Skip to main content Accessibility help
×
Hostname: page-component-5cf477f64f-rdph2 Total loading time: 0 Render date: 2025-04-04T08:49:57.597Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  31 October 2017

Mark R.T. Dale
Affiliation:
University of Northern British Columbia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarca-Arenas, L.G. & Ulanowicz, R.E. (2002). The effects of taxonomic aggregation on network analysis. Ecological Modelling, 149, 285296.CrossRefGoogle Scholar
Abdi, R.H. (2007). RV coefficient and congruence coefficient. In Salkind, N. (ed.), Encyclopedia of Measurement and Statistics, pp. 849853. Thousand Oaks, CA: Sage.Google Scholar
Abrams, P.A., Menge, B.A., Mittelbach, G.G., Spiller, D.A. & Yodzis, P. (1996). The role of indirect effects in food webs. In Polis, G. & Winemuller, K.O. (eds), Food Webs: Integration of Patterns and Dynamics, pp. 371395. New York: Chapman & Hall.CrossRefGoogle Scholar
Agresti, S., De Meo, P., Ferrara, E., Piccolo, S. & Provetti, A. (2015). Trust networks: Topology, dynamics, and measurements. IEEE Internet Computing, 19, 2635.CrossRefGoogle Scholar
Ahmed, N.K., Neville, J. & Kompella, R. (2014). Network sampling: From static to streaming graphs. ACM Transactions on Knowledge Discovery from Data, 8, 156.CrossRefGoogle Scholar
Ahmed, N., Neville, J., Rossi, R.A. & Duffield, N. (2015). Efficient graphlet counting for large networks. Proceedings of the IEEE International Conference on Data Mining, 110.Google Scholar
Ahn, Y.-Y., Bagrow, J.P. & Lehman, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466, 761764.CrossRefGoogle ScholarPubMed
Ai, D., Gravel, D., Chu, C. & Wang, G. (2013). Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities. PLoS ONE, 8, e68927.CrossRefGoogle ScholarPubMed
Airola, A., Pyysalo, S., Björne, J., Pahikkala, T., Ginter, F. & Salakoski, T. (2008). All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BioMed Central Bioinformatics, 9 (Suppl. 11): S2; doi:10.1186/1471-2105-9-S11-S2.Google ScholarPubMed
Albert, E.M., Fortuna, M.A., Godoy, J.A. & Bascompte, J. (2013). Assessing the robustness of networks of spatial genetic variations. Ecology Letters, 16, 8693.CrossRefGoogle Scholar
Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 4797.CrossRefGoogle Scholar
Alcántara, J.M. & Rey, P.J. (2012). Linking topological structure and dynamics in ecological networks. The American Naturalist, 180, 186199.CrossRefGoogle ScholarPubMed
Alcántara, J.M. & Rey, P.J. (2014). Community dynamics: lessons from a skeleton. In Benítez, M., Miramontes, O. & Valiente-Banuet, A. (eds), Frontiers in Ecology, Evolution and Complexity, pp. 18 Mexico City: CopIt-arXives.Google Scholar
Alcántara, J.M., Rey, P.J. & Manzaneda, A.J. (2015). A model of plant community dynamics based on replacement networks. Journal of Vegetation Science, 26, 524537.CrossRefGoogle Scholar
Alenazi, M.J.F. & Sterbenz, J.P.G. (2015). Comprehensive comparison and accuracy of graph metrics in predicting network resilience. Paper presented at the International Conference of Reliable Communication Networks, Kansas City, MO.CrossRefGoogle Scholar
Alexandris, J. & Karagiorgos, G. (2014). Enhanced random walk with choice: an empirical study. International Journal on Applications of Graph Theory in Wireless ad hoc Networks and Sensor Networks, 6, doi:10.5121/jgraphoc.2014.6101.CrossRefGoogle Scholar
Allesina, S., Bodini, A. & Bondavalli, C. (2005). Ecological subsystems via graph theory: the role of strongly connected components. Oikos, 110, 164176.CrossRefGoogle Scholar
Allesina, S. & Levine, J.M. (2011). A competitive network theory of species diversity. Proceedings of the National Academy of Science, 108, 56385642. doi:10.1073/pnas.101442818.CrossRefGoogle ScholarPubMed
Almeida-Neto, M., Guimaräes, P.R. & Lewinsohn, T.M. (2007). On nestedness analysis: rethinking matrix temperature and anti-nestedness. Oikos, 116, 716722.Google Scholar
Almeida-Neto, M., Guimaräes, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117, 12271239.CrossRefGoogle Scholar
Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z. & Tuttle, M.R. (2011). Many random walks are faster than one. Combinatorics, Probability and Computing, 20, 481502.CrossRefGoogle Scholar
Altermatt, F., Seymour, M. & Martinez, N. (2013). River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. Journal of Biogeography, 40, 22492260.CrossRefGoogle Scholar
Amarasekare, P. (2009). Competition and coexistence in animal communities. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 196201. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Anderson, T.K. & Sukhdeo, M.V.K. (2011). Host centrality in food web networks determines parasite diversity. PLoS ONE, 6 (10), e26798.CrossRefGoogle ScholarPubMed
Andersson, E. & Bodin, Ö. (2009). Practical tool for landscape planning? An empirical investigation of network based models of habitat fragmentation. Ecography, 32, 123132.CrossRefGoogle Scholar
Angelini, R., Aloísio, G.R. & Carvalho, A.R. (2010). Mixed food web control and stability in a Cerrado river (Brazil). Pan-American Journal of Aquatic Sciences, 10, 421431.Google Scholar
Arditi, R. & Michalski, J. (1996). Nonlinear food web models and their responses to increased basal productivity. In Polis, G. & Winemuller, K.O. (eds), Food Webs: Integration of Patterns and Dynamics, pp. 122133. New York: Chapman & Hall.CrossRefGoogle Scholar
Atmar, W. & Patterson, B.D. (1993). The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373382.CrossRefGoogle ScholarPubMed
Avin, C., Koucký, M. & Lotker, Z. (2008). How to explore a fast-changing world (Cover time of a simple random walk on evolving graphs). In Aceto, L., Damgard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A. & Walukiewicz, I. (eds), Automata, Languages and Programming, pp. 121132 Berlin: Springer.CrossRefGoogle Scholar
Avin, C. & Krishnamachari, B. (2008). The power of choice in random walks: an empirical study. Computer Networks, 52, 4460.CrossRefGoogle Scholar
Azeria, E.T. (2004). Community Dynamics of Insular Biotas in Space and Time. PhD thesis, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
Banašek-Richter, C., et al. (2009). Complexity in quantitative food webs. Ecology, 90, 14701477.CrossRefGoogle ScholarPubMed
Baranyi, G., Saura, S., Podani, J. & Jordán, F. (2011). Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecological Indicators, 11, 13011310.CrossRefGoogle Scholar
Barbosa, P., Hines, J., Kaplan, I., Martinson, H., Szczepaniec, A. & Szendrei, Z. (2009). Associational resistance and associational susceptibility: having right or wrong neighbours. Annual Review of Ecology, Evolution and Systematics, 40, 120.CrossRefGoogle Scholar
Barbour, A.D., Karónski, M. & Rucínski, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. Journal of Combinatorial Theory, Series B, 47, 125145.CrossRefGoogle Scholar
Barcelo, H. & Laubenbacher, R. (2006). Graph-theoretic tools for dynamic network analysis. http://math.la.asu.edu/~helene/papers/blsocialjan06.pdf.Google Scholar
Bang-Jensen, J. & Gutin, G. (2009). Digraphs: Theory, Algorithms and Applications. 2nd ed. London: Springer.CrossRefGoogle Scholar
Bascompte, J. (2007). Networks in ecology. Basic and Applied Ecology, 8, 485490.CrossRefGoogle Scholar
Bascompte, J. (2009). Disentangling the web of life. Science, 325, 416419.CrossRefGoogle ScholarPubMed
Bascompte, J. & Jordano, P. (2007). Plant-animal mutualistics networks: the architecture of biodiversity. Annual Review of Ecology, Evolution and Systematics, 38, 567593.CrossRefGoogle Scholar
Bascompte, J. & Jordano, P. (2014). Mutualistic Networks. Princeton, NJ: Princeton University Press.Google Scholar
Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, 100, 93Sep-8338.CrossRefGoogle ScholarPubMed
Bascompte, J. & Stouffer, D.B. (2009). The assembly and disassembly of ecological networks. Philosophical Transactions of the Royal Society, Series B, 364, 17811787.CrossRefGoogle ScholarPubMed
Baskerville, E.B., Dobson, A.P., Bedford, T., Allesina, S., Anderson, T.M. & Pascual, M. (2011). Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Computational Biology, 7, e1002321; doi:10.1371/journalpcbi.1002321.CrossRefGoogle ScholarPubMed
Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M. & Grafton, S.T. (2011). Dynamic reconfiguration of human brain networks during learning. PNAS, 108, 76417646 doi:10.1073/pnas0.1018985108.CrossRefGoogle ScholarPubMed
Bastolla, U., Fortuna, M.A., Pascual-Garcia, A., Ferrera, A., Luque, B. & Bascompte, J. (2009). The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature, 458, 10181021; doi:10.1038/nature07950.CrossRefGoogle ScholarPubMed
Beiler, K.J., Durall, D.M., Simard, S.W., Maxwell, S.A. & Kretzer, A.M. (2009). Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytologist, 185, 543553.CrossRefGoogle ScholarPubMed
Belgrano, A., Scharler, U.M., Dunne, J. & Ulanowicz, R.E. (2005). Aquatic Food Webs: An Ecosystem Approach. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bell, A.D. (1974). Rhizome organization in relation to vegetative spread in Medeola virginiana. Journal of the Arnold Arboretum, 55, 458468.CrossRefGoogle Scholar
Bellay, S., Lima, D.P., Takemoto, R.M. & Luque, J.L. (2011). A host-endoparasite network of neotropical marine fish: are there organizational patterns? Parasitology, 138, 19451952.CrossRefGoogle ScholarPubMed
Benedek, Z., Jordán, F. & Báldi, A. (2007). Topological keystone species complexes in ecological interaction networks. Community Ecology, 8, 17.CrossRefGoogle Scholar
Bengtsson, J., Angelstam, P., Elmqvist, T., Emanuelsson, U., Folke, C., Ihse, M., Moberg, F. & Nyström, M. (2003). Reserves, resilience, and dynamic landscapes. AMBIO, 32, 389396.CrossRefGoogle ScholarPubMed
Benson, D.M., Grand, L.F., Vernia, C.S. & Gottwald, T.R. (2006). Temporal and spatial epidemiology of Phytophthora root rot in Fraser fir plantations. Plant Disease, 90, 11711180.CrossRefGoogle ScholarPubMed
Beth, T., Borcherding, M. & Klein, B. (1994). Valuation of trust in open networks. Paper presented at the 3rd European Symposium on Research in Computer Security, Brighton, UK.CrossRefGoogle Scholar
Bienert, A., Queck, R., Schmidt, A., Bernhofer, Ch. & Maas, H.-G. (2010). Voxel space analysis of terrestrial laser scans in forests for wind field modeling. International Archive for Photogrammetry, Remote Sensing, and Spatial Information Science, 38, 9297.Google Scholar
Biggs, N.L., Lloyd, E.K. & Wilson, R.J. (1976). Graph Theory 1736–1936. Oxford: Oxford University Press.Google Scholar
Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer Science, 337, 2234; doi:10.1016/j.tcs.2004.12.030.CrossRefGoogle Scholar
Bjørnstadt, O.N., Stenseth, N.C. & Saitoh, T. (1999). Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology, 80, 622637.CrossRefGoogle Scholar
Blanchet, F.G., Legendre, P. & Borcard, D. (2008). Modelling directional spatial processes in ecological data. Ecological Modelling, 215, 325336.CrossRefGoogle Scholar
Blanchet, F.G., Legendre, P., Maranger, R., Monti, D. & Pepin, P. (2011). Modelling the effect of directional spatial ecological processes at different scales. Oecologia, 166, 357368.CrossRefGoogle ScholarPubMed
Blick, R. & Burns, K.C. (2009). Network properties of arboreal plants: are epiphytes, mistletoes and lianas structured similarly? Perspectives in Plant Ecology, Evolution and Systematics, 11, 4152; doi:10.1016/j.ppees.2008.10.002.CrossRefGoogle Scholar
Blonder, B. & Dornhaus, A. (2011). Time-ordered networks reveal limitations to information flow in ant colonies. PLoS ONE, 6 (5), e20298.CrossRefGoogle ScholarPubMed
Blonder, B., Wey, T.W., Dornhaus, A., James, R. & Sih, A. (2012). Temporal dynamics and network analysis. Methods in Ecology and Evolution, 3, 958972; doi:10.1111/j.2041-210X.2012.00236.x.CrossRefGoogle Scholar
Blüthgen, N., Fründ, J., Vazquez, D.P. & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits? Ecology, 89, 33873399.CrossRefGoogle ScholarPubMed
Blüthgen, N., Menzel, F. & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6. doi:0.86/472-6785-6-9.CrossRefGoogle ScholarPubMed
Bode, M., Burrage, K. & Possingham, H.P. (2008). Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns. Ecological Modelling, 214, 201209.CrossRefGoogle Scholar
Bonacich, P.F. (1972). Power and centrality: a family of measures. American Journal of Sociology, 92, 11701182.CrossRefGoogle Scholar
Borcard, D., Gillet, F. & Legendre, P. (2011). Numerical ecology with R. New York: Springer Science.CrossRefGoogle Scholar
Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 18261832.CrossRefGoogle Scholar
Borgatti, S.P. (2005). Centrality and network flow. Social Networks, 27, 5571.CrossRefGoogle Scholar
Borgwardt, K.M. & Kriegel, H.-P. (2005). Shortest-path kernels on graphs. Paper presented at the International Conference on Data Mining, Houston, TX.CrossRefGoogle Scholar
Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J. & Kriegel, H.-P. (2005). Protein function prediction via graph kernels. Bioinformatics, 21 (s1), 110; doi:10.1093/bioinformatics/bti1007.CrossRefGoogle ScholarPubMed
Borgwardt, K.M., Petri, T., Vishwanathan, S.V.N. & Kriegel, H.-P. (2007). An efficient sampling scheme for comparison of large graphs. Paper presented at the Conference on Mining and Learning with Graphs, Firence, Italy.Google Scholar
Boyland, N.K., James, R., Mlynski, D.T., Madden, J.R. & Croft, D.P. (2013). Spatial proximity loggers for recording animal social networks: consequences of inter-logger variation in performance. Behavioural and Ecological Sociobiology, 67, 18771890.CrossRefGoogle Scholar
Brandes, U. & Fleischer, D. (2005). Centrality measures based on current flow. In Diekert, V. & Durand, B. (eds), Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, pp. 533544. Berlin: Springer.Google Scholar
Brin, S. & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks & ISDN Systems, 30, 107117.CrossRefGoogle Scholar
Brooks, C.P., Antonovics, J. & Keitt, T.H. (2008). Spatial and temporal heterogeneity explain disease dynamics in a spatially explicit network model. American Naturalist, 172, 1415-Sep9.CrossRefGoogle Scholar
