernero, A., García-Vargas, S., Rasilla, M., Lalueza-Fox, C., Huguet, R., Bastir, M., Santamaría, D., Madella, M., Wilson, J., Cortés, Á. and Rosas, A. 2012. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617626.Google Scholar
Hardy, K., Radini, A., Buckley, S., Sarig, R., Copeland, S., Gopher, A. and Barkai, R. 2015. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quaternary International 398:129135.CrossRefGoogle Scholar
Hardy, B. L. Raff, R. A. and Raman, V. 1997. Recovery of mammalian DNA from Middle Paleolithic stone tools. Journal of Archaeological Science 24(7):601611.Google Scholar
Heaton, K., Solazzo, C., Collins, M. J., Thomas-Oates, J. and Bergstrom, E. T. 2009. Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. Journal of Archaeological Science 36(10):21452154.Google Scholar
Helmer, D. and Vigne, J.-D. 2007. Was milk a ‘secondary product’ in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica 42(2):940.Google Scholar
Hendy, J., van Doorn, N. and Collins, M. in press. Proteomics. In: `Richards, M. P. and `Britton, K. (eds.) Archaeological Science. Cambridge: Cambridge University Press.Google Scholar
Heron, C., Andersen, S., Fischer, A., Glykou, A., Hartz, S., Saul, H., Steele, V. and Craig, O. 2013. Illuminating the Late Mesolithic: Residue analysis of ‘blubber’ lamps from Northern Europe. Antiquity 87:178188.Google Scholar
Heron, C., Shoda, S., Breu Barcons, A., Czebreszuk, J., Eley, Y., Gorton, M., Kirleis, W., Kneisel, J., Lucquin, A., Müller, J., Nishida, Y., Son, J.-H., Craig, O. E. 2016. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels. Scientific Reports 6:38767.Google Scholar
Hogberg, A., Puseman, K. and Yost, C. 2009. Integration of use-wear with protein residue analysis – a study of tool use and function in the south Scandinavian Early Neolithic. Journal of Archaeological Science 36(8):17251737.Google Scholar
Hurst, W. J., Tarka, S. M., Powis, T. G., Valdez, F. and Hester, T. R. 2002. Archaeology: Cacao usage by the earliest Maya civilization. Nature 418(6895):289290.Google Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. and Thomas, M. G. 2009. The origins of lactase persistence in Europe. PLoS Computational Biology 5(8):e1000491.Google Scholar
Jones, J., Higham, T. F. G., Oldfield, R., O’Connor, T. and Buckley, S. A. 2014. Evidence for prehistoric origins of Egyptian mummification in Late Neolithic burials. PLoS One 9:113.Google Scholar
Karg, S. 2008. På Karrets Bund. SKALK 4:32.Google Scholar
Kealhofer, L., Torrence, R. and Fullager, R. 1999. Integrating phytoliths within use-wear/residue studies of stone tools. Journal of Archaeological Science 26:527547.Google Scholar
Leach, J. D. 1998. A brief comment on the immunological identification of plant residues on prehistoric stone tools and ceramics: Results of a blind test. Journal of Archaeological Science 25:171175.Google Scholar
Lidén, K., Eriksson, G., Nordqvist, B., Götherström, A. and Bendixen, A. 2004. The wet and the wild followed by the dry and the tame – or did they occur at the same time? Diet in Mesolithic-Neolithic southern Sweden. Antiquity 78:2333.Google Scholar
Loog, L. and Larson, G. in press. Ancient DNA. In: `Richards, M. P. and `Britton, K. (eds.) Archaeological Science. Cambridge: Cambridge University Press.Google Scholar
Loy, T. H. 1983. Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science 220(4603):12691271.Google Scholar
Loy, T. H. 1993. The artifact as site – an example of the biomolecular analysis of organic residues on Prehistoric tools. World Archaeology 25(1):4463.Google Scholar
Loy, T. H. and Dixon, J. E. 1998. Blood residues on fluted points from Eastern Beringia. American Antiquity 63:2146.Google Scholar
Loy, T. H. and Hardy, B. L. 1992. Blood residue analysis of 90,000-year-old stone tools from Tabun Cave, Israel. Antiquity 66(250):2435.Google Scholar
Lusteck, R. K. and Thompson, R. G. 2007. Residues of maize in North American pottery: What phytoliths can add to the story of maize. In: `Barnard, H. and `Eerkens, J. W. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 816. Oxford: Archaeopress.Google Scholar
Malainey, M. E., Przybylski, R. and Sherriff, B. L. 1999. Identifying the former contents of late precontact period pottery vessels from western Canada using gas chromatography. Journal of Archaeological Science 26(4):425438.Google Scholar
McGovern, P. E., Luley, B. P., Rovira, N., Mirzoian, A., Callahan, M. P., Smith, K. E., Hall, G. R., Davidson, T. and Henkin, J. M. 2013. Beginning of viniculture in France. Proceedings of the National Academy of Sciences 110(25):1014710152.Google Scholar