Brüggemann, R. & Carlsen, L. (2006). Partial Order in Environmental Sciences and Chemistry. Berlin: Springer.CrossRefGoogle Scholar
Bryden, J., Funk, S., Geard, N., Bullock, S. & Jansen, V.A.A. (2011). Stability in flux: community structure in dynamic networks. Journal of the Royal Society Interface, 8, 10311040.CrossRefGoogle ScholarPubMed
Buhl, J., Hicks, K., Miller, E.R., Persey, S., Alinvi, O. & Sumpter, D.J.T. (2009). Shape and effi-ciency of wood ant foraging networks. Behavioural Ecology & Sociobiology, 63, 451460.CrossRefGoogle Scholar
Bukovinszky, T., van Veen, F.J.F., Jongema, Y. & Dicke, M. (2008). Direct and indirect effects of resource quality on food web structure. Science, 319, 804807.CrossRefGoogle ScholarPubMed
Bunescu, R. & Mooney, R. (2005). A shortest path dependency kernel for relation extraction. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 724731. Vancouver, Canada: Association for Computational Linguistics.Google Scholar
Bunn, A.G., Urban, D.L. & Keitt, T.H. (2000). Landscape connectivity: a conservation application of graph theory. Journal of Environmental Management, 59, 265278.CrossRefGoogle Scholar
Burkle, L. & Irwin, R. (2009). The importance of interannual variation and bottom-up nitrogen enrichment for plant-pollinator networks. Oikos, 118. doi:10.1111/j.1600-0706.2009.17740.x.CrossRefGoogle Scholar
Buss, L.W. & Jackson, J.B.C. (1979). Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. American Naturalist, 113, 223234.CrossRefGoogle Scholar
Butts, C.T. (2009). Revisiting the foundations of network analysis. Science, 325, 414416.CrossRefGoogle ScholarPubMed
Caceres, R.S. & Berger-Wolf, T. (2013). Temporal scale of dynamic networks. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 6594. Berlin: Springer.CrossRefGoogle Scholar
Cahill, J.F., Elle, E., Smith, G.R. & Shore, B.H. (2008). Disruption of a belowground mutualism alters interactions between plants and their floral visitors. Ecology, 89, 17911801.CrossRefGoogle ScholarPubMed
Cahill, J.F., Kembel, S.W. & Gustafson, D.J. (2005). Differential genetic differences on competitive effect and response in Arabidopsis thaliana. Journal of Ecology, 93, 958967.CrossRefGoogle Scholar
Canard, E.F., Mouquet, N., Mouillot, D., Stank, M., Miklisova, D. & Gravel, D. (2014). Empirical evaluation of neutral interactions in host-parasite networks. The American Naturalist, 183, 468479.CrossRefGoogle ScholarPubMed
Cantor, M., Shoemaker, L.G., Cabral, R.B., Flores, C.O., Varga, M. & Whitehead, H. (2015). Multilevel animal societies can emerge from cultural transmission. Nature Communications, 6. doi:10.1038/ncomms9091.CrossRefGoogle ScholarPubMed
Capitán, J.A., Arenas, A. & Guimerà, R. (2013). Degree of intervality of food webs: from body-size to models. Journal of Theoretical Biology, 334, 3544.CrossRefGoogle ScholarPubMed
Cardinal, J., Collete, S. & Langerman, S. (2009). Empty region graphs. Computational Geometry: Theory and Applications, 42, 183195.CrossRefGoogle Scholar
Careddu, G., Costantini, M.L., Calizza, E., Carlino, P., Bentivoglio, F., Orlandi, L. & Rossi, L. (2015). Effects of terrestrial input on macrobenthic food webs of a coastal sea are detected by stable isotope analysis in Gaeta Gulf. Estuarine, Coastal and Shelf Science, 154, 158168.CrossRefGoogle Scholar
Carley, K.M. (2003). Dynamic network analysis. In Breiger, R., Carley, K.M. & Pattison, P. (eds), Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, pp. 133145. Washington, DC: Committee on Human Factors, National Research Council.Google Scholar
Carrara, F., Altermatt, F., Rodriguez-Iturbe, I. & Rinaldo, A. (2012). Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proceedings of the National Academy of Sciences, 15, 57615766.CrossRefGoogle Scholar
Carrara, F., Rinaldo, A., Giometto, A. & Altermatt, F. (2014). Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. The American Naturalist, 183, 1325.CrossRefGoogle ScholarPubMed
Carstensen, D.W., Sabatino, M., Trøjelsgaard, K. & Morellato, L.P.C. (2014). Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions. PLoS ONE, 9 (11), e112903.CrossRefGoogle ScholarPubMed
Cartozo, C.C., Garlaschelli, D. & Caldarelli, G. (2006). Graph theory and food webs. In Pascual, M. & Dunne, J.A. (eds), Ecological Networks: Linking Structure to Dynamics in Food Webs, pp. 93117. Oxford: Oxford University Press.Google Scholar
Cartwright, D. & Harary, F. (1956). Structural balance: a generalization of Heider's theory. Psychology Review, 63, 277293.CrossRefGoogle ScholarPubMed
Casteigts, A., Flocchini, P., Quattrociocchi, W. & Santoro, N. (2011). Time-varying graphs and dynamic networks. arXiv:1012.0009v3 [cs.DC].Google Scholar
Cayley, A. (1857). On the theory of analytical forms called trees. Philosophical Magazine, 13, 1930.Google Scholar
Cerdeira, J.O., Pinto, L.S., Cabeza, M. & Gaston, K.J. (2010). Species specific connectivity in reserve-network design using graphs. Biological Conservation, 143, 408415.CrossRefGoogle Scholar
Céréghino, R., Giraudel, J.L. & Compin, A. (2001). Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self-organization maps. Ecological Modelling, 146, 167180.CrossRefGoogle Scholar
Chan, J., Bailey, J. & Leckie, C. (2008). Discovering correlated spatio-temporal changes in evolving graphs. Knowledge & Information Systems, 16, 5396.CrossRefGoogle Scholar
Charbonneau, D., Blonder, B. & Dornhaus, A. (2013). Social insects: a model system for network dynamics. In Holme, X.P. & Saramäki, X.J. (eds), Temporal Networks, pp. 217244. Berlin: Springer.CrossRefGoogle Scholar
Chardon, J.P., Adriaensen, F. & Matthysen, E. (2003). Incorporating landscape elements into a connectivity measure: a case study for the Speckled Wood Butterfly (Pararge aegeria L.). Landscape Ecology, 18, 561573.CrossRefGoogle Scholar
Chartrand, G. & Lesniak, L. (2005). Graphs and Digraphs. 4th ed. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Chave, J. (2009). Competition, neutrality, and community organization. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 264273. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Chen, H.-W., Liu, W.-C., Davis, A.J., Jordán, F., Hwang, M.-J. & Shao, K.-T. (2008). Network position of hosts in food webs and their parasite diversity. Oikos, 117, 18471855.CrossRefGoogle Scholar
Chetkiewicz, C.-L., St. Clair, C. & Boyce, M. (2006). Corridors for conservation: integrating pattern and process. Annual Review of Ecology, Evolution and Systematics, 37, 317342.CrossRefGoogle Scholar
Chung, F.R.K. (1997). Spectral Graph Theory. Providence, RI: American Mathematical Society.Google Scholar
Clay, K. (1990). The impact of parasitic and mutualistic fungi on competitive interactions among plants. In Grace, J.B. & Tilman, D. (eds), Perspectives on Plant Competition, pp. 391412. San Diego, CA: Academic Press.Google Scholar
Codling, E.A., Plank, M.J. & Benhamou, S. (2008). Random walk models in biology. Journal of the Royal Society Interface, 5, 813834.CrossRefGoogle ScholarPubMed
Cohen, J.E. & Palka, Z.J. (1990). A stochastic theory of community food webs. V. Intervality and triangulation in the trophic-niche overlap graph. The American Naturalist, 135, 435463.CrossRefGoogle Scholar
Cohn, R.D. (1999). Comparisons of multivariate relational structures in serially correlated data. Journal of Agricultural, Biological & Environmental Statistics, 4, 238257.CrossRefGoogle Scholar
Colinvaux, P.A. (1979). Why Big Fierce Animals Are Rare: An Ecologist's Perspective. Princeton, NJ: Princeton University Press.Google Scholar
Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F. & Kechadi, T. (2007). Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages & Computing, 18, 255279; doi:10.1016/j.jvc.2007.02.006.CrossRefGoogle Scholar
Cook, R.E. (1988). Growth in Medeola virginiana clones. I. Field observations. American Journal of Botany, 75, 725731.CrossRefGoogle ScholarPubMed
Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C. (2009). Introduction to Algorithms. 3rd ed. Cambridge, MA: MIT Press.Google Scholar
Corson, F. (2010). Fluctuations and redundancy in optimal transport networks. Physical Review Letters, 104, 048703.CrossRefGoogle ScholarPubMed
Cote, D., Kehler, D.G., Bourne, C. & Wiersma, Y.F. (2009). A new measure of longitudinal connectivity for stream networks. Landscape Ecology, 24, 101113.CrossRefGoogle Scholar
Craft, M.E. & Caillaud, D. (2011). Network models: an underutilized tool in wildlife epidemiology. Interdisciplinary Perspectives on Infectious Diseases, 2011. doi:10.1155/2011/676949.CrossRefGoogle ScholarPubMed
Craft, M.E., Volz, E., Packer, C. & Meyers, L.A. (2010). Disease transmission in territorial populations: the small-world network of Serengeti lions. Journal of the Royal Society Interface, 8. doi:10.1098/rsif.2010.0511.Google ScholarPubMed
Cressie, N.A.C. (1993) Statistics for Spatial Data. 2nd ed. New York: John Wiley.CrossRefGoogle Scholar
Cressie, N. & Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. Hoboken, NJ: John Wiley.Google Scholar
Croft, D.P., Madden, J.R., Franks, D.W. & James, R. (2011). Hypothesis testing in animal social networks. Trends in Ecology and Evolution, 26, 502507.CrossRefGoogle ScholarPubMed
Cui, S., Hero, A.O., Luo, Z.-Q. & Moura, J.M.F. (2016). Big Data over Networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cumming, G.S. (2016). Heterarchies: Reconciling networks and hierarchies. Trends in Ecology and Evolution, XX31. doi.org/10.1016/j.tree.2016.04.009.Google Scholar
Dale, M.R.T. (1977a). Graph theoretical analysis of the phytosociological structure of plant communities: the theoretical basis. Vegetatio, 34, 137154.CrossRefGoogle Scholar
Dale, M.R.T. (1977b). Graph theoretical analysis of the phytosociological structure of plant communities: an application to mixed forest. Vegetatio, 35, 3546.CrossRefGoogle Scholar
Dale, M.R.T. (1982). Phytosociological structure of seaweed communities and the invasion of Fucus serratus in Nova Scotia. Canadian Journal of Botany, 60, 26522658.CrossRefGoogle Scholar
Dale, M.R.T. (1984). The contiguity of upslope and downslope boundaries of species in a zoned community. Oikos, 42, 9296.CrossRefGoogle Scholar
Dale, M.R.T. (1986). Overlap and spacing of species’ ranges on an environmental gradient. Oikos, 47, 303308.CrossRefGoogle Scholar
Dale, M.R.T. (1999). Spatial Pattern Analysis in Plant Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dale, M.R.T. & Fortin, M.-J. (2009). Spatial autocorrelation and statistical tests: some solutions. Journal of Agricultural, Biological, and Environmental Statistics, 14, 188206.CrossRefGoogle Scholar
Dale, M.R.T. & Fortin, M.-J. (2010). From graphs to spatial graphs. Annual Review of Ecology, Evolution, and Systematics, 41, 2138.CrossRefGoogle Scholar
Dale, M.R.T. & Fortin, M.-J. (2014). Spatial Analysis. 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dale, M.R.T., John, E.A. & Blundon, D.J. (1991). Contact sampling for the detection of interspecific association: a comparison in two vegetation types. Journal of Ecology, 79, 781792.CrossRefGoogle Scholar
Dale, M.R.T. & Moon, J. (1988). Statistical tests on two characteristics of the shapes of cluster diagrams. Journal of Classification, 5, 2138.CrossRefGoogle Scholar
Dale, M.R.T. & Thomas, A.G. (1987). The structure of weed communities in Saskatchewan fields. Weed Science, 35, 348355.CrossRefGoogle Scholar
Danon, L., Ford, A.P., House, T., Jewell, C.P., Keeling, M.J., Roberts, G.O., Ross, J.V. & Vernon, M.C. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011. doi:10.1155/2011/284909.CrossRefGoogle ScholarPubMed
Darlington, P.J. (1957). Zoogeography: The Geographical Distribution of Animals. New York: John Wiley.Google Scholar
Darwin, C. (1862). On the Various Contrivances by Which British and Foreign Orchids Are Fertilized by Insects and on the Good Effects of Intercrossing. London: John Murray.Google Scholar
David, F.N., Kendall, M.G. & Barton, D.E. (1966). Symmetric Functions and Allied Tables. Cambridge: Cambridge University Press.Google Scholar
Davis, J.A. (1967). Clustering and structural balance in graphs. Human Relations, 29, 181187.CrossRefGoogle Scholar
Davis, K.F., D'Odorico, P., Laio, F. & Ridolfi, L. (2013). Global spatio-temporal patterns in human migration: a complex network perspective. PLoS ONE, 8, e53723; doi:10.1371/journal.pone.0053723.CrossRefGoogle Scholar
Decout, S., Manel, S., Miaud, C. & Luque, S. (2012). Integrative approach for landscape based graph connectivity analysis: a case study with the common frog (Rana temporaria), in human dominated landscapes. Landscape Ecology, 27, 267279.CrossRefGoogle Scholar
de Jong, P., Aarssen, L.W. & Turkington, R. (1983). The analysis of contact sampling data. Journal of Ecology, 71, 545559.Google Scholar
Del Mondo, G., Stell, J.G., Claramunt, C. & Thibaud, R. (2010). A graph model for spatio-temporal evolution. Journal of Universal Computer Science, 16, 14521477.Google Scholar
Demattei, C. & Cucala, L. (2009). Multiple spatio-temporal cluster detection for case event data: an ordering-based approach. Communications in Statistics: Theory & Methods, 40, 3 Mar-5872.Google Scholar
den Boer, P.J. (1968). Spreading of risk and stabilization of animal numbers. Acta Biotheoretica, 18, 165194.CrossRefGoogle ScholarPubMed
Deshpande, M., Kuramochi, M., Wale, N. & Karypis, G. (2005). Frequent substructure-based approaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 17, 10361050.CrossRefGoogle Scholar
de Vries, H., Stevens, J.M.G. & Vervaecke, H. (2006). Measuring and testing the steepness of dominance hierarchies. Animal Behaviour, 71, 585592.CrossRefGoogle Scholar
Di Battista, G., Eades, P., Tamassia, R. & Tollis, I.G. (1994). Algorithms for drawing graphs. Computational Geometry, 4, 235282.CrossRefGoogle Scholar
Ding, C., He, X., Xiong, H., Peng, H. & Holbrook, S.R. (2006). Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques. International Journal of Data Mining and Informatics, 1, 162177.Google ScholarPubMed
Do, A.-L.J. & Gross, T. (2012). Self-Organization in Continuous Adaptive Networks. Aalborg, Denmark: River.Google Scholar