McGovern, P. E., Zhang, J. H., Tang, J. G., Zhang, Z. Q., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C. S., Cheng, G. S., Zhao, Z. J. and Wang, C. S. 2004. Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences of the United States of America 101:1759317598.CrossRefGoogle ScholarPubMed
Meier-Augenstein, W. 2002. Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Analytica Chimica Acta 465(1–2):6379.Google Scholar
Milner, N., Craig, O. E., Bailey, G. N. and Andersen, S. H. 2006. A response to Richards and Schulting. Antiquity 80:456458.Google Scholar
Milner, N., Craig, O. E., Bailey, G. N., Pedersen, K. and Andersen, S. H. 2004. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78:922.Google Scholar
Mirabaud, S., Rolando, C. and Regert, M. 2007. Molecular criteria for discriminating adipose fat and milk from different species by NanoESI MS and MS/MS of their triacylglycerols: Application to archaeological remains. Analytical Chemistry 79:61826192.Google Scholar
Morgan, E. D., Edwards, C. and Pepper, S. A. 1992. Analysis of the fatty debris from the wreck of a Basque whaling ship at Red Bay, Labrador. Archaeometry 34(1):129133.Google Scholar
Morgan, E. D., Titus, L., Small, R. J. and Edwards, C. 1983. The composition of fatty materials from a Thule Eskimo site on Herschel Island. Arctic 36(4):356360.Google Scholar
Morgan, E. D., Titus, L., Small, R. J. and Edwards, C. 1984. Gas chromatographic analysis of fatty material from a Thule Midden. Archaeometry 26(1):4348.Google Scholar
Morton, J. D. and Schwarcz, H. P. 2004. Palaeodietary implications from stable isotopic analysis of residues on prehistoric Ontario ceramics. Journal of Archaeological Science 31:503517.Google Scholar
Newman, M. E., Ceri, H. and Kooyman, B. 1996. The use of immunological techniques in the analysis of archaeological materials: A response to Eisele; with report studies at Head-Smashed-In Buffalo Jump. Antiquity 70:677682.Google Scholar
Newman, M., and Julig, P. 1989. The identification of protein residues on lithic artefacts from a stratified boreal forest site. Canadian Journal of Archaeology 13:119132.Google Scholar
Nicholson, R. A. 1998. Fishing for facts: A preliminary view of the fish remains from Old Scatness Broch. In: `Nicholson, R. A. and `Dockrill, S. J. (eds.) Old Scatness Broch, Shetland: Retrospect and Prospect, pp. 97110. Bradford: Department of Archaeological Sciences.Google Scholar
Nolin, L. Kramer, J. K. G. and Newman, M. 1994. Detection of animal residues in humus samples from a prehistoric site in the Lower Mackenzie River Valley, Northwest Territories. Journal of Archaeological Science 21:403412.Google Scholar
Nursten, H. E. 2005. The Maillard Reaction: Chemistry, Biochemistry, and Implications. London: Royal Society of Chemistry.Google Scholar
Olsson, M. and Isaksson, S. 2008. Molecular and isotopic traces of cooking and consumption of fish at an Early Medieval manor site in eastern middle Sweden. Journal of Archaeological Science 35:773780.Google Scholar
Oudemans, T. F. M. and Boon, J. J. 1991. Molecular archaeology: Analysis of charred (food) remains from prehistoric pottery by pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis 20:197227.Google Scholar
Oudemans, T. F. M., Boon, J. J. and Botto, R. E. 2007a. FTIR and solid-state C-13 CP/MAS NMR spectroscopy of charred and non-charred solid organic residues preserved in Roman Iron Age vessels from the Netherlands. Archaeometry 49:571594.Google Scholar
Oudemans, T. F. M., Eijkel, G. B. and Boon, J. J. 2007b. Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. Journal of Archaeological Science 34:173193.Google Scholar
Outram, A. K., Stear, N. A., Bendrey, R., Olsen, S., Kasparov, A., Zaibert, V., Thorpe, N. and Evershed, R. P. 2009. The earliest horse harnessing and milking. Science 323(5919):13321335.Google Scholar
Patrick, M., de Koning, A. J. and Smith, A. B. 1985. Gas liquid chromatographic analysis of fatty acids in food resides from ceramics found in the Southwestern Cape, South Africa. Archaeometry 27(2):231236.Google Scholar
Piperno, D. 2006. Phytoliths. A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham: Alta Mira Press.Google Scholar
Pollard, A. M., Batt, C., Stern, B. and Young, S. M. M. 2007. Analytical Chemistry in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Pollard, A. M. and Heron, C. 2008. Archaeological Chemistry, 2nd ed. Cambridge: Royal Society of Chemistry.Google Scholar
Raven, A. M., van Bergen, P. F., Stott, A. W., Dudd, S. N. and Evershed, R. P. 1997. Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis 40–41:267285.Google Scholar
Reber, E. A. and Evershed, R. P. 2004. Identification of maize in absorbed organic residues: A cautionary tale. Journal of Archaeological Science 31:399410.Google Scholar