Donetti, L., Neri, F. & Munoz, M.A. (2006). Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that. Journal of Statistical Mechanics, 8, P 8007; arXiv:cond-mat/0605565v2.CrossRefGoogle Scholar
Doreian, P. & Mrvar, A. (1996). A partitioning approach to structural balance. Social Networks, 18, 149168.CrossRefGoogle Scholar
Dormann, C.F. (2006). Competition hierarchy, transitivity and additivity: investigating the effect of fertilization on plant-plant interactions using three common bryophytes. Plant Ecology, 191, 171184.CrossRefGoogle Scholar
Dormann, C.F. (2011). How to be a specialist? Quantifying specialization in pollination networks. Network Biology, 1, 120.Google Scholar
Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B. (2009). Indices, graphs, and null models: analyzing bipartite ecological networks. The Open Ecological Journal, 2, 724.CrossRefGoogle Scholar
Dorogovstsev, S.N. & Mendes, J.F.F. (2002). Evolution of networks. Advances in Physics, 51, 10791187.CrossRefGoogle Scholar
Dos Santos, D.A., Fernandez, H.R., Cuezzo, M.G. & Dominguez, E. (2008). Sympatry inference and network analysis in biogeography. Systematic Biology, 57, 432448.CrossRefGoogle ScholarPubMed
Doyle, F.I. & Smith, J.N.M. (2001). Raptors and scavengers. In Krebs, C.J., Boutin, S. & Boonstra, R. (eds), Ecosystem Dynamics of the Boreal Forest: The Kluane Project, pp. 377404 Oxford: Oxford University Press.CrossRefGoogle Scholar
Dray, S., Chessel, D. & Thioulouse, J. (2003). Co-inertia analysis and the linking of the ecological data tables. Ecology, 84, 30783089.CrossRefGoogle Scholar
Dray, S., Legendre, P. & Peres-Neto, P.R. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483493.CrossRefGoogle Scholar
Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., et al. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257275.CrossRefGoogle Scholar
Drewe, J.A., Weber, N., Carter, S.P., Bearhop, S., Harrison, X.A., Dall, S.R.X., McDonald, R.A. & Delahay, R.J. (2012). Performance of proximity loggers in recording intra- and inter-species interactions: a laboratory and field-based validation study. PLoS ONE, 7, e39068.CrossRefGoogle ScholarPubMed
Duboscq, J., Romano, V., Sueur, C. & MacIntosh, A.J.J. (2015). Network centrality and seasonality interact to predict lice load in a social primate. Scientific Reports, 6, 22095; doi:10.1038/srep22095.CrossRefGoogle Scholar
Duncan, A.J., Gunn, G.J., Lewis, F.I., Umstatter, C. & Humphry, R.W. (2012). The influence of empirical contact networks on modelling diseases in cattle. Epidemics, 4, 117123.CrossRefGoogle ScholarPubMed
Dunne, J.A. (2006). The network structure of food webs. In Pascual, M. & Dunne, J.A. (eds), Ecological Networks: Linking Structure to Dynamics in Food Webs, pp. 2786. Oxford: Oxford University Press.Google Scholar
Dunne, J.A., Lafferty, K.D., Dobson, A.P., Hechinger, R.F. & Kuris, A.M. (2013). Parasites affect food web structure primarily through increased diversity and complexity. PLoSBiol, 11 (6): e1001579; doi:10.1371/journal.pbio.1001579.CrossRefGoogle ScholarPubMed
Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002a). Network structure and biodiversity loss in food-webs: robustness increases with connectance. Ecology Letters, 5, 558567.CrossRefGoogle Scholar
Dunne, J.A., Williams, R.J. & Martinez, N.D. (2002b). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Science, 99, 1291712922.CrossRefGoogle ScholarPubMed
Durrett, R. (2007). Random Graph Dynamics. Cambridge: Cambridge University Press.Google Scholar
Dyer, R.J., Chan, D.M., Gardiakos, V.A. & Meadows, C.A. (2012). Pollination graphs: quantifying pollen pool covariance networks and the influence of intervening landscape on genetic connectivity in the North American understory tree, Cornus florida L. Landscape Ecology, 27, 239251.CrossRefGoogle Scholar
Dyer, R.J. & Nason, J.D. (2004). Population graphs: the graph theoretic shape of genetic structure. Molecular Ecology, 13, 17131727.CrossRefGoogle ScholarPubMed
Economo, E.P. & Keitt, T.H. (2008). Species diversity in neutral metacommunities: a network approach. Ecology Letters, 11, 5262.CrossRefGoogle ScholarPubMed
Edgington, E.S. (1995). Randomization Tests. 3rd ed. New York: Marcel Dekker.Google Scholar
Efron, B. & Tibshirani, R.J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.CrossRefGoogle Scholar
Eifrem, E. (2014). Graph theory: key to understanding big data. Wired, May 5.Google Scholar
Eiler, A. (2006). Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Applied and Environmental Microbiology, 72 (12), 74317437; doi:10.1128/AEM.01559-06.CrossRefGoogle ScholarPubMed
Erdös, P. (1963). On a problem in graph theory. Mathematical Gazette, 47, 220223.CrossRefGoogle Scholar
Erdös, P., Harary, F. & Tutte, W.T. (1965). On the dimension of a graph. Mathematika, 12, 118122.CrossRefGoogle Scholar
Erdös, P. & Moon, J.W. (1964). On subgraphs of the complete bipartite graph. Canadian Mathematical Bulletin, 7, 3539.CrossRefGoogle Scholar
Erdös, P. & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 1761.Google Scholar
Erös, T., Olden, J.D., Schick, R.S., Schmera, D. & Fortin, M.-J. (2012). Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology, 27, 303317.CrossRefGoogle Scholar
Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, 751760.CrossRefGoogle Scholar
Escudero, A., Pajarón, S. & Gavilán, R. (1994). Saxicolous communities in the Sierra del Moncayo (Spain): a classificatory study. Coenoses, 9, 1524.Google Scholar
Estrada, E. (2006). Network robustness to targeted attacks: the interplay of expansibility and robustness. The European Physical Journal B, 52, 563574.CrossRefGoogle Scholar
Estrada, E. (2007). Characterization of topological keystone species: local, global and “meso-scale” centralities in food webs. Ecological Complexity, 4, 4657.CrossRefGoogle Scholar
Estrada, E. (2012). The Structure of Complex Networks: Theory and Applications. Oxford: Oxford University Press.Google Scholar
Estrada, E. & Bodin, Ö. (2008). Using network centrality measures to manage landscape connectivity. Ecological Applications, 18, 18101825.CrossRefGoogle ScholarPubMed
Facchetti, G., Iacono, G. & Altafini, C. (2011). Computing global structural balance in large-scale signed social networks. Proceedings of the National Academy of Sciences, 108, 2095320958.CrossRefGoogle ScholarPubMed
Fagan, W.F. (2002). Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology, 83, 32433249.CrossRefGoogle Scholar
Fagan, W.F. & Calabrese, J.M. (2014). The correlated random walk and the rise of movement ecology. Bulletin of the Ecological Society of America, 95, 204206.CrossRefGoogle Scholar
Fall, A., Fortin, M.-J., Manseau, M. & O'Brien, D. (2007). Spatial graphs: principles and applications for habitat connectivity. Ecosystems, 10, 448461.CrossRefGoogle Scholar
Fang, W. (2005). Spatial analysis of an invasion front of Acer platanoides: dynamic inferences from static data. Ecography, 28, 283294.CrossRefGoogle Scholar
Farine, D.R. & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network analysis. Journal of Animal Ecology, 84, 11441163.CrossRefGoogle ScholarPubMed
Fattorini, S. (2007). Non-randomness in the species-area relationship: testing the underlying mechanisms. Oikos, 116, 678689.Google Scholar
Fattorini, S. & Fowles, A.P. (2005). A biogeographical analysis of the tenebrionid beetles (Coleoptera, Tenebrionidae) of the island of Thasos in the context of the Aegean Islands (Greece). Journal of Natural History, 39, 39193949.CrossRefGoogle Scholar
Fedor, A. & Vasas, V. (2009). The robustness of keystone indices in food webs. Journal of Theoretical Biology, 260, 372378.CrossRefGoogle ScholarPubMed
Feeley, K.J., Gillespie, T.W., Lebbin, D.J. & Walter, H.S. (2007). Species characteristics associated with extinction vulnerability and nestedness rankings of birds in tropical forest fragments. Animal Conservation, 10, 493501.CrossRefGoogle Scholar
Ferrari, J.R., Lookingbill, T.R. & Neel, M.C. (2007). Two measures of landscape graph connectivity: assessments across gradients in area and configuration. Landscape Ecology, 22, 1315; doi:10.1007/s10980-007-9121-7.CrossRefGoogle Scholar
Flitcroft, R.L., Burnett, K.M., Reeves, G.H. & Ganio, L.M. (2012). Do network relationships matter? Comparing network and instream habitat variables to explain densities of juvenile coho salmon (Oncorhynchus kisutch) in mid-coastal Oregon, USA. Aquatic Conservation: Marine and Freshwater Ecosystems, 22, 288302.CrossRefGoogle Scholar
Fodor, E. (2013). Linking biodiversity to mutualistic networks: woody species and ectomycorrhizal fungi. Annals of Forest Research, 56, 5378.Google Scholar
Fortin, M.-J. & Payette, S. (2002). How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience, 9, 213218.CrossRefGoogle Scholar
Fortuna, M.A. & Bascompte, J. (2008). The network approach in ecology. In Valladares, F., Camacho, A., Elosegui, A., Estrada, M. & Garcia, C. (eds), Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef, pp. 371–93. Madrid: Fundación BBVA.Google Scholar
Fortuna, M.A., Garcia, C., Guimaräes, P.R. & Bascompte, J. (2008). Spatial mating networks in insect-pollinated plants. Ecology Letters, 11, 490498.CrossRefGoogle ScholarPubMed
Fortuna, M.A., Gómez-Rodriguez, C. & Bascompte, J. (2006). Spatial network structure and amphibian persistence in stochastic environments. Proceedings of the Royal Society B: Biological Sciences, 273, 14291434.CrossRefGoogle ScholarPubMed
Fortuna, M.A., Popa-Lisseanu, A.G., Ibañaz, C. & Bascompte, J. (2009). The roosting spatial network of a bird-predator bat. Ecology, 90, 934944.CrossRefGoogle ScholarPubMed
Fortunato, S. (2010). Community detection in graphs. arXiv:0906.0612v2 [physics.soc-ph].Google Scholar
Fowler, N.L. (1990). Disorderliness in plant communities: comparisons, causes, and consequences. In Grace, J.B. & Tilman, D. (eds), Perspectives on Plant Competition, pp. 291306. San Diego, CA: Academic Press.Google Scholar
Franc, A. (2003). Metapopulation dynamics as a contact process on a graph. Ecological Complexity, 1, 4963; doi:10.1016/jecocom.2003.10.02.CrossRefGoogle Scholar
Frank, K. (1995). Identifying cohesive subgroups. Social Networks, 17, 2756.CrossRefGoogle Scholar
Frean, M. & Abraham, E.R. (2001). Rock-scissors-paper and the survival of the weakest. Proceedings of the Royal Society of London B, 268, 13231327.CrossRefGoogle ScholarPubMed
Freckleton, R.P. & Watkinson, A.R. (2001). Predicting competition coefficients for plant mixtures: reciprocity, transitivity and correlations with life-history traits. Ecology Letters, 4, 348357.CrossRefGoogle Scholar
Freeman, L.C., Borgatti, S.P. & White, D.R. (1991). Centrality in valued graphs: a measure of betweenness based on network flow. Social Networks, 13, 141154.CrossRefGoogle Scholar
Fuller, M.M., Wagner, A. & Enquist, B.J. (2008). Using network analysis to characterize forest structure. Natural Resource Modelling, 21, 225247.CrossRefGoogle Scholar
Galpern, P., Manseau, M. & Fall, A. (2011). Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biological Conservation, 144, 4455.CrossRefGoogle Scholar
Ganguly, N., Deutsch, A. & Mukherjee, A. (2009). Dynamics on and of Complex Networks. Boston: Birkhäuser.CrossRefGoogle Scholar
Ganio, L.M., Torgersen, C.E. & Gresswell, R.E. (2005). A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and Environment, 3, 138144.CrossRefGoogle Scholar
Gao, X., Xiao, B., Tao, D. & Li, X. (2010). A survey of graph edit distance. Pattern Analysis and Applications, 13, 113129; doi:10.1007/s10044-008-0141-y.CrossRefGoogle Scholar
Garcia, D., Zamora, R. & Amico, G.C. (2011). The spatial scale of plant-animal interactions: effects of resource availability and habitat structure. Ecological Monographs, 81, 103121.CrossRefGoogle Scholar
Garroway, C.J., Bowman, J., Carr, D. & Wilson, P.J. (2008). Applications of graph theory to landscape genetics. Evolutionary Applications, 1, 620630.CrossRefGoogle ScholarPubMed
Gärtner, T. (2003). A survey of kernels for structured data. ACM SIGKDD Explorations Newsletter, 5 (1), 4958.CrossRefGoogle Scholar
Gärtner, T. (2008). Kernels for Structured Data. Singapore: World Scientific.CrossRefGoogle Scholar
Gärtner, T., Flach, P.A. & Wrobel, S. (2003). On graph kernels: hardness results and efficient alternatives. In Proceedings of the Sixteenth Annual Conference on Learning Theory and Seventh Annual Workshop on Kernel Machines, Lecture Notes in Artificial Intelligence, pp. 129143. New York: Springer.Google Scholar
Gasalla, M.A., Rodrigues, A.R. & Postuma, F.A. (2010). The trophic role of the squid Loligo plei as a keystone species in the South Brazil Bight ecosystem. ICES Journal of Marine Science, 67, 14131424.CrossRefGoogle Scholar
Gehring, C.A., Mueller, R.C., Haskins, K.E., Rubow, T.K. & Whitham, T.G. (2014). Convergence in mycorrhizal fungal communities to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants. Frontiers in Microbiology, 5, 306; doi:10.3389/micb.2014.00306.CrossRefGoogle ScholarPubMed
Gilarranz, L.J. & Bascompte, J. (2012). Spatial network structure and metapopulation persistence. Journal of Theoretical Biology, 297, 1116.CrossRefGoogle ScholarPubMed
Gilarranz, L.J., Hastings, A. & Bascompte, J. (2015). Inferring topology from dynamics in spatial networks. Theoretical Ecology, 8 doi:10.1007/s12080-014-0231-y.CrossRefGoogle Scholar
Girvan, M. & Newman, M.E.J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99, 78217826.CrossRefGoogle ScholarPubMed
Glaz, J., Naus, J. & Wallenstein, S. (2001). Scan Statistics. New York: Springer.CrossRefGoogle Scholar
Gleick, J. (1987). Chaos: The Making of a New Science. New York: Viking.Google Scholar
Godfrey, S.S. (2013). Networks and the ecology of parasite transmission: a framework for wildlife parasitology. International Journal for Parasitology: Parasites and Wildlife, 2, 235245.Google ScholarPubMed
Godfrey, S.S., Moore, J.A., Nelson, N.J. & Bull, C.M. (2010). Social network structure and parasite infection patterns in a territorial reptile, the Tuatara (Sphenodon punctatus). International Journal of Parasitology, 40, 15751585.CrossRefGoogle Scholar
Gollo, L.L. & Breakspear, M. (2014). The frustrated brain: from dynamics on motifs to communities and networks. Philosophical Transactions of the Royal Society, Series B, 369; doi:10.1098/rstb.2013.0532.CrossRefGoogle ScholarPubMed
Gómez, J.M., Perfectii, F. & Jordano, P. (2011). The functional consequences of mutualistic network architecture. PLoS ONE, 6, e16143; doi.10.1371/journal.pone.0016143.CrossRefGoogle ScholarPubMed
Gómez, S., Montiel, J., Torres, D. & Fernández, A. (2012). MultiDendrograms: variable-group agglomerative hierarchical clusterings. arXiv:1201.1623v2.Google Scholar
Goodall, D.W. (1966). The nature of the mixed community. Proceedings of the Ecological Society of Australia, 1, 8496.Google Scholar
Gordon, A.D. & Birks, H.J.B. (1972). Numerical methods in Quaternary paleoecology. I. Zonation of pollen diagrams. New Phytologist, 71, 961979.CrossRefGoogle Scholar
Gordon, A.D. & Birks, H.J.B. (1974). Numerical methods in Quaternary paleoecology. II. Comparison of pollen diagrams. New Phytologist, 73, 221249.CrossRefGoogle Scholar
Grace, J.B., Guntespurgen, G.R. & Keough, J. (1993). The examination of a competition matrix for transitivity and intransitive loops. Oikos, 68, 9198.CrossRefGoogle Scholar
Graham, S.P., Hassan, H.K., Burkett-Cadena, N.D., Guyer, C. & Unnasch, T.R. (2009). Nestedness of ectoparasite-vertebrate host networks. PLoS ONE, 4, e7873; doi:10.1371/journal.pone.0007873.CrossRefGoogle ScholarPubMed
Grant, E.H.C., Lowe, W.H. & Fagan, W.F. (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 10, 165175.CrossRefGoogle Scholar
Greenland, S., Pearl, J. & Robins, J.M. (1999). Causal diagrams for epidemiological research. Epidemiology, 10, 3748.CrossRefGoogle Scholar
Grime, J.P. (1979). Plant Strategies and Vegetation Processes. New York: John Wiley.Google Scholar
Grindrod, P., Parsons, M.C., Higham, D.J. & Estrada, E. (2011). Communicability across evolving networks. Physical Review E, 83, 046120; doi:10.1103/PhysRevE.83.046120.CrossRefGoogle ScholarPubMed
Gross, T. & Blasius, B. (2008). Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface, 5, 259271.CrossRefGoogle ScholarPubMed
Guerrero, C., Milenkovic, T., Pržulj, N., Kaiser, P. & Huang, L. (2008). Characterization of the proteasome interaction network using a qtax-based tag-team strategy and protein interaction network analysis. Proceedings of the National Academy of Sciences, 105, 1333313338.CrossRefGoogle ScholarPubMed
Guha, R., Kumar, K., Raghavan, P. & Tomkins, A. (2004). Propagation of trust and distrust. Paper ACM 1-58113-844-X/04/0005 presented at ACM WWW, New York.CrossRefGoogle Scholar
Guillaume, J.-L. & Latapy, M. (2006). Bipartite graphs as models of complex networks. Physica A, 371, 795813.CrossRefGoogle Scholar
Guimerà, R. & Sales-Pardo, M. (2006). Form follows function: the architecture of complex networks. Molecular Systems Biology, 2 Article 42. doi:10.1038/msb4100082.CrossRefGoogle ScholarPubMed
Guimerà, R. & Sales-Pardo, M. (2009). Missing and spurious interactions and the reconstruction of complex networks. Proceeding of the National Academy of Sciences, 52, 2207322078.CrossRefGoogle Scholar
Hagen, M., et al. (2012). Biodiversity, species interactions and ecological networks in a fragmented world. Advances in Ecological Research, 46, 89185.CrossRefGoogle Scholar
Hamede, R.K., Bashford, J., McCallum, H. & Jones, M. (2009). Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behavior and its implications for transmission of devil facial tumour disease. Ecology Letters, 12, 111.CrossRefGoogle Scholar
Hammer, A.C. & Pitchford, J.W. (2005). The role of mixotrophy in plankton bloom dynamics and the consequences for productivity. ICES Journal of Marine Science, 62, 833840.CrossRefGoogle Scholar
Hampton, S.E., Strasser, C.A., Tewksbury, J.J., Gram, W.K., Budden, A.E., Batcheller, A.L., Duke, C.S. & Porter, J.H. (2013). Big data and the future of ecology. Frontiers of Ecology and Environment, 11, 156162; doi:10.1890/120103.CrossRefGoogle Scholar
Hanski, I. (2009). Metapopulations and spatial population processes. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 177185. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Harary, F. (1953). On the notion of balance of a signed graph. Michigan Mathematical Journal, 2, 143146.CrossRefGoogle Scholar
Harary, F. (1959). On the measurement of structural balance. Behavioral Science, 4, 316323.CrossRefGoogle Scholar
Harary, F. (1969). Graph Theory. Reading MA: Addison-Wesley.CrossRefGoogle Scholar
Harary, F. & Gupta, G (1997). Dynamic graph models. Mathematical & Computer Modelling, 25, 7987.CrossRefGoogle Scholar
Harper, J.L. (1977). Population Biology of Plants. London: Academic Press.Google Scholar
Harvey, E. & Miller, T.E. (1996). Variance in composition of inquiline communities in leaves of Sarracenia purpurea L. on multiple spatial scales. Oecologia, 108, 562566.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer.CrossRefGoogle Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W. & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLOS Biology, 12, e1001960.CrossRefGoogle ScholarPubMed
Hock, K. & Mumby, P.J. (2015). Quantifying the reliability of dispersal paths in connectivity networks. Journal of the Royal Society Interface, 12, 20150013; doi:10.1098/rsif.2015.0013.CrossRefGoogle ScholarPubMed
Hodges, K.E., Krebs, C.J., Hik, D.S., Stefan, C.I., Gillis, E.A. & Doyle, C.E. (2001). Snowshoe hare demography. In Krebs, C.J., Boutin, S. & Boonstra, R. (eds), Ecosystem Dynamics of the Boreal Forest: The Kluane Project, pp. 141178 Oxford: Oxford University Press.CrossRefGoogle Scholar
Hofmann, T., Schölkopf, B. & Smola, A.J. (2008). Kernel methods in machine learning. The Annals of Statistics, 36, 11711220; doi:10.1214/009053607000000677.CrossRefGoogle Scholar
Hollén, L.I. & Radford, A.N. (2009). The development of alarm call behavior in mammals and birds. Animal Behaviour, 78, 791800.CrossRefGoogle Scholar
Holme, P. (2013). Epidemiologically optimal static networks from temporal network data. PLoS Computational Biology, 9, e1003142.CrossRefGoogle ScholarPubMed
Holme, P. & Saramäki, J. (2011). Temporal networks. Physics Reports, 519, 97125.CrossRefGoogle Scholar
Holme, P. & Saramäki, J. (2013). Temporal Networks. Berlin: Springer.CrossRefGoogle Scholar
Holt, R.D. (2002). Food webs in space: on the interplay of dynamic in stability and spatial processes. Ecological Research, 17, 261273.CrossRefGoogle Scholar
Holt, R.D. (2009). Predation and community organization. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 274281. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Holt, R.D. & Hoopes, M.F. (2005). Food web dynamics in a metacommunity context: modules and beyond. In Holyoak, P., Leibold, M.A. & Holt, R.D. (eds), Metacommunities: Spatial Dynamics and Ecological Communities, pp. 6893. Chicago: Chicago University Press.Google Scholar
Holyoak, M. (2000). Habitat subdivision causes changes in food web structure. Ecology Letters, 3, 509515.CrossRefGoogle Scholar
Horn, H.S. (1975). Markovian processes of forest succession. In Cody, M.L. & Diamond, J.M. (eds), Ecology and Evolution of Communities, pp. 196211. Cambridge, MA: Belknap Press.Google Scholar
Horn, H.S. (1976). Succession. In May, R.M. (ed.), Theoretical Ecology: Principles and Applications, pp. 187204. Philadelphia: Saunders.Google Scholar
Horváth, D.X. & Kertész, J. (2014). Spreading dynamics on networks: the role of burstiness, topology and non-stationarity. New Journal of Physics, 16. doi:10.1088/1367-2630/16/7/73037.CrossRefGoogle Scholar
Howard, T.G. (2001). The relationship of total and per-gram rankings in competitive effect to the natural abundance of herbaceous perennials. Journal of Ecology, 89, 110117.CrossRefGoogle Scholar
Huffaker, C.B. (1958). Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia, 27, 343383.CrossRefGoogle Scholar
Hulovatyy, Y., Chen, H. & Milenkovic, T. (2015). Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics, 31, 11711180.CrossRefGoogle ScholarPubMed
Husté, A. & Boulinier, T. (2011). Determinants of bird community composition on patches in suburbs of Paris, France. Biological Conservation, 144, 243252.CrossRefGoogle Scholar
Ilany, A., Barocas, A., Koren, L., Kam, M. & Geffen, E. (2013). Structural balance in the social networks of a wild mammal. Animal Behaviour, 85, 13971405.CrossRefGoogle Scholar
Illian, J.B., Penttinen, A., Stoyan, H. & Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. New York: John Wiley.Google Scholar
Ings, T.C., et al. (2008). Ecological networks – beyond food webs. Journal of Animal Ecology, 78. doi:10.1111/j.1365-2656.2008.01460.x.Google Scholar
Itzhaki, Z., Akiva, E. & Margalit, H. (2010). Preferential use of protein domain pairs as interaction mediators: order and transitivity. Bioinformatics, 26, 25642570.CrossRefGoogle ScholarPubMed
Ives, A.R. & Godfray, H.C.J. (2006). Phylogenetic analysis of trophic associations. The American Naturalist, 168, E1E14; www.jstor.org/stable/10.1086/505157.CrossRefGoogle ScholarPubMed
Iyengar, V.S. (2005). Space-time clusters with flexible shapes. Morbidity and Mortality Weekly Report, 54, 7176.Google ScholarPubMed
Jacquez, G.M. (1996). A k nearest neighbour test for space–time interaction. Statistical Medicine, 15, 19351949.3.0.CO;2-I>CrossRefGoogle Scholar
James, A., Pitchford, J.W. & Plank, M.J. (2012). Disentangling nestedness from models of ecological complexity. Nature, 487, 227230.CrossRefGoogle ScholarPubMed
James, P., Rayfield, B., Fortin, M.-J., Fall, A. & Farley, G. (2005). Reserve network design combining spatial graph theory and species’ spatial requirements. Geomatica, 59, 323333.Google Scholar
James, P.M.A., Fleming, R.A. & Fortin, M.-J. (2010). Identifying significant scale-specific spatial boundaries using wavelets and null models: spruce budworm defoliation in Ontario, Canada, as a case study. Landscape Ecology, 25, 873887.CrossRefGoogle Scholar
James, P.M.A., Fortin, M.-J., Fall, A., Kneeshaw, D. & Messier, C. (2007). The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystems, 10, 12611277.CrossRefGoogle Scholar
James, R., Croft, D.P. & Krause, J. (2009). Potential banana skins in animal social network analysis. Behavioural Ecology and Sociobiology, 63, 989997.CrossRefGoogle Scholar
Jelínková, H., Tremblay, F. & DesRochers, A. (2009). Molecular and dendrochronological analyses of natural root grafting in Populus tremuloides (Salicaceae). American Journal of Botany, 96, 15001505; doi:10.3732/ajb.0800177.CrossRefGoogle Scholar
Jiang, L.Q. & Zhang, W.J. (2015). Determination of keystone species in CSM food web: A topological analysis of network structure. Network Biology, 5, 1333.Google Scholar
Johnson, S., Domínguez-García, V. & Muñoz, M.A. (2013). Factors determining nestedness in complex networks. PLoS ONE, 8 doi:10.1371/journal.pone.0074025.Google Scholar
Jones, D.A. (1966). On the polymorphism of cyanogenesis in Lotus corniculatus: Selection by animals. Canadian Journal of Genetics and Cytology, 8, 556567.CrossRefGoogle Scholar
Joppa, L.N., Bascompte, J., Montoya, J.M., Solé, R.V., Sanderson, J. & Pimm, S.L. (2009). Reciprocal specialization in ecological networks. Ecology Letters, 12, 961969; doi:101111/j.1461-0248.2009.01341.x.CrossRefGoogle ScholarPubMed
Jordán, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society, Series B, 364, 17331741.CrossRefGoogle ScholarPubMed
Jordán, F., Liu, W.-C. & Davis, A.J. (2006). Topological keystone species: measures of positional importance in food webs. Oikos, 112, 535546.CrossRefGoogle Scholar
Jordán, F., Takács-Sánta, A. & Molnár, I. (1999). A reliability theoretical quest for keystones. Oikos, 86, 453462.CrossRefGoogle Scholar
Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. American Naturalist, 129, 657677.CrossRefGoogle Scholar
Jordano, P. (2010). Coevolution in multispecific interactions among free-living species. Evolution, Education, and Outreach, 3, 4046.CrossRefGoogle Scholar
Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters, 6, 6981.CrossRefGoogle Scholar
Jordano, P., Bascompte, J. & Olesen, J.M. (2006). The ecological consequences of complex topology and nested structure in pollination webs. In Waser, N.M. & Olleton, J. (eds), Plant-Pollinator Interactions, pp. 173199. Chicago: Chicago University Press.Google Scholar
Juenger, M. & Mutzel, P (2003). Graph Drawing Software. Berlin: Springer.Google Scholar
Kampichler, C., Angeler, D.G., Holmes, R.T., Leito, A., Svensson, S., van der Jeungd, H.P. & Wesolowski, T. (2014). Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data. Oecologia, 175, 13011313; doi:10.1007/s00442-014-2979-6.CrossRefGoogle ScholarPubMed
Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L. & Saramäki, J. (2011). Small but slow world: how network topology and burstiness slow down spreading. Physical Review E, 83, 025102. arXiv:1006.2125v3.CrossRefGoogle ScholarPubMed
Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrica, 18, 3943.CrossRefGoogle Scholar
Keats, D.W., South, G.R. & Steele, D.H. (1985). Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Marine Ecology Progress Series, 25, 151163.CrossRefGoogle Scholar
Keddy, P.A. & Shipley, B. (1989). Competitive hierarchies in herbaceous plant communities. Oikos, 54, 234241.CrossRefGoogle Scholar
Keeling, M.J. (1999). The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London, Series B, 266, 859867.CrossRefGoogle ScholarPubMed
Keeling, M.J. (2005). The implications of network structure for epidemic dynamics. Theoretical Population Biology, 67, 18.CrossRefGoogle ScholarPubMed
Keeling, M.J. & Eames, K.T.D. (2005). Networks and epidemic models. Journal of the Royal Society Interface, 2, 295307; doi:10.1098/rsif.2005.0051.CrossRefGoogle ScholarPubMed
Kéfi, S., Berlow, E.L., Wieters, E.A., Joppa, L.N., Wood, S.A., Brose, U. & Navarrete, S.A. (2015). Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology, 96, 291303.CrossRefGoogle Scholar
Keitt, T.H., Urban, D.L. & Milne, B.T. (1997). Detecting critical scales in fragmented landscapes. Conservation Ecology, 1, 4. www.consecol.org/vol1/iss1/art4/.CrossRefGoogle Scholar