Regert, M. 2007. Elucidating pottery function using a multi-step analytical methodology combining infrared spectroscopy, chromatographic procedures and mass spectrometry. In: `Barnard, H. and `Eerkens, J. W. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 6176. Oxford: Archaeopress.Google Scholar
Regert, M. 2011. Analytical strategies for discriminating archaeological fatty substances from animal origin. Mass Spectrometry Reviews 30:177220.Google Scholar
Regert, M., Bland, H. A., Dudd, S. N., van Bergen, P. F. and Evershed, R. P. 1998. Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proceedings of the Royal Society of London B 265:20272032.Google Scholar
Regert, M., Garnier, N., Decavallas, O., Cern-Olivé, C. and Ronaldo, C. 2003. Structural characterization of lipid constituents from natural substances preserved in archaeological environments. Measurement Science and Technology 14:16201630.Google Scholar
Reynard, L. M. Hedges, R. E. M. and Henderson, G. M. 2008. Stable calcium isotope ratios (delta Ca-44/42) in bones and teeth for the detection of dairying by ancient humans. Geochimica et Cosmochimica Acta 72(12):A790A790.Google Scholar
Ribechini, E., Modugno, F., Baraldi, C., Baraldi, P. and Colombini, M. P. 2008a. An integrated analytical approach for characterizing an organic residue from an archaeological glass bottle recovered in Pompeii (Naples, Italy). Talanta 74:555561.Google Scholar
Ribechini, E., Modugno, F., Colombini, M.P. and Evershed, R. P. 2008b. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass uguentaria. Journal of Chromatography A 1183:158169.CrossRefGoogle Scholar
Richards, M. P., Price, T. D. and Koch, E. 2003. Mesolithic and Neolithic subsistence in Denmark: New stable isotope data. Current Anthropology 44:288295.Google Scholar
Salque, M., Bogucki, P. I., Pyzel, P. I., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M. and Evershed, R. P. 2013. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522525.Google Scholar
Saul, H., Madella, M., Fischer, A., Glykou, A., Hartz, S. and Craig, O. E. 2013. Phytoliths in pottery reveal the use of spice in European prehistoric cuisine. PLoS One 8:e70583, 15.Google Scholar
Saul, H., Wilson, J., Heron, C., Glykou, A., Hartz, S. and Craig, O. E. 2012. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. Journal of Archaeological Science 39:34833492.Google Scholar
Schulting, R. and Richards, M. 2002. Finding the coastal Mesolithic in southwest Britain: AMS dates and stable isotope results on human remains from Caldey Island, south Wales. Antiquity 76(294):10111025.Google Scholar
Shanks, O. C., Bonnichsen, R., Vella, A. T. and Ream, W. 2001. Recovery of protein and DNA trapped in stone tool microcracks. Journal of Archaeological Science 28(9):965972.Google Scholar
Shanks, O. C., Hodges, L., Tilley, L., Kornfeld, M., Larson, M. L. and Ream, W. 2005. DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming. Journal of Archaeological Science 32(1):2738.Google Scholar
Shanks, O. C., Kornfeld, M. and Hawk, D. D. 1999. Protein analysis of Bugas-Holding tools: New trends in immunological studies. Journal of Archaeological Science 26(9):11831191.Google Scholar
Shanks, O. C., Kornfeld, M. and Ream, W. 2004. DNA and protein recovery from washed experimental stone tools. Archaeometry 46:663672.Google Scholar
Solazzo, C., Fitzhugh, W. W., Rolando, C. and Tokarski, C. 2008. Identification of protein remains in archaeological potsherds by proteomics. Analytical Chemistry 80(12):45904597.Google Scholar
Stern, B., Heron, C. C., Tellefsen, T. and Serpico, M. 2008. New investigations into the Uluburun resin cargo. Journal of Archaeological Science 35:21882203.Google Scholar
Taché, K. and Craig, O. E. 2015. Cooperative harvesting of aquatic resources and the beginning of pottery production in north-eastern North America. Antiquity 89:177190.Google Scholar
Tuross, N., Barnes, I. and Potts, R. 1996. Protein identification of blood residues on experimental stone tools. Journal of Archaeological Science 23(2):289296.Google Scholar
Warinner, C., Hendy, J., Speller, C., Cappellini, E., Fischer, R., Trachsel, C., Arneborg, J., Lynnerup, N., Craig, O. E., Swallow, D. M., Fotakis, A., Christensen, R. J., Olsen, J. V., Liebert, A., Montalva, N., Fiddyment, S., Charlton, S., Mackie, M., Canci, A., Bouwman, A., Rühli, F., Gilbert, M. T. P. and Collins, M. J. 2014. Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4:7104.Google Scholar
Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A. and Cooper, A. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300(5620):791795.Google Scholar
Zarrillo, S., Pearsall, D. M., Raymond, J. S., Tisdale, M. A. and Quon, D. J. 2008. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. Proceedings of the National Academy of Sciences 105(13):50065011.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×