Kempe, D., Kleinberg, J. & Kumar, A. (2002). Connectivity and inference problems for temporal networks. Journal of Computer Systems Science, 64, 820842.CrossRefGoogle Scholar
Kent, M. & Coker, P. (1992). Vegetation Description and Analysis. Boca Raton, FL: CRC Press.Google Scholar
Kepner, J., Ricke, D.O. & Hutchison, D. (2013). Taming biological big data with D4M. Lincoln Laboratory Journal, 20, 8291.Google Scholar
Kernighan, B.W. & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49, 291307.CrossRefGoogle Scholar
Kim, H. & Anderson, R. (2012). Temporal node centrality in complex networks. Physical Review E, 85, 026107.CrossRefGoogle ScholarPubMed
Kirchhoff, G. (1847). Über die Auflösung der Gleichungen. Annals of Physical Chemistry, 72, 497508.CrossRefGoogle Scholar
Kirkpatrick, D.G. & Radke, J.D. (1985). A framework for computational morphology. Computational Geometry, Machine Intelligence and Pattern Recognition, 2, 217248.Google Scholar
Kisilevich, S., Mansmann, F., Nanni, M. & Rinzivillo, S. (2010). Spatio-temporal clustering: a survey. In Maimon, O. & Rokach, L. (eds), Data Mining and Knowledge Discovery Handbook, pp. 855874. New York: Springer.Google Scholar
Kitching, R.L. (2000). Food Webs and Container Habitats. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Klovdahl, A.S. (1985). Social networks and the spread of infectious diseases: the AIDS example. Social Science and Medicine, 21, 12031218.CrossRefGoogle ScholarPubMed
Kneitel, J.M. & Miller, T.E. (2003). Dispersal rates affect species composition in metacommunities of Sarracenia purpurea L. inquilines. American Naturalist, 162, 165171.CrossRefGoogle Scholar
Kocarev, L. & Vattay, G. (2010). Complex Dynamics in Communication Networks. Berlin: Springer.Google Scholar
Kolaczyk, E.D. (2009). Statistical Analysis of Network Data. New York: Springer.CrossRefGoogle Scholar
Kolaczyk, E.D. & Csárdi, G. (2014). Statistical Analysis of Network Data with R. New York: Springer.CrossRefGoogle Scholar
Kondoh, M., Kato, S. & Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology, 91, 31233130.CrossRefGoogle ScholarPubMed
Kondor, R.I. & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. Proceedings of the International Conference on Machine Learning (ICML).Google Scholar
Kondor, R., Shervashidze, N. & Borgwardt, K.M. (2009). The graphlet spectrum. Paper presented at the 26th International Conference on Machine Learning, Montreal.CrossRefGoogle Scholar
Kost, C., de Oliveira, E.G., Knoch, T.A. & Wirth, R. (2005). Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta sp.). Journal of Tropical Ecology, 21, 677688.CrossRefGoogle Scholar
Kostakos, V. (2009). Temporal graphs. Physica A, 388, 10071023.CrossRefGoogle Scholar
Kovanen, L., Karsai, M., Kaski, K., Kertész, J. & Saramäki, J. (2011). Temporal motifs in time-dependent networks. Journal of Statistical Mechanics, 11, P11005; arXiv:1107.5646v2.CrossRefGoogle Scholar
Kovanen, L., Karsai, M., Kaski, K., Kertész, J. & Saramäki, J. (2013a). Temporal motifs. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 119134. Berlin: Springer.CrossRefGoogle Scholar
Kovanen, L., Kaski, K., Kertesz, J. & Saramäki, J. (2013b). Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proceedings of the National Academy of Sciences, 110, 1807018075.CrossRefGoogle ScholarPubMed
Krause, A.E., Frank, K.A., Mason, D.M., Ulanowicz, R.E. & Taylor, W.W. (2003). Compartments revealed in food-web structure. Nature, 426, 282285.CrossRefGoogle ScholarPubMed
Krause, J., Croft, D.P. & James, R. (2007). Social network theory in the behavioural sciences. Behavioural Ecology and Sociobiology, 62, 1527.CrossRefGoogle ScholarPubMed
Krebs, C.J. (2010). Of lemmings and snowshoe hares: the ecology of northern Canada. Proceedings of the Royal Society, Series B, 278 doi:10.1098/rspb.2010.1992.Google ScholarPubMed
Krebs, C.J., Boutin, S. & Boonstra, R. (2001). Ecosystem dynamics of the boreal forest: the Kluane project. Oxford: Oxford University Press.CrossRefGoogle Scholar
Krishna, A., Guimaräes, P.R., Jordano, P. & Bascompte, J. (2008). A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 16091618; doi:10.1111/j.2008.0030-1299.16540.x.CrossRefGoogle Scholar
Kunegis, J. (2014). Applications of structural balance in signed social networks. arXiv:1402.6865v1 [cs.S1].Google Scholar
Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., De Luca, E.W. & Albayrak, S. (2010). Spectral analysis of signed graphs for clustering, prediction, and visualization. In Proceedings of the 10th SIAM International Conference on Data Mining, pp. 559570. SIAM: Columbus, Ohio.Google Scholar
Kurvers, R.H.J.M., Krause, J., Croft, D.P., Wilson, A.D.M. & Wolf, M. (2014). The evolutionary and ecological consequences of animal social networks: emerging issues. Trends in Ecology and Evolution, 29, 326335CrossRefGoogle ScholarPubMed
Labonne, J., Ravigné, V., Parisi, B. & Gaucherel, C. (2008). Linking dendritic network structures to population demogenetics: the downside of connectivity. Oikos, 117, 14791490.CrossRefGoogle Scholar
Laird, R.A. & Schamp, B.S. (2006). Competitive intransitivity promotes species coexistence. American Naturalist, 168, 182193.CrossRefGoogle ScholarPubMed
Laird, R.A. & Schamp, B.S. (2008). Does local competition increase the coexistence of species in intransitive networks? Ecology, 89, 237247.CrossRefGoogle ScholarPubMed
Laita, A., Kotiaho, J.S. & Mönkkönen, M. (2011). Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecology, 26, 951967.CrossRefGoogle Scholar
Lamour, A., Termorshuizen, A.J., Volker, D. & Jeger, M.J. (2007). Network formation by rhizomorphs of Armillaria lutea in natural soil: their description and ecological significance. FEMS Microbial Ecology, 62, 222232.CrossRefGoogle ScholarPubMed
Landau, H.G. (1951). On dominance relations and the structure of animal societies: I. Effects of inherent characteristics. Bulletin of Mathematica Biophysics, 13, 119.CrossRefGoogle Scholar
Lankau, R.A., Wheeler, E., Bennett, A.E. & Strauss, S.Y. (2010). Plant-soil feedbacks contribute to an intransitive competitive network that promotes genetic and species diversity. Journal of Ecology, 99 doi 10.1111/j.1365-2745.2010.01736.x.Google Scholar
Lapointe, F.-J. & Legendre, P. (1990). A statistical framework to test the consensus of two nested classifications. Systematic Zoology, 39, 113.CrossRefGoogle Scholar
Lapointe, F.-J. & Legendre, P. (1995). Comparison tests for dendrograms: a comparative evaluation. Journal of Classification, 12, 265282.CrossRefGoogle Scholar
Lawson, A.B. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Layeghifard, M., Makarenkov, V. & Peres-Neto, P.R. (2015). Spatial and species compositional networks for inferring connectivity patterns in ecological communities. Global Ecology and Biogeography, 24, 718727.CrossRefGoogle Scholar
Leal, W., Llanos, E.J., Retrepo, G., Suarez, C.F. & Patarrayo, M.E. (2016). How frequently do clusters occur in hierarchical clustering analysis? A graph theoretical approach to studying ties in proximity. Journal of Cheminformatics, 8 doi:10.1186/s13321-016-0114-x.CrossRefGoogle ScholarPubMed
Lee, S.H., Kim, P.-J. & Jeong, H. (2006). Statistical properties of sampled networks. Physical Review E, 73 016102.CrossRefGoogle ScholarPubMed
Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 16591673.CrossRefGoogle Scholar
Legendre, P. & Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107138.CrossRefGoogle Scholar
Legendre, P. & Legendre, L. (2012). Numerical Ecology. 3rd ed. Amsterdam: Elsevier.Google Scholar
Leibold, M.A. (2009). Spatial and metacommunity dynamics in biodiversity. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 312319. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Leskovec, J. & Faloutsos, C. (2006). Sampling from large graphs. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631636. ACM: New York, USACrossRefGoogle Scholar
Leskovec, J., Huttenlocher, D. & Kleinberg, J. (2010). Signed networks in social media. Paper ACM 978-1-60558-929-9/10/04 presented at ACM CHI, Atlanta, GA, USA.CrossRefGoogle Scholar
Lesne, A. (2006). Complex networks: from graph theory to biology. Letters in Mathematical Physics, 78, 235262.CrossRefGoogle Scholar
Levine, J.M. (1999). Indirect facilitation: evidence and predictions from a riparian community. Ecology, 80, 17621769.CrossRefGoogle Scholar
Levinton, J.S. (1982). Marine Ecology. Engelwood Cliffs, NJ: Prentice Hall.Google Scholar
Libralato, S., Christensen, V. & Pauly, D. (2006). A method for identifying keystone species in food web models. Ecological Modelling, 195, 153171.CrossRefGoogle Scholar
Liebhold, A., Koenig, W.D. & Bjørnstadt, O.N. (2004). Spatial synchrony in population dynamics. Annual Review of Ecology, Evolution & Systematics, 35, 467490.CrossRefGoogle Scholar
Lihoreau, M., Raine, N.E., Reynolds, A.M., Stelzer, R.J., Lim, K.S., Smith, A.D., Osborne, J.L. & Chittka, L. (2013). Unravelling the mechanisms of trapline foraging in bees. Communicative & Integrative Biology, 6, e22701.CrossRefGoogle ScholarPubMed
Little, L.R. & Dale, M.R.T. (1999). A method for analyzing spatio-temporal pattern in plant establishment, tested on a Populus balsamifera clone. Journal of Ecology, 87, 620627.CrossRefGoogle Scholar
Liu, W., Li, D., Wang, J., Xie, H., Zhu, Y. & He, F. (2009). Proteome-wide prediction of signal flow direction in protein interaction networks based on interacting domains. Molecular and Cellular Proteomics, 8, 20632070.CrossRefGoogle ScholarPubMed
Loewe, K., Grueschow, M., Stoppel, C.M., Kruse, R. & Borgelt, C. (2014). Fast construction of voxel-level functional connectivity graphs. BMC Neuroscience, 15, 78; doi:10.1186/1471-2202-15-78.CrossRefGoogle ScholarPubMed
Lomolino, M.V. (2006). Investigating causality of nestedness in insular communities: selective immigrations or extinctions. Journal of Biogeography, 23, 699703.CrossRefGoogle Scholar
Loreau, M. (2010). From Populations to Ecosystems. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Lorenz, K. (1991). Here Am I – Where Are You? New York: Harcourt.Google Scholar
Lovász, L. (1993). Random walks on graphs: a survey. In Combinatorics: Paul Erdös Is Eighty, pp. 146 Bolyai Mathematical Studies, vol. 2. Budapest: Keszthely.Google Scholar
Lugo-Martinez, J. & Radivojac, P. (2014). Generalized graphlet kernels for probabilistic inference in sparse graphs. Network Science, 2, 254276.CrossRefGoogle Scholar
Lundberg, J. & Moberg, F. (2003). Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems, 6, 8798.CrossRefGoogle Scholar
Lundgren, J.R. & Maybee, J.S. (1984). Food webs with interval competition graphs. In Graphs and Applications: Proceedings of the First Colorado Symposium on Graph Theory, pp. 231244. New York: John Wiley.Google Scholar
Luque, S., Saura, S. & Fortin, M.-J. (2012). Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data. Landscape Ecology, 27, 153157.CrossRefGoogle Scholar
Maiya, A.S. (2011). Sampling and Inference in Complex Networks. PhD thesis, Department of Computer Science, University of Illinois at Chicago.Google Scholar
Malliaros, F.D. & Vazirgiannis, M. (2013). Clustering and community detection in directed networks: a survey. Physics Reports, 533, 95142; arXiv:1308.0971v1 [cs.SI].CrossRefGoogle Scholar
Manly, B.F.J. (2006). Randomization, Bootstrap, and Monte Carlo Methods in Biology. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Mantzaris, A.V. & Higham, D.J. (2013). Dynamic communicability predicts infectiousness. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 283294. Berlin: Springer.CrossRefGoogle Scholar
Marsh, M.K., McLeod, S.R., Hutchings, M.R. & White, P.C.L. (2011). Use of proximity loggers and network analysis to quantify social interactions in free-ranging wild rabbit populations. Wildlife Research, 38, 112.CrossRefGoogle Scholar
Marsten, R. (2014). Is graph theory key to understanding big data? Wired, March.Google Scholar
Martinez, N.D. (1991). Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs, 61, 367392.CrossRefGoogle Scholar
Martinez, N.D. (1992). Constant connectance in community foodwebs. American Naturalist, 139, 12081218.CrossRefGoogle Scholar
Mason, O. & Verwoerd, M. (2007). Graph theory and networks in biology. IET Systems Biology, 1, 89119.CrossRefGoogle ScholarPubMed
May, R.M. (2006). Network structure and the biology of populations. Trends in Ecology and Evolution, 21. doi:10.1016/tree.2006.03.013.CrossRefGoogle ScholarPubMed
Maynard-Smith, J. (1982). Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McCann, K. (2009). The structure and stability of food webs. In Levin, S.A. (ed.), The Princeton Guide to Ecology, pp. 305311. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
McCann, K. (2012). Food Webs. Princeton, NJ: Princeton University Press.Google Scholar
McIntire, E.J.B. & Fajardo, A. (2009). Beyond description: the active and effective way to infer processes from spatial patterns. Ecology, 90, 4656.CrossRefGoogle ScholarPubMed
McQuaid, C.F. & Britton, N.F. (2013). Network dynamics contribute to structure: nestedness in mutualistic networks. Bulletin of Mathematical Biology, 75, 23722388.CrossRefGoogle ScholarPubMed
McRae, B.H. & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 10, 1988519890.CrossRefGoogle Scholar
McRae, B.H., Dickson, B.G., Keitt, T.H. & Shah, V.B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89, 27122724.CrossRefGoogle ScholarPubMed
Medan, D., Perazzo, R.P.J., Devoto, M., Burgos, E., Zimmermann, M.G., Ceva, H. & Delbue, A.M. (2007). Analysis and assembling of network structure in mutualistic systems. Journal of Theoretical Biology, 246, 510521.CrossRefGoogle ScholarPubMed
Melián, C.J. & Bascompte, J. (2004). Food web cohesion. Ecology, 85, 352358.CrossRefGoogle Scholar
Melián, C.J., Bascompte, J., Jordano, P. & Křivan, V. (2009). Diversity in a complex ecological network with two interaction types. Oikos, 118, 122130.CrossRefGoogle Scholar
Menge, B.A. (1995). Indirect effects in a marine rocky intertidal interaction webs: patterns and importance. Ecological Monographs, 65, 2174.CrossRefGoogle Scholar
Meyers, L.A. (2006). Predicting epidemics on directed contact networks. Journal of Theoretical Biology, 240, 400418.CrossRefGoogle ScholarPubMed
Meyers, L.A. (2007). Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bulletin of the American Mathematical Society, 44, 6386.CrossRefGoogle Scholar
Miele, V., Picard, F. & Dray, S. (2014). Spatially constrained clustering of ecological networks. Methods in Ecology and Evolution, 5, 771779.CrossRefGoogle Scholar
Mihail, J.D. & Bruhn, J.N. (2005). Foraging behavior of Armillaria rhizomorph systems. Mycological Research, 109, 11951207.CrossRefGoogle ScholarPubMed
Milenkovic, T. (2008). Graph-Theoretical Approaches for Studying Biological Networks. PhD thesis, Department of Computer Science, University of California, Irvine.Google Scholar
Milenkovic, T. & Pržulj, N. (2008). Uncovering biological network function via graphlet degree signatures. Cancer Informatics, 6, 257273.CrossRefGoogle ScholarPubMed
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824827.CrossRefGoogle ScholarPubMed
Min, B. & Goh, K.I. (2013). Burstiness: measures, models, and dynamic consequences. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 4164. Berlin: Springer.CrossRefGoogle Scholar
Minor, E.S. & Urban, D.L. (2007). Graph theory as a proxy for spatially explicit population models in conservation planning. Ecological Applications, 17, 17711782.CrossRefGoogle ScholarPubMed
Minor, E.S. & Urban, D.L. (2008). A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology, 22, 297307.CrossRefGoogle ScholarPubMed
Mitchell, R.J. (1992). Testing evolutionary and ecological hypotheses using path analysis and structural equation modelling. Functional Ecology, 6, 123129.CrossRefGoogle Scholar
Mladenoff, D. (1999). Spatial Modeling of Forest Landscape Change. Cambridge: Cambridge University Press.Google Scholar
Mnih, V., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529533; doi:10.1038/nature14236.CrossRefGoogle ScholarPubMed
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglu, I., Wierstra, D. & Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. ArXiv 1312.5602.Google Scholar
Moilanen, A. (2011). On the limitations of graph-theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 48, 15431547; doi:10.1111/j.1365-2664.2011.02062.x.CrossRefGoogle Scholar
Montoya, J.M., Pimm, S.L. & Solé, R.V. (2006). Ecological networks and their fragility. Nature, 442, 259264.CrossRefGoogle ScholarPubMed
Moody, J. (2008). Static Representations of Dynamic Networks. Durham, NC: Duke Population Research Institute.Google Scholar
Moon, J.W. (1968). Topics on Tournaments. New York: Holt, Rinehart, Winston.Google Scholar
Morin, P.J. & Lawler, S.P. (1996). Effects of food chain length and omnivory on population dynamics in experimental food webs. In Polis, G. & Winemuller, K.O. (eds), Food Webs: Integration of Patterns and Dynamics, pp. 122133. New York: Chapman & Hall.Google Scholar
Morris, R.J., Gripenberg, S., Lewis, O.T. & Roslin, T. (2014). Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 17, 340349.CrossRefGoogle ScholarPubMed
Mortelliti, A., Westgate, M., Stein, J., Wood, J., & Lindenmayer, D.B. (2015). Ecological and spatial drivers of population synchrony in bird assemblages. Basic & Applied Ecology, 16, 269278.CrossRefGoogle Scholar
Moschitti, A. (2006). Making tree kernels practical for natural language processing. Paper presented at the Conference of the European Chapter of the Association for Computational Linguistics, Trento, Italy.Google Scholar
Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89, 20432051.CrossRefGoogle ScholarPubMed
Mouquet, N. & Loreau, M. (2002). Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist, 159, 420426.CrossRefGoogle ScholarPubMed
Mouritsen, K.N., Poulin, R., McLaughlin, J.P. & Thieltges, D.W. (2011). Food web including metazoan parasites for an intertidal ecosystem in New Zealand. Ecology Archives, 92, 92173; doi:10.1890/11-0371.1.Google Scholar
Mucha, H.-J., Bartel, H.-G. & Dolata, J. (2005). Techniques of rearrangements in binary trees (dendrograms) and applications. MATCH (Communications in Mathematical and Computer Chemistry), 54, 561582.Google Scholar
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A. & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328, 876878; doi:10.1126/science.1184819.CrossRefGoogle ScholarPubMed
Murphy, M.A., Dezzani, R.D.S., Pilliod, D.S. & Storfer, A. (2010). Landscape genetics of high mountain frog metapopulations. Molecular Ecology, 19, 36343649.CrossRefGoogle ScholarPubMed
Murtagh, F. (1984). Counting dendrograms: a survey. Discrete Applied Mathematics, 17, 191199.CrossRefGoogle Scholar
Nacher, J.C., Ueda, N., Yamada, T., Kanehisa, M. & Akutsu, T. (2004). Clustering under the line graph transformation: application to reaction network. BioMed Central Bioinformatics, 5, 207; doi:10.1186/1471-2105-5-207.Google ScholarPubMed
Naujokaitis-Lewis, I.R., Rico, Y., Lovell, J., Fortin, M.-J. & Murphy, M.A. (2013). Implications of incomplete networks on estimation of landscape genetic connectivity. Conservation Genetics, 14, 287298.CrossRefGoogle Scholar
Neutel, A.M., Heesterneek, J.A.P. & de Ruiter, P.C. (2002). Stability in real food webs: weak links in long loops. Science, 296, 11201123.CrossRefGoogle ScholarPubMed
Newman, M.E.J. (2002). Assortative mixing in networks. Physics Review Letters, 89, 208701.CrossRefGoogle ScholarPubMed
Newman, M.E.J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103, 85778582.CrossRefGoogle ScholarPubMed
Newman, M.E.J. (2010). Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Newman, M.E.J., Barabási, A.-L. & Watts, D., eds (2006). The Structure and Dynamics of Networks. Princeton, NJ: Princeton University Press.Google Scholar
Newman, M.E.J. & Girvan, M. (2004). Finding and evaluating community structure in networks. Physics Review E, 69, 026113; arXiv: cond-mat/0308217v1.CrossRefGoogle ScholarPubMed
Newman, M.E.J. & Park, J. (2003). Why social networks are different from other types of networks. Physics Review E, 68, 036122; arXiv:cond-mat/0305612v1.CrossRefGoogle ScholarPubMed
Newman, M.E., Watts, D.J. & Strogatz, S.H. (2002). Random graph models of social networks. PNAS, 99, 25662572.CrossRefGoogle ScholarPubMed
Nguyen-Phuc, B.T. & Dale, M.R.T. (2014). Sub-graphs in competitive hierarchies. Unpublished discussion manuscript, University of Alberta.Google Scholar
Nicosia, V., Tang, J., Mascolo, C., Musolesi, M. & Latora, V. (2013). Graph metrics for temporal networks. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 1540. Berlin: Springer.CrossRefGoogle Scholar
Nicosia, V., Tang, J., Musolesi, M., Mascolo, C., Russo, G. & Latora, V. (2012). Components in time-varying graphs. Chaos, 22, 023101; arXiv: 1106.2134v3.CrossRefGoogle ScholarPubMed
O'Brien, D., Manseau, M., Fall, A. & Fortin, M.-J. (2006). Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biological Conservation, 130, 7083.CrossRefGoogle Scholar
Oh, S.J., Joung, J.-G., Chang, J.-H. & Zhang, B.-T. (2006). Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks. BioMed Central Bioinformatics. doi:10.1186/1471-2105-7-284.CrossRefGoogle Scholar
Ohgushi, T. (2008). Herbivore-induced indirect interaction webs in terrestrial plants: the importance of non-trophic, indirect and facilitative interactions. Entomologia Experimentalis et Applicata, 128, 217229.CrossRefGoogle Scholar
Okabe, A., Boots, B., Sugihara, K. & Chiu, S.N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2nd ed. Chichester: Wiley.CrossRefGoogle Scholar
Okabe, A. & Sugihara, K. (2012). Spatial Analysis along Networks. New York: John Wiley.CrossRefGoogle Scholar
Okey, T.A. & Pauly, D. (1999). Trophic mass-balance model of Alaska's Prince William Sound ecosystem, for the post-spill period 1994–1996. University of British Columbia, Vancouver.Google Scholar
Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. & Jordano, P. (2011b). Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society, Series B, 278, 725732.Google ScholarPubMed
Olesen, J.M., Bascompte, J., Elberling, H. & Jordano, P. (2008). Temporal dynamics in a pollination network. Ecology, 89, 15731582.CrossRefGoogle Scholar
Olesen, J.M., Stefanescu, C. & Traveset, A. (2011a). Strong long-term temporal dynamics of an ecological network. PLoS ONE, 11, e26455.CrossRefGoogle Scholar
Openshaw, S. (1984). The Modifiable Area Unit Problem. Norwich: Geo Books.Google Scholar
Osborne, J.L., Clark, S.J., Morris, R.J., Williams, I.H., Riley, J.R., Smith, A.D., Reynolds, D.R. & Edwards, A.S. (1999). A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology, 36, 519533.CrossRefGoogle Scholar
Paine, R.T. (1969). A note on trophic complexity and community stability. The American Naturalist, 103, 9193; doi:10.1086/282586.CrossRefGoogle Scholar
Paine, R.T. (1980). Food webs: linkage, interaction strength, and community infrastructure. Journal of Animal Ecology, 49, 667685.CrossRefGoogle Scholar
Palka, Z. (1981). On pendant vertices in random graphs. Colloquium Mathematicum, 45, 159167.CrossRefGoogle Scholar
Panisson, A., Gauvin, L., Barrat, A. & Cattuto, C. (2012). Fingerprinting temporal networks of close-range human proximity. www.sociopatterns.org.Google Scholar
Pascual, M. & Dunne, J.A. (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. New York: Oxford University Press.Google Scholar
Pascual-Hortal, L. & Saura, S. (2006). Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landscape Ecology, 21, 959967.CrossRefGoogle Scholar
Paulau, P.V., Feenders, C. & Blasius, B. (2015). Motif analysis in directed ordered networks and applications to food webs. Scientific Reports, 5, 11926; doi:10.1038/srep11926.CrossRefGoogle Scholar
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 2nd ed. San Mateo, CA: Morgan Kaufman.Google Scholar
Pearl, J. (2009). Causality: Models, Reasoning and Inference. 2nd ed. Cambridge. Cambridge University Press.CrossRefGoogle Scholar
Penny, D. & Hendy, M.D. (1985). The use of tree comparison metrics. Systematic Zoology, 34, 7582.CrossRefGoogle Scholar
Perkins, S.A., Cagnacci, F., Stradiotto, A., Arnoldi, D. & Hudson, P.J. (2009). Comparison of social networks derived from ecological data: implications of inferring infectious disease dynamics. Journal of Animal Ecology, 78, 10151022.CrossRefGoogle ScholarPubMed
Permogorskiy, M.S. (2015). Competitive intransitivity among species in biotic communities. Biology Bulletin Reviews, 3, 226233.Google Scholar
Petanidou, T., Kallimanis, A.S., Tzanopoulos, J., Sgardelis, S.P. & Pantis, J.D. (2008). Long-term observation of a pollinator network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecological Letters, 11, 564575.CrossRefGoogle ScholarPubMed
Petchey, O.L. & Gaston, K.J. (2002). Functional diversity (FD), species richness, and community composition. Ecology Letters, 5, 402411.CrossRefGoogle Scholar
Petchey, O.L. & Gaston, K.J. (2007). Dendrograms and measuring functional diversity. Oikos, 116, 14221426.CrossRefGoogle Scholar
Peterson, E.E., Ver Hoef, J.M., Isaak, D.J., Falke, J.A., Fortin, M.-J., Jordan, C., McNyset, K., et al. (2013). Modeling dendritic ecological networks in space: an integrated network perspective. Ecology Letters, 16, 707719.CrossRefGoogle ScholarPubMed
Peterson, G.D. (2002). Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems, 5, 329338.CrossRefGoogle Scholar
Peterson, G.J., Pressé, S., Peterson, K.S. & Dill, K.A. (2012). Simulated evolution of protein-protein interaction networks with realistic topology. PLoS ONE, 7, e39052; doi:100.1371/journal.pone.0039052.CrossRefGoogle ScholarPubMed
Petraitis, P.S. (1979). Competitive networks and measures of intransitivity. American Naturalist, 114, 921925.CrossRefGoogle Scholar
Peyrard, N., Pellegrin, F., Chadoeuf, J. & Nandris, D. (2006). Statistical analysis of the spatio-temporal dynamics of rubber tree (Hevea brasiliensis) trunk phloem necrosis: no evidence of pathogen transmission. Forest Pathology, 36, 360371.CrossRefGoogle Scholar
Phillips, J.D. (2011). The structure of ecological state transitions: amplification, synchronization, and constraints in responses to environmental change. Ecological Complexity, 8, 336346.CrossRefGoogle Scholar
Phillips, S.J., Williams, P., Midgley, G. & Archer, A. (2008). Optimizing dispersal corridors for the Cape Proteaceae using network flow. Ecological Applications, 18, 12001211.CrossRefGoogle ScholarPubMed
Pielou, E.C. (1977). Mathematical Ecology. New York: John Wiley.Google Scholar
Pillai, P., Loreau, M. & Gonzalez, A. (2009). A patch-dynamic framework for food web metacommunities. Theoretical Ecology, 3 doi:10.1007/sl2080-009-0065-1.Google Scholar
Pilosof, S., Fortuna, M.A., Vinarski, M.V., Korallo-Vinarskaya, N.P. & Krasnov, B.R. (2013). Temporal dynamics of direct reciprocal and indirect effects in a host-parasite network. Journal of Animal Ecology, 82, 987996.CrossRefGoogle Scholar
Pinkerton, M.H. & Bradford-Grieve, J.M. (2014). Characterizing foodweb structure to identify potential ecosystem effects of fishing in the Ross Sea, Antarctica. ICES Journal of Marine Science, 71 doi:10.1093/icejms/fst230.CrossRefGoogle Scholar
Pinto, N. & Keitt, T.H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24, 253266.CrossRefGoogle Scholar
Piraveenan, M., Prokopenko, M. & Zomaya, A.Y. (2008). Local assortativeness in scale-free networks. Europhysics Letters, 84, 28002.CrossRefGoogle Scholar
Piraveenan, M., Prokopenko, M. & Zomaya, A.Y. (2012). Assortative mixing in directed biological networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9. doi:101109/TCBB.2010.80.CrossRefGoogle ScholarPubMed
Plavšić, D., Nikolić, S., Trinajstić, N. & Mihalić, Z. (1993). On the Harary Index for the characterization of chemical graphs. Journal of Mathematical Chemistry, 12, 235250.CrossRefGoogle Scholar
Podani, J. & Dickinson, T.A. (1984). Comparison of dendrograms: a multivariate approach. Canadian Journal of Botany, 62, 27652778.CrossRefGoogle Scholar
Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. (2012). The dissimilarity of species interaction networks. Ecology Letters, 15, 13531361.CrossRefGoogle ScholarPubMed
Poisot, T. & Gravel, D. (2014). When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ, 2, e251; doi 10.7717/peerj.251.CrossRefGoogle Scholar
Poisot, T., Stanko, M., Miklisova, D. & Morand, S. (2013). Facultative and obligate parasite communities exhibit different network properties. Parasitology, 140 doi:10.1017/S003118201300851.CrossRefGoogle ScholarPubMed
Poisot, T., Stouffer, D.B. & Gravel, D. (2015). Beyond species: why ecological interaction networks vary through space and time. Oikos, 124, 243251.CrossRefGoogle Scholar
Polis, G.A. & Winemiller, K.O., eds (1996). Food Webs: Integration of Patterns and Dynamics. New York: Chapman & Hall.CrossRefGoogle Scholar
Poon, A.F.Y. (2015). Phylodynamic inference with kernel ABC and its application to HIV epidemiology. Molecular Biology and Evolution, 32 doi:10.1093/molbev/msv123.CrossRefGoogle ScholarPubMed
Poon, A.F.Y., Walker, L.W., Murray, H., McCloskey, R.M., Harrihan, P.R. & Liang, R.H. (2013). Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS ONE, 8, e78122; doi:10.1371/journal.pone.0078122.CrossRefGoogle ScholarPubMed
Poos, M., Walker, S.C. & Jackson, D.A. (2009). Functional diversity indices can be driven by methodological choices and species richness. Ecology, 90, 341347.CrossRefGoogle ScholarPubMed
Porphyre, T., Stevenson, M., Jackson, R. & McKenzie, J. (2008). Influence of contact heterogeneity on TB reproduction ratio Ro in a free-living brushtail possum Trchosurus vulpecula population. Veterinary Research, 39, 31.CrossRefGoogle Scholar
Poulin, R. (2010). Network analysis shining light on parasite ecology and diversity. Trends in Parasitology, 26, 492498.CrossRefGoogle ScholarPubMed
Poulin, R. & Guégan, J.-F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasites assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology, 30, 11471152.CrossRefGoogle Scholar
Prado, P.I. & Lewinsohn, T.M. (2004). Compartments in insect-plant associations and their consequences for community structure. Journal of Animal Ecology, 73, 11681178.CrossRefGoogle Scholar
Proulx, S.R., Promislow, D.E.L. & Phillip, P.C. (2005). Network thinking in ecology and evolution. Trends in Ecology and Evolution, 20, 345352.CrossRefGoogle ScholarPubMed
Pržulj, K., Wigle, D.A. & Jurisica, I. (2004). Functional topology in a network of protein interactions. Bioinformatics, 20, 340348.CrossRefGoogle Scholar
Pržulj, N. (2005). Analyzing Large Biological Networks: Protein-Protein Interactions Example. PhD thesis, Graduate Department of Computer Science, University of Toronto.Google Scholar
Pržulj, N. (2007). Biological network comparison using graphlet degree distribution. Bioinformatics, 23, e177e183.CrossRefGoogle ScholarPubMed
Pržulj, N. (2010). Protein-protein interactions: making sense of networks via graph-theoretic modelling. Bioessays, 33 doi:10.1002/bies.201000044.Google Scholar
Purchase, H.C. (2002). Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing, 13, 501516.CrossRefGoogle Scholar
Raman, K. (2010). Construction and analysis of protein-protein interaction networks. Automated Experimentation, 2, 2; doi:10.1186/1759-4499-2-2.CrossRefGoogle ScholarPubMed
Raschke, M., Schläpfer, M. & Nibali, R. (2010). Measuring degree-degree association in networks. Physics Review E, 82, 037102.CrossRefGoogle ScholarPubMed
Rayfield, B., Fortin, M.-J., & Fall, A. (2011). Connectivity for conservation: a framework to classify network measures. Ecology, 92, 847858.CrossRefGoogle ScholarPubMed
Raymond, B. & Hosie, G. (2009). Network-based exploration and visualization of ecological data. Ecological Modelling, 220, 673683.CrossRefGoogle Scholar
Restrepo, G., Mesa, H. & Llanos, E.J. (2007). Three dissimilarity measures to contrast dendrograms. Journal of Chemical Informatics & Modeling, 47, 761770.CrossRefGoogle ScholarPubMed
Rezende, E.L., Albert, E.M., Fortuna, M.A. & Bascompte, J. (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecological Letters, 12, 779788.CrossRefGoogle Scholar
Richters, O. & Peixoto, T.P. (2011). Trust transitivity in social networks. PLoS ONE, 6, e18384; doi:10.1371/journal.pone.0018384.CrossRefGoogle ScholarPubMed
Ricotta, C., Stanisci, A., Avena, G. & Blasi, C. (2000). Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecology, 1, 8994.CrossRefGoogle Scholar
Robinson, V.B. (2009). Fuzzy sets in spatial analysis. In Fotheringham, A.S. & Rogerson, P.A. (eds), The Sage Handbook of Spatial Analysis, pp. 225241. London: Sage.CrossRefGoogle Scholar
Roxburgh, S.H. & Wilson, J.B. (2000). Stability and coexistence in a lawn community: mathematical prediction of stability using a community matrix with parameters derived from competition experiments. Oikos, 88, 395408.CrossRefGoogle Scholar
Rozdilsky, I.D., Stone, L. & Solow, A. (2004). The effects of interaction compartments on stability for competitive systems. Journal of Theoretical Biology, 227, 277282.CrossRefGoogle ScholarPubMed
Rozenfeld, A.F., Arnaud-Haond, S., Hernandez-Garcia, E., Eguiluz, V.M., Serrao, E.A. & Duarte, C.M. (2008). Network analysis identifies weak and strong links in a metapopulation system. Proceedings of the National Academy of Sciences, 105, 1882418829.CrossRefGoogle Scholar
Rubinov, M. & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52, 10591069.CrossRefGoogle ScholarPubMed
Rubio, L., Bodin, O., Brotons, L. & Saura, S. (2015). Connectivity conservation priorities for individual patches evaluated in the present landscape: how durable and effective are they in the long term? Ecography, 38, 782791.CrossRefGoogle Scholar
Ryder, T.B., Horton, B.M., van der Tillaart, M., Morales, J.D.D. & Moore, I.T. (2012). Proximity data-loggers increase the quantity and quality of social network data. Biology Letters, 8 doi:10.1098/rsbl.2012.0536.CrossRefGoogle ScholarPubMed
Sakr, S. (2013). Processing large-scale graph data: a guide to current technology. IBM developerWorks, /library/os-giraph/.Google Scholar
Salathé, M. & Jones, J.H. (2010). Dynamics and control of diseases in networks with community structure. PLoS Computational Biology, 6, e1000736; doi:10.1371/journal.pcbi.1000736.CrossRefGoogle ScholarPubMed
Sanfeliu, A. & Fu, K.-S. (1983). A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, 13, 353363; doi:10.1109/TSMC.1983.6313167.CrossRefGoogle Scholar
Santos, E. & Young, J.D. (1999). Probabilistic temporal networks: a unified framework for reasoning with time and uncertainty. International Journal of Approximate Reasoning, 20, 263291.CrossRefGoogle Scholar
Sarajlić, A., Malod-Dognin, N., Yaveroglu, O.N. & Pržulj, N. (2016). Graphlet-based characterization of directed networks. Scientific Reports, 6, 35098; doi:10.1038/srep35098.CrossRefGoogle ScholarPubMed
Särkkä, A. & Renshaw, E. (2006). The analysis of marked point patterns evolving through space and time. Computational Statistics and Data Analysis, 51, 16981718.CrossRefGoogle Scholar
Satniczenko, P.P.A., Kopp, J.C. & Allesina, S. (2012). The ghost of nestedness in ecological networks. Nature Communications, 4 doi:10.1038/ncomms2422.Google Scholar
Saura, S., Bodin, Ö. & Fortin, M.-J. (2014). Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 51, 171182.CrossRefGoogle Scholar
Savolainen, R. & Vepsäläinen, K. (1988). A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos, 51, 135155.CrossRefGoogle Scholar
Schick, R.S. & Lindley, S.T. (2007). Directed connectivity among fish populations in a riverine network. Journal of Applied Ecology, 44, 11161126.CrossRefGoogle Scholar
Schjelderup-Ebbe, T. (1975). Contributions to the social psychology of the domestic chicken. In Schein, M.W. (ed.), Schleidt, M. and Schleidt, W.M. (trans.), Social Hierarchy and Dominance. Benchmark Papers in Animal Behavior, vol. 3, pp. 3549. Stroudsburg, PA: Dowden, Hutchinson and Ross. (Reprinted from Zeitschrift für Psychologie, 1922, 88, 225–252.)Google Scholar
Schoenly, K. & Cohen, J.E. (1991). Temporal variation in food web structure: 16 empirical cases. Ecological Monographs, 61, 267298.CrossRefGoogle Scholar
Schölkopf, B., Tsuda, K. & Vert, J.-P. (2004). Kernel Methods on Computational Biology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Schreiber, S.J. & Killingback, T.P. (2013). Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities. Theoretical Population Biology, 86, 111.CrossRefGoogle Scholar
Scrosati, R.A. & Heaven, C.S. (2007). Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in Eastern Canada. Marine Ecology Progress Series, 342, 114.CrossRefGoogle Scholar
Shawe-Taylor, J. & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K. & Borgwardt, K.M. (2011). Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12, 25392561.Google Scholar
Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K. & Borgwardt, K. (2009). Efficient graphlet kernels for large graph comparison. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) 2009, pp. 488495. Clearwater Beach, USA: Society for Artificial Intelligence and StatisticsGoogle Scholar
Shipley, B. (1993). A null model for competitive hierarchies in competition matrices. Ecology, 74, 16931699.CrossRefGoogle Scholar
Shipley, B. (2000). Cause and Correlation in Biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90, 363368.CrossRefGoogle Scholar
Shipley, B. & Keddy, P.A. (1994). Evaluating evidence for competitive hierarchies in plant communities. Oikos, 69, 340345.CrossRefGoogle Scholar
Shirley, M.D.F. & Rushton, S.P. (2005). The impacts of network topology on disease spread. Ecological Complexity, 2, 287299.CrossRefGoogle Scholar
Shizuki, D. & McDonald, D.B. (2012). A social network perspective on measurements of dominance hierarchies. Faculty Publications in the Biological Sciences, University of Nebraska. http://digitalcommons.unl.edu/bioscifacpub/234.Google Scholar
Siegel, A.F. & Sugihara, G. (1983). Moments of particle size distributions under sequential breakage with applications to species abundance. Journal of Applied Probability, 20, 1516-Aug 4.CrossRefGoogle Scholar
Silvertown, J. & Wilson, J.B. (2000). Spatial interactions among grassland plant populations. In Dieckmann, U., Law, R. & Metz, J.A.J. (eds), The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pp. 2847. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J. & Teste, F.P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 3960.CrossRefGoogle Scholar
Smith, D. (2000). The population dynamics and community ecology of root hemiparasitic plants. American Naturalist, 155, 1323.CrossRefGoogle ScholarPubMed
Snow, R., Snow, M. & Kufa, N. (2007). GIS analysis of lightning strikes within a tornadic environment. In Proceedings of the 3rd IASME/WSEAS International Conference, Agios, Greece, pp. 466471. WEAS PressGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1962). The comparison of dendrograms by objective methods. Taxon, 11, 3340.CrossRefGoogle Scholar
Solé, R.V. & Montoya, J.M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society London, Series B, 268, 20392045.CrossRefGoogle ScholarPubMed
Soliveres, S., et al. (2015). Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 18, 790798; doi:10.1111/ele.12456.CrossRefGoogle Scholar
Sotomayor, D.A. & Lortie, C.J. (2015). Indirect interactions in terrestrial plant communities: emerging patterns and research gaps. Ecosphere, 6, 103; doi:10.1890/ES14-00117.1.CrossRefGoogle Scholar
Soula, S. & Chauzy, S. (2001). Some aspects of the correlation between lightning and rain activity in thunderstorms. Atmospheric Research, 56, 355373.CrossRefGoogle Scholar
Southworth, D., He, X.-H., Swenson, W., Bledsoe, C.S. & Horwath, W.R. (2005). Application of network theory to potential mycorrhizal networks. Mycorrhiza, 15, 589595.CrossRefGoogle ScholarPubMed
Spiesman, B.J. & Inouye, B.D. (2013). Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology, 94, 26882696.CrossRefGoogle ScholarPubMed
Sporns, O., Honey, C.J. & Kötter, R. (2007). Identification and classification of hubs in brain networks. PLoS ONE, 2 (10), e1049; doi:01.1371/journal.pone.0001049.CrossRefGoogle ScholarPubMed
Sporns, O. & Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2. doi:10.1371/journal.pbio.0020369.CrossRefGoogle ScholarPubMed
Staniczenko, P.P.A., Kopp, J.C. & Allesina, S. (2012). The ghost of nestedness in ecological networks. Nature Communications, 4, 1391; doi:10.1038/ncomms2422.CrossRefGoogle Scholar
Starling, F.L. do R.M. 2000. Comparative study of the zooplankton composition of six lacustrine ecosystems in central Brazil during the dry season. Review of Brasilian Biology, 60, 101111.CrossRefGoogle ScholarPubMed
Stouffer, D.B. & Bascompte, J. (2010). Understanding food-web persistence from local to global scales. Ecology Letters, 13, 154161.CrossRefGoogle ScholarPubMed
Stouffer, D.B. & Bascompte, J. (2011). Compartmentalization increases food web persistence. Proceedings of the National Academy of Sciences, 108, 36483652.CrossRefGoogle ScholarPubMed
Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food web intervality. Proceedings of the National Academy of Sciences, 103, 1901519020.CrossRefGoogle ScholarPubMed
Stouffer, D.B., Camacho, J., Jiang, W. & Amaral, L.A.N. (2007). Evidence for the existence of a robust pattern of prey selection in food webs. Proceedings of the Royal Society, 274, 19311940.Google ScholarPubMed
Stoyan, D., Kendall, W.S. & Mecke, J. (1995). Stochastic Geometry and Its Applications. 2nd ed. Chichester: Wiley.Google Scholar
Strauss, R.E. (1982). Statistical significance of species clusters in association analysis. Ecology, 63, 634639.CrossRefGoogle Scholar
Strickland, C., Dangelmayr, G., Shipman, P.D., Kumar, S. & Stohlgren, T.J. (2015). Network spread of invasive species and infectious diseases. Ecological Modelling, 309–310, 19.CrossRefGoogle Scholar
Strimmer, K. & Moulton, V. (2000). Likelihood analysis of phylogenetic networks using directed graphical models. Molecular Biology & Evolution, 17, 875881.CrossRefGoogle ScholarPubMed
Sugihara, G. (1980). Minimal community structure: an explanation of species abundance patterns. American Naturalist, 116, 770787.CrossRefGoogle ScholarPubMed
Sugihara, G. (1982). Niche Hierarchy: Structure, Organization, and Assembly in Natural Communities. PhD dissertation, Princeton University.Google Scholar
Sugihara, G. (1984). Graph theory, homology and food webs. In Levin, S.A. (ed.), Population Biology: Proceedings of Symposia in Applied Mathematics, pp. 83101. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Sugihara, G., Bersier, L.-F., Southwood, T.R.E., Pimm, S.L. & May, R.M. (2003). Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences, 100, 52465251.CrossRefGoogle ScholarPubMed
Sun, J., Zhang, M. & Tan, C.-L. (2011). Tree sequence kernel for natural language. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp. 921926. Menlo Park, USA: AAAI PressGoogle Scholar
Suweis, S., Simini, F., Banavar, J.R. & Maritan, A. (2013). Emergence of structural and dynamical properties of ecological mutualistic networks. Nature, 500, 449452.CrossRefGoogle ScholarPubMed
Takahashi, K., Kulldorff, M., Tango, T. & Yih, K. (2008). A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. International Journal of Health Geographics, 7, 14; doi:10.1186/1476-072X-7-14.CrossRefGoogle Scholar
Tang, J., Leontiadis, I., Scellato, S., Nicosia, V., Mascolo, C., Musolesi, M. & Latora, V. (2013). Applications of temporal graph metrics to real-world networks. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 135159. Berlin: Springer.CrossRefGoogle Scholar
Tang, J., Musolesi, M., Mascolo, C. & Latora, V. (2009). Temporal distance metrics for social network analysis. Paper presented at the 2nd SIGCOMM Workshop on Online Social Networks, Barcelona.CrossRefGoogle Scholar
Tango, T. (2010). Statistical Methods for Disease Clustering. New York: Springer.CrossRefGoogle Scholar
Tanner, J.E., Hughes, T.P. & Connell, J.H. (1996). The role of history in community dynamics: a modeling approach. Ecology, 77, 108117.CrossRefGoogle Scholar
Teng, J. & McCann, K.S. (2004). Dynamics of compartmented and reticulate food webs in relation to energetic flows. American Naturalist, 164, 85100.CrossRefGoogle ScholarPubMed
Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R. & Nakagi, T. (2010). Rules for biologically inspired adaptive network design. Science, 327, 439442.CrossRefGoogle ScholarPubMed
Thébault, E. & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853856; doi:10.1126/science.1188321.CrossRefGoogle ScholarPubMed
Thedchanamoorthy, G., Piraveenan, M., Kasthuriratne, D. & Senanayake, U. (2014). Node assortativity in complex networks: an alternative approach. Procedia Computer Science, 29, 24 Feb-49461; doi:10.1016/j.procs.2014.05.229.CrossRefGoogle Scholar
Theobald, D.M. (2006). Exploring the functional connectivity of landcapes using landscape networks. In Crooks, K.R. & Sanjayan, M. (eds), Connectivity Conservation, pp. 416444. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thibaud, R., Del Mondo, G., Garlan, T., Mascret, A. & Carpentier, C. (2013). A spatio-temporal graph model for marine dune dynamics analysis and representation. Transactions in GIS, 17, 742762.CrossRefGoogle Scholar
Thomas, A.G. & Dale, M.R.T. (1991). Weed communities in spring-seeded crops in Manitoba. Canadian Journal of Plant Science, 71, 10691080.CrossRefGoogle Scholar
Thompson, J.N. (2006). Mutualistic webs of species. Science, 312, 372373.CrossRefGoogle ScholarPubMed
Thompson, R.M., Hemberg, M., Starzomski, B.M. & Shurin, J.B. (2007). Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology, 88, 612617.CrossRefGoogle ScholarPubMed
Thornton, B.M., Knowlton, J.L. & Kuntz, W.A. (2015). Interspecific competition and social hierarchies in frugivorous birds of Costa Rica. Journal of Young Investigators, 29 (2), 15.Google Scholar
Toju, H., Guimaräes, P.R., Olesan, J.M. & Thompson, J.N. (2015). Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology. Science Advances, 1 doi:10.1126/sciadv.1500291.CrossRefGoogle Scholar
Tosa, M.I., Schauber, E.M. & Nielsen, C.K. (2013). Familiarity breeds contempt: combining proximity loggers and GPS reveals female white-tailed deer (Odocoileus virginianus) avoiding close contact with neighbours. Journal of Wildlife Diseases, 51, 7088.Google Scholar
Toussaint, G.T. (1980). The relative neighbourhood graph of a finite planar set. Pattern Recognition, 12, 261268.CrossRefGoogle Scholar
Treml, E.A., Halpin, P.N., Urban, D.L. & Pratson, L.F. (2008). Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecology, 23, 1936.CrossRefGoogle Scholar
Trpevski, I., Dimitrova, T., Boshkovski, T., Stikov, N. & Kocarev, L. (2016). Graphlet characteristics in directed networks. Scientific Reports, 6, 37057; doi:10.1038/srep37057.CrossRefGoogle ScholarPubMed
Tufte, E.R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.Google Scholar
Tutte, W.T. (1998). Graph Theory as I Have Known It. Oxford: Clarendon Press.Google Scholar
Ulanowicz, R.E. & Puccia, C.J. (1990). Mixed trophic impacts in ecosystems. Coenoses, 5, 716.Google Scholar
Ulrich, W. (2009). Ecological interaction networks: prospects and pitfalls. Ecological Questions, 11, 1725.CrossRefGoogle Scholar
Ulrich, W., Almeida-Neto, M. & Gotelli, N.J. (2009). A consumer's guide to nestedness analysis. Oikos, 118, 317.CrossRefGoogle Scholar
Ulrich, W., Soliveres, S., Kryszwski, W., Maestre, F.T. & Gotelli, N.J. (2014). Matrix models for quantifying competitive intransitivity from species abundance data. Oikos, 123, 10571070; doi:10.1111/oik.01217.CrossRefGoogle Scholar
Urban, D.L. & Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology, 82, 12051218.CrossRefGoogle Scholar
Urban, D.L., Minor, E.S., Treml, E.A. & Schick, R.S. (2009). Graph models of habitat mosaics. Ecology Letters, 12, 260273.CrossRefGoogle ScholarPubMed
Valls, A., Coll, M. & Christensen, V. (2015). Keystone species: toward an operational concept for marine biodiversity conservation. Ecological Monographs, 85, 2947.CrossRefGoogle Scholar
van Langevelde, F., van der Knaap, W.G.M. & Claassen, G.D.H. (1998). Comparing connectivity in landscape networks. Environment and Planning B: Planning and Design, 25, 849863.CrossRefGoogle Scholar
van Veen, F.J.F., Morris, R.J. & Godfray, H.C.J. (2006). Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annual Review of Entomology, 51, 187208.CrossRefGoogle ScholarPubMed
van Wijk, B.C.M., Stam, C.J. & Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE, 5 (10), e13701.CrossRefGoogle ScholarPubMed
Vázquez, A. (2013). Spreading dynamics following bursty activity patterns. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 161173. Berlin: Springer.CrossRefGoogle Scholar
Vázquez, A., Flammini, A., Maritan, A. & Vespignani, A. (2003). Global protein function prediction from protein-protein interaction networks. Nature Biotechnology, 21, 697700; doi:10/1038/nbt825.CrossRefGoogle ScholarPubMed
Vázquez, D.P., Chacoff, N.P. & Cagnolo, L. (2009). Evaluating multiple determinants of the structure of plant-animal mutualistic networks. Ecology, 90, 20392046.CrossRefGoogle ScholarPubMed
Vázquez, D.P., Morris, W.F. & Jordano, P. (2005a). Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 8, 10881094.CrossRefGoogle Scholar
Vázquez, D.P., Poulin, R., Krasnov, B.R. & Shenbrot, G.I. (2005b). Species abundance and the distribution of specialization in host-parasite interaction networks. Journal of Animal Ecology, 74, 946955.CrossRefGoogle Scholar
Vehrencamp, S.L. (1983). A model for the evolution of despotic versus egalitarian societies. Animal Behaviour, 31, 667682.CrossRefGoogle Scholar
Vepsäläinen, K. & Czechowski, W. (2014). Against the odds of the ant competition hierarchy: submissive Myrmica rugulosa block access of the dominant Lasius fuliginosus to its aphids. Insectes Sociaux, 61, 8993.CrossRefGoogle Scholar
Ver Hoef, J., Peterson, E. & Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics, 13, 449464.CrossRefGoogle Scholar
Vinayagam, A., Zirin, J., Roesel, C., Hu, Y., Yilmazel, B., Samsonova, A.A., Neumüller, R., Mohr, S.E. & Perrimon, N. (2014). Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nature Methods, 11, 9499; doi:10.1038/nmeth.2733.CrossRefGoogle ScholarPubMed
Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R. & Borgwardt, K.M. (2010). Graph kernels. Journal of Machine Learning Research, 11, 12011242.Google Scholar
Wagner, H.H. & Fortin, M.-J. (2013). A conceptual framework for the spatial analysis of landscape genetic data. Conservation Genetics, 14, 253261.CrossRefGoogle Scholar
Walker, R., Arima, E., Messina, J., Soares-Filho, B., Perz, S., Vergara, D., Sales, M., Pereira, R. & Castro, W. (2013). Modeling spatial decisions with graph theory: logging roads and forest fragmentation in the Brazilian Amazon. Ecological Applications, 23, 239254.CrossRefGoogle ScholarPubMed
Walker, S.C., Poos, M.S. & Jackson, D.A. (2008). Functional rarefaction: estimating functional diversity from field data. Oikos, 117, 286296.CrossRefGoogle Scholar
Wang, Y.-H., Yang, K.-C., Bridgman, C.L. & Lin, L.-K. (2008). Habitat suitability modeling to correlate gene flow with landscape connectivity. Landscape Ecology, 23, 9891000.Google Scholar
Wardle, G.M. (1998). A graph theory approach to demographic loop analysis. Ecology, 79, 25392549.CrossRefGoogle Scholar
Waser, N.M. & Ollerton, J. (2006). Plant-Pollinator Interactions. Chicago: University of Chicago Press.Google Scholar
Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Watts, A.G., Schlichting, P., Billerman, S., Jesmer, B., Micheletti, S., Fortin, M.-J., Funk, W.C., Hapeman, P., Muths, E. & Murphy, M.A. (2015). How spatio-temporal habitat connectivity affects amphibian genetic structure. Frontiers in Genetics, 6, Article 275.CrossRefGoogle ScholarPubMed
Watts, D.J. (1999). Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Watts, D.J. (2003). Six Degrees: The Science of a Connected Age. New York: W.W. Norton.Google Scholar
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donaghue, M.J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475505.CrossRefGoogle Scholar
Weigelt, A., Schumacher, J., Walther, T., Bartelheimer, M., Steinlein, T. & Beyschlag, W. (2007). Identifying mechanisms of competition in multi-species communities. Journal of Ecology, 95, 5364.CrossRefGoogle Scholar
West, D.B. (2001). Introduction to Graph Theory. 2nd ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Wey, T., Blumstein, D.T., Shen, W. & Jordán, F. (2008). Social network analysis of animal behavior: a promising tool for the study of sociality. Animal Behaviour, 75, 333344.CrossRefGoogle Scholar
Wilbur, H.M. (1997). Experimental ecology of foodwebs: complex systems in temporary ponds. Ecology, 78, 22792302.CrossRefGoogle Scholar
Williams, M.J. & Musolesi, M. (2016). Spatio-temporal networks: reachability, centrality and robustness. Royal Society Open Science, 3 doi:10.1098/rsos.160196.CrossRefGoogle ScholarPubMed
Williams, R.J. & Martinez, N.D. (2004). Limits to trophic levels and omnivory in complex food webs: theory and data. American Naturalist, 163, 458468.CrossRefGoogle ScholarPubMed
Williams, R.J., Berlow, E.L., Dunne, J.A. & Martinez, N.D. (2002). Two degrees of separation in complex food webs. Proceedings of the National Academy of Sciences, 99, 1291312916.CrossRefGoogle ScholarPubMed
Winemiller, K.O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs, 60, 331367.CrossRefGoogle Scholar
Winterbach, W., Van Mieghem, P., Reinders, M.J.T., Wang, H. & de Ridder, D. (2013). Local topological signatures for network-based prediction of biological function. In Pattern Recognition in Bioinformatics, Proceedings of the 8th IAPR conference, Nice 2013, pp. 2324. Berlin: Springer.Google Scholar
Wolfram, S. (2002). A New Kind of Science. Champagne: Wolfram Media.Google Scholar
Woodward, G., Ebenman, B., Emmeson, M., Montoya, J.M., Olesen, J., Valido, A. & Warren, P.H. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20. doi:10.116/j.tree.2005.04.05.CrossRefGoogle ScholarPubMed
Woodward, G., et al. (2010). Ecological networks in a changing climate. Advances in Ecological Research, 42, 72122; doi:10.1016/S0065-2504(10)42002-4.Google Scholar
Wu, H., Cheng, J., Huang, S., Ke, Y. & Xu, Y. (2014). Path problems in temporal graphs. Proceedings of the VLDB Endowment, 7, 721729.CrossRefGoogle Scholar
Yaveroglu, O.N., Fitzhugh, S.M., Kurant, M., Markopoulou, A., Butts, C.T. & Pržulj, N. (2015). ergm.graphlets: a package for ERG modeling based on graphlet statistics. Journal of Statistical Software, 65 (12), 129CrossRefGoogle Scholar
Yaveroglu, O.N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A. & Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific Reports, 4, 4547; doi:10.1038/srep04547 (2014).CrossRefGoogle ScholarPubMed
Yazdani, A. & Jeffrey, P. (2010). A complex network approach to robustness and vulnerability of spatially organized distribution networks. arXiv:1008.1770v2.Google Scholar
Yu, D., Liu, Y., Xun, B. & Shao, H. (2013). Measuring landscape connectivity in an urban area for biological conservation. Clean – Soil, Air, Water, 41, 19.Google Scholar
Yugandhar, K. & Gromiha, M.M. (2016). Analysis of protein-protein interaction networks based on binding affinity. Current Protein and Peptide Science, 17, 7281.CrossRefGoogle ScholarPubMed
Zhao, K., Karsai, M. & Bianconi, G. (2013a). Models, entropy and information of temporal social networks. In Holme, P. & Saramäki, J. (eds), Temporal Networks, pp. 95117. Berlin: Springer.CrossRefGoogle Scholar
Zhao, Q., Azeria, E.T., Le Blanc, M.-L., Lemaître, J. & Fortin, D. (2013b). Landscape-scale disturbances modified bird community dynamics in successional forest environment. PLoS ONE, 8, e81358; doi:10.1371/journal.pone.0081358.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark R.T. Dale, University of Northern British Columbia
  • Book: Applying Graph Theory in Ecological Research
  • Online publication: 31 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105450.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark R.T. Dale, University of Northern British Columbia
  • Book: Applying Graph Theory in Ecological Research
  • Online publication: 31 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105450.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark R.T. Dale, University of Northern British Columbia
  • Book: Applying Graph Theory in Ecological Research
  • Online publication: 31 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316105450.015
Available formats
×